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 Why do we run HACC (Hardware/Hybrid
Accelerated Cosmology Code)?

 Theoretical research

Understand how Large-Scale Structures (LSS)
form and evolve over cosmic time

Look for signatures of new/interesting physics

« Comparison with observations

Grand astronomical surveys
 Rubin-LSST >$0.5B (NSF + DOE + ...)

Create mock Universes for survey design

Provide theoretical models of summary statistics
for data analysis (eg. emulators)

Understand data covariance for parameter
estimation

Single observed Universe means forward-modeling
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https://www.lsst.org/

HACC N-Body: Matter Distribution
* Gravity

— As the Universe expands, structure condenses from very smooth initial conditions

— Dark matter is dominant mass component and is modeled as effectively collision-
less.

Evolution of matter distribution over cosmic
time for a sub-volume of a HACC simulation.
FarPoint: https://arxiv.org/abs/2109.01956
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https://arxiv.org/abs/2109.01956

HACC Analysis: Halos

 Dark matter collects into “halos”

« Halos provide deep gravitational potential
wells where baryonic matter can collect
and eventually cool and condense to form
stars and galaxies
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* Roughly half of the mass in the Universe
ends up in halos by our current epoch
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« Halos are identified in simulations by
looking for coherent structures with
densities >100x of the background density

Particles in a small volume of a HACC simulation colored
by halo membership.
HACC: https://arxiv.orq/abs_ﬂ\4\1 0.2805
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https://arxiv.org/abs/1410.2805

HACC Analysis: Halo Merger Trees

« Halos interact with each other as the
Universe evolves, colliding and merging

» The interaction history of halos is
important because interactions between
galaxies within halos can trigger epochs
of star formation, and the total history of
star formation in a galaxy determines its
luminosity/color

* The interaction histories of halos is
summarized in a data structure called a
merger tree
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Logical merger tree.
SMACC.: https://arxiv.orq/aﬁs/\201 2.09262
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https://arxiv.org/abs/2012.09262

HACC Analysis: Halo Core Tracking

* Very inner part of halo is a tightly-bound
core of particles that is not easily
disrupted during halo-halo interactions

» Track sub-structure within halos by
continuing to track cores even after halos
merge

» Core positions are likely good proxies for
galaxy locations

Physical trajectories of cores that merge into 1 halo.
OuterRim: https://arxiv.org/abs/1904.11970
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https://arxiv.org/abs/1904.11970

HACC Analysis: Lightcones

* N-body simulations operate in a comoving
gauge, observations are not in same
gauge

 Finite speed of light, we observe objects
as they were when the light that we are
now collecting left the object

* Objects that are farther away have a
longer lookback-time

 HACC runs in a fixed-sized box (in
comoving/expanding units) with periodic
boundary conditions, but we can create a
lightcone around an observer by saving

the correct spherical shell from each time Particle lightcone from a HACC simulation with observer
step at center; color indicates distance/lookback-time.
OuterRim: https://arxiv.org/abs/1904.11970
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https://arxiv.org/abs/1904.11970

HACC Analysis: Halo Lightcones

(0]
lightcone .merger tree branch
« Construct halo merger trees to the end of ;nerger tree brar

the simulation in the entire simulation

volume \ ’/ h tjy

« Can go back and figure out where a b (
merger tree intersects an observer’s 7\\
lightcone in order to display information N g
from the merger tree in the right place at Pmmp ’ K ’ /
the right tme oy

Interpolating merger trees onto an observer’s lightcone.
CosmoDC2: https://arxiv.org/abs/1907.06530
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https://arxiv.org/abs/1907.06530

Pre-Exascale (Early Petascale Era)

History Design

* Predecessor code was originally * Force-splitting
deV@lOpeq as a gravity-only — Long-range component of gravity was
cosmological N-body structure calculated with particle-mesh methods
formation code written for Los Alamos and a distributed-memory Fourier
National Laboratory's IBM transform-based Poisson solver
Roadrunner supercomputer, which implemented in MP1. |
featured IBM Cell Broadband Engine — Short-range component of gravity

calculated using direct particle-particle
comparisons and implemented in C with
intrinsics to take advantage of the FLOPS
available on the Cell accelerators.

