Featured Publication Summaries

All Featured Publication Summaries

Special Issue Paper reviews CoPA particle application advancements

The Exascale Computing Project’s (ECP’s) Co-design Center for Particle Applications (CoPA) aims to prepare particle applications for exascale computing.

Novel toolkit delivers 4D visualization capabilities, addresses data volume challenges in exascale

A team of researchers has developed the Feature Tracking Kit (FTK), which uses simplicial spacetime meshing to simplify, scale, and deliver novel feature-tracking algorithms for in situ data analysis and scientific visualization. FTK delivers feature-tracking tools, scales feature-tracking algorithms in distributed and parallel environments, and simplifies development of new feature-tracking algorithms, enabling new analyses in greater detail than previously possible.

Novel method delivers ease of programming, better performance with dynamic control replication

A team collaborating across national laboratories, universities, and industry has developed a new approach to runtime programming that enables scalable execution of implicitly parallel programs on large-scale machines using distributed dynamic dependence analysis for efficient, on-the-fly computation of dependences.

MFIX-Exa leverages CFD-DEM strengths to modernize reactor simulations

Researchers at the National Energy Technology Laboratory (NETL) and Lawrence Berkeley National Laboratory (LBNL) have developed MFIX-Exa, a massively parallel CFD-DEM (computational fluid dynamics-discrete element method) code, a high-fidelity computational tool that allows for simulating dense particle-laden flows in systems with complex geometries so high-performance computing (HPC) can be used in place of physical testing.

Team explores overset mesh methods for wind farm simulations

For the ExaWind challenge problem, decomposing the linear systems for each overset mesh offers several advantages by (1) allowing the use of rigorously coupled, separate CFD codes wherein optimal solvers can be chosen for their respective domains and (2) speeding up the linear solvers.

New computations on scattering amplitudes illuminate quark and gluon particle interactions

The analytical and computational methods developed in this work pave the way for future calculations in more complicated systems involving multiparticle and nuclear systems.

ArborX speeds up, scales up spatial search for cosmology and other sciences

ArborX will speed up exascale applications for computational cosmology, multiphysics data transfer, computational mechanics, wind farm simulations, and other research areas.

Novel method combining machine learning and data partitioning benefits cancer records data extraction

A team of cancer researchers and computer scientists have applied machine learning (ML) ensemble techniques to reduce training time, mitigate task complexity, and improve accuracy and classification performance for information extraction with cancer pathology reports.

Rendezvous methods reduce performance bottlenecks in particle and grid-based simulations

Scientists have demonstrated the value in two particle simulators of so-called rendezvous methods, which invoke a communication pattern useful when the processors sending and receiving information are unknown to each other.

Team delivers review of mixed-precision numerical linear algebra algorithms for exascale computing

Researchers supported by the Exascale Computing Project (ECP) conducted the first comprehensive review of research examining the usefulness of mixed-precision algorithms to power exascale computations.

First effort to couple nonlinear gyrokinetic codes advances fusion whole-device simulations

This work extends the capabilities of exascale computing to fusion research and establishes the validity and scalability of the code-coupling approach for whole-device simulations.

Urban planning simulation tools examine impact of new development

A research team funded in part by the Exascale Computing Project has produced tools for assimilating high-resolution urban terrain into regional weather models, determining building-by-building meteorology, and for extremely fast generation of building simulations for energy use analysis.

ADEPT introduced to improve large-scale bioinformatics data analysis

Researchers have introduced ADEPT, a novel domain-independent parallelization strategy that optimizes the Smith-Waterman algorithm for DNA and protein sequencing on the heterogeneous architectures and GPUs of petascale. supercomputers.

ECP-funded research develops solutions for additive manufacturing simulation needs

Exascale Computing Project (ECP)–funded researchers have demonstrated a massively parallel, scalable system for simulating physical behaviors of materials undergoing complex topological changes, collisions, and large deformations using multi-GPU supercomputers such as Summit at Oak Ridge National Laboratory.

ECP-funded team investigates NVM techniques to improve data storage and performance speed

A team of researchers funded by the Exascale Computing Project demonstrated the efficacy of combining DRAM and high-density, byte-addressable nonvolatile memory (NVM) for accelerating high-performance computing (HPC) and enabling large problems at reasonable performance beyond the capabilities of DRAM and NVM alone.

ECP-funded research advances plasma accelerator modeling

Scientists funded by the Exascale Computing Project (ECP) have developed WarpX, a modern, performance-portable Particle-in-Cell code that describes the relativistic physics of charged plasma particles for accelerator and laser–plasma physics.

ECP-funded researchers enable faster time-to-science with novel I/O processing method

Researchers funded by the Exascale Computing Project have delivered a novel method that addresses overloaded communication processes that use MPI-IO by adding a second I/O request aggregation layer.

ECP project optimizes lossy compression methods to manage big science data volumes

Scientists working on the VeloC-SZ project have optimized SZ, an error-bounded prediction-based lossy compression model.

New model seeks to make cloud–atmospheric process simulations faster, more cost-efficient

Researchers supported by the Exascale Computing Project have developed a Multiscale Modelling Framework (MMF) configuration of E3SM, which involves embedding a limited-area cloud resolving model into each column of the global E3SM model.

ALPINE project tests novel algorithm for in situ exascale data analysis

Researchers working with the Exascale Computing Project (ECP) have demonstrated a novel moment invariant pattern detection algorithm to drive in situ pattern recognition during simulations running on high-performance computing architectures.

ECP-funded scientists examine Julia’s usefulness for quantum chemistry software development

Researchers working under the Exascale Computing Project have shown that JuliaChem, a quantum chemistry software written with the Julia programming language, can deliver effective performance, superior ease of use, and improved scalability of calculations compared to the most commonly used applications.

CEED project examines scalability and performance of key algorithms for HPC applications

Researchers working with the Exascale Computing Project’s Center for Efficient Exascale Discretization recently published findings of investigations they conducted into performance trade-offs for compute-intensive kernels in scientific computing applications.

Novel algorithm improves supervised learning training methods

Researchers funded by the Exascale Computing Project have developed a new algorithm that improves kernel ridge regression methods used for supervised learning problems.

National Nuclear Security Administration logo U.S. Department of Energy Office of Science logo