
Taking HACC into the Exascale Era:
New Code Capabilities, and Challenges

Esteban M. Rangel, Computational Scientist
(CPS) ANL

Best Practices for HPC Software Developers (Webinars)

2 Exascale Computing Project

Cosmological N-Body Simulations

• Why do we run HACC (Hardware/Hybrid
Accelerated Cosmology Code)?

• Theoretical research
– Understand how Large-Scale Structures (LSS)

form and evolve over cosmic time
– Look for signatures of new/interesting physics

• Comparison with observations
– Grand astronomical surveys

• Rubin-LSST >$0.5B (NSF + DOE + …)
– Create mock Universes for survey design
– Provide theoretical models of summary statistics

for data analysis (eg. emulators)
– Understand data covariance for parameter

estimation
– Single observed Universe means forward-modeling

Rubin LSST: https://www.lsst.org/

https://www.lsst.org/

3 Exascale Computing Project

HACC N-Body: Matter Distribution
• Gravity

– As the Universe expands, structure condenses from very smooth initial conditions
– Dark matter is dominant mass component and is modeled as effectively collision-

less.

Evolution of matter distribution over cosmic
time for a sub-volume of a HACC simulation.

FarPoint: https://arxiv.org/abs/2109.01956

https://arxiv.org/abs/2109.01956

4 Exascale Computing Project

HACC Analysis: Halos

• Dark matter collects into “halos”

• Halos provide deep gravitational potential
wells where baryonic matter can collect
and eventually cool and condense to form
stars and galaxies

• Roughly half of the mass in the Universe
ends up in halos by our current epoch

• Halos are identified in simulations by
looking for coherent structures with
densities >100x of the background density

Particles in a small volume of a HACC simulation colored
by halo membership.

HACC: https://arxiv.org/abs/1410.2805

https://arxiv.org/abs/1410.2805

5 Exascale Computing Project

HACC Analysis: Halo Merger Trees

• Halos interact with each other as the
Universe evolves, colliding and merging

• The interaction history of halos is
important because interactions between
galaxies within halos can trigger epochs
of star formation, and the total history of
star formation in a galaxy determines its
luminosity/color

• The interaction histories of halos is
summarized in a data structure called a
merger tree

Sultan et al. 5

3. CORE TRACKING

We have recently introduced the concept of core tracking in
cosmological simulations as an alternative to the construction
of subhalo merger trees. A detailed description of the core cat-
alog implementation is reported in Rangel et al. (2017) and
Heitmann et al. (2020). The first scientific application of core
tracking, in addition to comprehensive validation results, is dis-
cussed in Korytov et al. (2020). In this section, we provide
a brief summary of the underlying concepts and construction
techniques for the core catalogs.

3.1. Definition of Cores

The definition of a core is straightforward: For each halo
above a certain mass (the core host halo mass threshold), the
gravitational potential center is found and the set of particles
closest to the center is identified as the halo core. The num-
ber of particles that define a core is an input parameter to the
analysis set-up and is chosen with regard to the size of the sub-
structure that we aim to capture and the mass resolution of the
simulation. The values for the core host halo mass threshold
and the core size for our simulations are specified in Table 1.
For each (of the 101) analysis time snapshots, all core parti-
cles identified are stored, including their halo tag, to enable the
connection to the halo catalogs at a later stage.

In addition to the core particle files per snapshot, we also
keep track of the evolution of the core particles over time. Once
a particle has been identified as a core particle, we follow its
path for the remainder of the simulation. In totality, at each
analysis step, we record the new positions and velocities of
core particles that have been found previously and add newly
found core particles as we go along. In this way, we build up
an accumulated core particle file over time containing informa-
tion about each core particle’s evolution from its first identifica-
tion until the final time step. Storing the complete core history
is necessary to generate core catalogs (as described in Section
3.3), which track the complex formation history of identified
substructure.

3.2. Merger Trees

In order to extract the temporal evolution of the substructure
traced by core particles, halo merger trees are required. Such
trees track the hierarchical formation history of each halo over
time, recording merging events and mass accretion. The merger
trees are constructed by processing halo catalogs at adjacent
analysis snapshots. We compute the overlap of halo particles
in each snapshot pair to connect older progenitor halos with
younger descendant halos at the later timestep. Processing all
snapshots results in a complete merger tree catalog that can ex-
tract the formation history of any halo of interest.