accelerators.
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Gravity Force Splitting

* Hardware/Hybrid Accelerated Cosmology Code (HACC)
—  Gravity is infinite and unshielded

— 1 kpc force resolution in 1 Gpc box, 10*6 dynamic range

* Operator splitting
—  Kick: forces used to update particle velocities; positions fixed

* Long-range: Particle-Mesh, deposit onto grid, FFT-based Poisson
solver, ~10*4 resolution from ~10k*3 grids, requires double precision

« Short-range: Particle-Particle interactions, FLOPS intense, maximize
architecture, ~10"2 resolution, single precision sufficient

—  Stream: velocities used to update positions; velocities fixed

—  Symplectic integration

+ HACC Spectral Force Handover Technology ™
— Use low-order Cloud-in-Cell (CIC) deposit
—  Spectral shaping reduces noise and emulates smoother deposit

—  Extremely compact, ~3 grid units, limit particle comparisons

10 Exascale Computing Project
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HACC Design

» Overloading (between MPI ranks) Global PM time step

— Each MPI rank caches a thin shell of
particles from immediate neighbor MPI
ranks

— No particles need to be exchanged during
sub-cycles for short-range force | |
calculation Ta tia ti2 tis T2

— Refresh particle cache periodically
bl

between outer time steps
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Preparing for Exascale (Frontier and Aurora)

Challenges CRK-HACC

* More increased compute capabilities « Adds baryonic physics in addition to
than memory (e.g., Summit->Frontier) gravity
— ~8x more FLOPS (peak) — New Conservative Reproducing Kernel

(CRK) formulation of Smoothed Particle

~~3
X more memory Hydrodynamics (SPH)

* Exascale systems will have multiple — Resolves some discrepancies with grid-
programming models and frameworks based hydrodynamic schemes
— CUDA, HIP, SYCL, OpenMP, Kokkos, ... — non-radiative hydrodynamics

— sub-grid models for radiative cooling, star

* CPU analysis routines (on the host) formation, and feedback from supernovae

are becoming a larger fraction of the and Active Galactic Nuclei (AGN)
overall execution time. —
(CP e
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ECP Software and Technology (ST) Projects

Collaborators HACC
* ArborX * ArborX
— Fast GPU-accelerated geometric search — FOF halo-finding
library — AGN center-finding (hydro sub-grid)
* VeloC/SZ — SOD halo-finding
— Low overhead checkpointing e \VeloC/SZ
— Lossy data compression where the error _ Checkpoint/restart

can be bound and controlled

* ALPINE/ZFP

— Visualization

— Compressed analysis outputs

—_—
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Preparing for Aurora

* Primary and ongoing development of CRK-HACC uses CUDA, with
HIP support (for Frontier) through macro transformations of API calls.

« SYCL was chosen by the HACC team for running on Aurora.

« HACC would support multiple build implementations, as it has
historically, to exploit low-level programming model features to
achieve the best possible performance on target systems.

PPPPPPP
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CUDA to SYCL Migration

CUDA
Kernels

p
Kernel Test Rapid Prototyping ]

Harness L and Analysis

SYCLomatic

Semi-automated
Migration Pipeline

SYCL Functor
Clang-Tool HIP Macros
CUDA Kernels SYCL Kernels
GPU API Wrappers
CRK-HACC
/-:\
N e
15 Exascale Computing Project \(\~ ) PROJECT




Adiabatic Hydro Simulation on Sunspot (Aurora TDS)
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Performance, Portability, and Productivity Study,
using SYCL

