Featured Publication Summaries

Novel toolkit delivers 4D visualization capabilities, addresses data volume challenges in exascale

A team of researchers has developed the Feature Tracking Kit (FTK), which uses simplicial spacetime meshing to simplify, scale, and deliver novel feature-tracking algorithms for in situ data analysis and scientific visualization. FTK delivers feature-tracking tools, scales feature-tracking algorithms in distributed and parallel environments, and simplifies development of new feature-tracking algorithms, enabling new analyses in greater detail than previously possible.

Novel method delivers ease of programming, better performance with dynamic control replication

A team collaborating across national laboratories, universities, and industry has developed a new approach to runtime programming that enables scalable execution of implicitly parallel programs on large-scale machines using distributed dynamic dependence analysis for efficient, on-the-fly computation of dependences.

MFIX-Exa leverages CFD-DEM strengths to modernize reactor simulations

Researchers at the National Energy Technology Laboratory (NETL) and Lawrence Berkeley National Laboratory (LBNL) have developed MFIX-Exa, a massively parallel CFD-DEM (computational fluid dynamics-discrete element method) code, a high-fidelity computational tool that allows for simulating dense particle-laden flows in systems with complex geometries so high-performance computing (HPC) can be used in place of physical testing.

Technical Highlights

Verifying the Universe with Exascale Supercomputers

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exascale supercomputers. Exascale machines will enable the ExaSky team to verify the gravitational influences, gas dynamics, and astrophysical inputs that they use to model the universe at unprecedented fidelity, as well as address forthcoming challenge problems to predict and replicate high-accuracy sky survey data.

LLVM Holds the Keys to Exascale Supercomputing

The recent proliferation of new hardware technologies has galvanized the high-performance computing (HPC) community and created the ability to deliver the nation’s forthcoming exascale-capable supercomputers and data centers. It has also made LLVM-based compiler technology the default gatekeeper to these new systems.

ECP Leads the Way to Cross-Platform Tested and Verified Compilers for HPC and Exascale Architectures

The Exascale Computing Project (ECP) is working to combine two key technologies, LLVM and continuous integration (CI), to ensure that current and future compilers are stable and performant on high-performance computing (HPC) and exascale computer systems.

National Nuclear Security Administration logo U.S. Department of Energy Office of Science logo