A Performance-Portable SYCL Implementation of
CRK-HACC for Exascale

Esteban M. Rangel S. John Pennycook Adrian Pope
erangel@anl.gov john.pennycook@intel.com apope@anl.gov
Argonne National Laboratory Intel Corporation Argonne National Laboratory
USA USA USA
Nicholas Frontiere Zhigiang Ma Varsha Madananth

nfrontiere@anl.gov zhiqiang. ma@intel.com varsha.madananth@intel.com
Argonne National Laboratory Intel Corporation Intel Corporation
USA USA USA

Paper to appear in the PSHPC Workshop as part of SC23
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Experimental Setup

Hardware Configuration for Systems Problem Size
3 0
er GPU ) .
e 5 timesteps (4 fixed sub-cycles)

Aurora 2 X Intel® 6 X Intel® Data 45.9 TFLOPS

Xeon® CPU Center GPU 8 MPI ranks

Max 9470C, Max 1550

52 cores Aurora: 1 rank/tile
Polaris 1 x AMD 4x NVIDIA 19.5 TFLOPS P

EPYC 7543P, A100-SXM4- POla_rIS' 2 rankS/GPL(J) . .

32 cores 40GB note: measured ~11% lower efficiency
Frontier 1 x AMD 4 x AMD 53 TFLOPS Frontier: 1 rank/GCD

EPYC 7A53, Instinct

64 cores MI250X
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Initial Results

Aggregate of all GPU Kernels

« Fast Math optimizations were not enabled by

07 default on all compilers.
= 17 * Frontier HIP code uses a wavefront size of 64,
;é 200 - and the SYCL code uses a sub-group size of 64
£ 2004 * Polaris CUDA code uses a warp size of 32, and the
E SYCL code uses a sub-group size of 32

100

* Aurora SYCL code uses a sub-group size of 32
v Frontier Polaris Aurora and/ or 16

B cupa (Defaut) B Hip (Default) Bl sver (Defaul)

Y CUDA (Fast Math)  [B58] HIP (Fast Math) {3 SYCL (Optimized)

L

Performance results are based on testing dates and configurations used and may not reflect all publicly available updates.
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Optimizations to GPU (solver) Kernels

Hotspot Kernels

1.
2.

Geometry: measures the volumes of gas particles

Corrections: computes the reproducing kernel
coefficients of the higher order smoothed particle
hydrodynamics (SPH) solver

Extras: evaluates the density and state gradients

Acceleration: calculates the momentum derivative

Energy: solves the derivative of the internal energy.

20 Exasctd¢10@8puting Project

The SIMD lane data layout of the “half-warp” algorithm.
Lanes [0-15] load and update particles from leaf A, while

lanes [16-31] operate on particles from leaf B.

Particles are organized in a tree with “fat

EXASCALE
COMPUTING

OO0 j OO0 o
0O 0 O leaves” containing an SYCL work-group/CUDA
Leaf A OO OO Leaf B  block-sized number of particles.
o 00 0 O j
Particle SIMD layout
tanelD| o | 1 15116 | 17 31
Leaf A A|A|B|B|B|B
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Optimizing Cross-lane Communication

Warp (32 CUDA threads) * The communication pattern of the “half-warp”
— ———— — i and j particles are stored in different algorithm for interacting particles from leaves A
o |l |- |tas|Jo|J1 |- |J15 halves of the warp. and B within the same warp.

Lower “Half Warp”  Upper “Half Warp” * This represents one of the total (| LeafA| x

e |Leaf B|/warp_size) instances required.
0t - i Jo ]:1 =iz o teration swaps symmettc (L o, The pair-wise symmetry is critically important for
\Y i,] : .
[ Redundantcomputein both directions. the correctness of the algorithm
bo | i1 | -~ [las|Jo | J1 | -+ [J15] | * XOR-based shuffle pattern implemented as the
shfl intrinsic for CUDA

s_ycl ;:select from _group inSYCL

—_—

-_—
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Optimizing Cross-lane Communication

Intel® Data Center GPU Max 1550 assembly snippets for
sycl::select-from-group

Elements are gathered from the registers specified in a0 and written into r2
using indirect register access

shl (16|MO) r24.0<1>:uw r82.0<2:1,0>:uw OX2:uw

add (16|MO) a0.0<1>:uw r24.0<1;1,0>:uw 0x640:uw
mov (16|MO) r2.0<1>:ud r(a0.0]1<1,0>:ud

alternative instruction sequence employing register regioning is more performant
but not always achievable by the compiler

add (16|M0O)

r24.0<1>:f r68.0<1;1,0>:f -rl14.0<0;1,0>:f
add (16|MO) r26.0<1>:f r68.0<1;1,0>:f -rl14.1<0;1,0>:f
r30.0<1>:f r68.0<1;1,0>:f -rl14.2<0;1,0>:f

add (16|M0O)

22 Exascale Computing Project

Cross-lane Communication Strategies explored

« Shared Local Memory

— Uses sycl::local accessor to reserve a small amount
of work-group local memory per sub-group to
communicate instead of via registers.

 Broadcasts

— Restructure loops so that sufficient information is
known about the communication pattern at
compile-time to generate more efficient
assembly.

e Optimized Instruction Sequences (Intel)

— Explicitly code the assembly instructions for each
communication step needed.

—\
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Optimizing Cross-lane Communication (Intel)

Specialized butterfly-shuffle communication pattern,
which provides the same pair-wise symmetry property of

the XOR-based pattern Register view of the specialized butterfly-shuffle
r0
XO Xl XZ X3 X4 X14 X15 Example of performing the i=1
01 TIECIRL, 31 rl Xo | X | X, | X3 | Xy | ..o | X4 | Xy5 | instance of the butterfly-shuffle.
i-0 After an initial upper-and
X X X X X X X X - lower-lane data exchange, r2 X16 X17 X18 X19 X20 X30 X31 The “wrap-around” feature of the
16 | *17 31| 20 1 15 register file is exploited.
r3 X16 X17 X18 X19 XZO X30 X31
lower lanes perform a
0 1 15|16 | 17 31 _— cyclic shift-right(i) and
upper lanes perform a
%31 | X16 | X X30 | X1 | X2 | X X0 cyclic shift-left(i) - . . .
Efficiently performed with 4 mov instructions
0|1 1516 | 17 31
i=15

X17 | X18 | X | X16 | X15 | X0 | X | X14

Py \
EXASCALE
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Optimization Results (Hotspot Kernels)

Aurora
Intel® Data Center GPU Max 1550

« Broadcast uses a sub-group size of 16, all

1.0 1 N B B . .
I T other variants use a sub-group size of 32
2 0.8 - _ i
E e Restructuring the loops to use broadcasts also
£ 064 allows us to generate fewer atomic instructions,
g more noticeable in the Extras and Corrections
£ 0.4+ kernels
a
<
0.2 1
0.0 -
upBarAc upBarAcF upBarDu upBarDuF upBarEx  upCor upGeo
Kernel
BB Broadcast EZA Memory, Object 3 vISsA
BNl Memory, 32-bit  EEEE Select
Performance results are based on testing dates and configurations used and may not reflect all publicly available updates. ’-‘;\
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Optimization Results (Hotspot Kernels)

Polaris Frontier
NVIDIA A100-SXM4-40GB AMD Instinct MI250X
1.0 A ‘, 1.0

\

> i B i

% 0.8 t‘ i’ % 0.8

= N¢ Ng =
\ \

= 0.6 1 \‘ \‘ = 0.6

= ¢ \f =

£ VB | =

041 NH B 5041

: VIl

“ 0.2 t' tf “ 0.2
N7\
v\

0.0 - N N 0.0 -
upBarAc upBarAcF upBarDu upBarDuF upBarEx  upCor upGeo upBarAc upBarAcF upBarDu upBarDuF upBarEx  upCor upGeo
Kernel Kernel
B Broadcast EZZ] Memory, Object B Broadcast ZZ]1 Memory, Object
EXY Memory, 32-bit  HEEE Select EXY Memory, 32-bit B Select
Performance results are based on testing dates and configurations used and may not reflect all publicly available updates. ,-;\ \
(CP 2=
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Performance Portability Analysis

Cascade plot of application efficiency and performance portability of CRK-HACC variants.

1.0 - 1.0
. <4 LJ
£ 081 ¥ - 0.8
)
= o,
= 0.6 - i
- 06 e 0.6
£ 0.4 - 0.4
g
0.2 0.2
0.0 0.0

Platform

. Polaris . Frontier
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CUDA/HIP (Fast Math)
SYCL (Broadcast)

SYCL (Memory, 32-bit)
SYCL (Memory, Object)
SYCL (Select + Memory)
SYCL (Select + vISA)
SYCL (Select)

SYCL (vISA)

Unified (Fast Math)

Aurora

AIqeI0J 90URULIONISJ

H]

i if Vi e H

PP H) = e;(a, 0
(a,p, H) g;q er(@p) (a,p) #
0 otherwise

where a is an application, p is a specific input
problem, H is the set of platforms of interest, and
e;(a, p ) is the efficiency with which application a
solves problem p on platform i

application efficiency is calculated relative to a
hypothetical application that is able to use the
best version of each kernel on every platform
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Productivity Analysis

A navigation chart showing the performance portability
and code convergence of CRK-HACC variants
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Code Convergence
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CUDA/HIP (Fast Math)
SYCL (Broadcast)

SYCL (Memory, 32-bit)
SYCL (Memory, Object)
SYCL (Select + Memory)
SYCL (Select + vISA)
SYCL (Select)

SYCL (vISA)

Unified (Fast Math)

SN N N N /N /N

Code Divergence

CD(a,p, H) = ('Z’>_l > dij(a,p)

{i,j}eHxH

where d; ;(a, p) represents the distance
between the source code required to solve
problem p using application a on platforms i
and j (from platform set H ).
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Disclaimers

« Performance varies by use, configuration and other factors.
Learn more at https://www.intel.com/performanceindex

« Performance results are based on testing as of dates shown in configurations and may
not reflect all publicly available updates. See Slide 4 for configuration details. No
product or component can be absolutely secure. Intel does not control or audit third-
party data. You should consult other sources to evaluate accuracy.

* Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands ma\é be claimed as the property
of others. Khronos is a registered trademark and SYCL and SPIR are trademarks of The
Khronos Group Inc.

* No license (express or implied, by estoppel or otherwise) to any intellectual property
rights is granted by this document, with the sole exception that'’code included in this
document is licensed subject to the Zero-Clause BSD open source license (OBSD),
http://opensource.org/licenses/0BSD.
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https://www.intel.com/performanceindex
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Conclusion

« HACC has introduced new physics (hydrodynamics and sub-grid modeling) into the simulation
capabilities, made possible with the increased computing power of Exascale supercomputers.

» Described a process to migrate and maintain a CUDA codebase to SYCL
« |dentified that “shuffle” operations are not performance-portable from NVIDIA to Intel GPUs

» Developed a straightforward workaround to replace “shuffles” with local memory operations that
can be generally useful to other developers.

« Demonstrated the practical potential for writing performance portable applications in SYCL
ultimately achieving a performance portability of 0.96 with near-zero code divergence -- and a
pure SYCL implementation performance portability of 0.91.
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Key Takeaways

« Code (outside solvers), e.g., in situ analysis, are becoming
bottlenecks and need GPU acceleration.

* The increased complexity of code makes maintaining multiple
iImplementations more burdensome and highlights the need for
performance-portable programming models.

* The SYCL version of CRK-HACC is an exciting proof-of-concept for
using a single programming model across GPUs from Intel, NVIDIA,

and AMD without sacrificing performance.

PPPPPPP
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Thank you

Contact:
Esteban Rangel, CPS
erangel@anl.gov
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