There are many complications in merger tree construction,
with a number of papers devoted to the subject (e.g., Fakhouri
& Ma 2008, Behroozi et al. 2013, Rodriguez-Gomez et al. 2015
and Han et al. 2018). Finite mass resolution, for example, can
cause stochastic threshold effects of the smallest halos, which
are repeatedly found, lost, and re-found at masses near the halo
minimum mass threshold. We have mitigated this complication
by setting our halo finding thresholds to be below our minimum
host halo masses in our trees, effectively pruning out halos of
masses below our tracking resolution. The smallest resolved
halos in our merger trees are recorded by the core host halo
mass in Table 1.

FIG. 2.— Example halo merger tree showing the types of cores associ-
ated with halos (gray disks). Central cores (triangles) are identified when an
FOF halo is found above a preset core host halo mass threshold. As halos
merge, the central core of the most massive progenitor (MMP) is connected to
the measured central of the descendant. Cores of less massive progenitors are
designated as satellites. The ‘order’ of a satellite traces the number of previ-
ous mergers away from a MMP; cores that merged directly into a MMP halo
are labeled first-order satellites (squares), cores inherited from one generation
above an MMP merger are second-order satellites (circles), etc. This order-
ing of cores is analogous to substructure hierarchies described in the literature
(e.g., Giocoli et al. 2010; Jiang & van den Bosch 2014, 2016).

Merger tree construction is further complicated by halo ‘split-
ting’ events, where nearby (or flyby) halos are temporarily con-
sidered as one object (over-linked by an FOF finder, for exam-
ple) erroneously indicating a merger event, and are later dis-
covered to be different separate (split) objects. To avoid split-
ting effects, we have found that the construction of merger trees
is best carried out in post-processing, starting from the final
time step of interest (in our case at z = 0) and walking back-
wards in time. Thus, we are ensured that every merger tree
will be rooted by one final descendant, and we employ an artifi-
cial halo ‘fragmentation’ procedure to account for halo splitting
events. Briefly, when we detect a halo progenitor with multiple
descendants (indicating the halo split), we fragment the progen-
itor into separate halos defined by the overlapping particles of
each descendant. We then assign to each fragment a portion
of the original progenitor mass based proportionally on the de-
scendant mass, thereby conserving total mass (see Rangel et
al. 2017 for details). The resulting merger trees are devoid of
splitting events, and consistently track the formation history of
each halo.

In summary, we efficiently record the merger history of all
halos to form a connectivity tree catalog that consistently tracks
all mass that eventually ends up in the final halos of interest at
z = 0. For each object within the tree, we further store all of the
relevant halo catalog properties (mass, velocity, shape, etc.),
with adjusted values used for fragmented halos when needed.

3.3. Core Catalogs

By combining the information from core tracking, halo prop-
erties, and merger trees, one can construct core catalogs that
contain the evolution history of each core from its birth to the
final timestep. Core catalogs are analogous to subhalo merger

Logical merger tree.
SMACC: https://arxiv.org/abs/2012.09262

https://arxiv.org/abs/2012.09262

6 Exascale Computing Project

HACC Analysis: Halo Core Tracking

Physical trajectories of cores that merge into 1 halo.
OuterRim: https://arxiv.org/abs/1904.11970

• Very inner part of halo is a tightly-bound
core of particles that is not easily
disrupted during halo-halo interactions

• Track sub-structure within halos by
continuing to track cores even after halos
merge

• Core positions are likely good proxies for
galaxy locations

https://arxiv.org/abs/1904.11970

7 Exascale Computing Project

HACC Analysis: Lightcones

• N-body simulations operate in a comoving
gauge, observations are not in same
gauge

• Finite speed of light, we observe objects
as they were when the light that we are
now collecting left the object

• Objects that are farther away have a
longer lookback-time

• HACC runs in a fixed-sized box (in
comoving/expanding units) with periodic
boundary conditions, but we can create a
lightcone around an observer by saving
the correct spherical shell from each time
step

Particle lightcone from a HACC simulation with observer
at center; color indicates distance/lookback-time.

OuterRim: https://arxiv.org/abs/1904.11970

https://arxiv.org/abs/1904.11970

8 Exascale Computing Project

HACC Analysis: Halo Lightcones

• Construct halo merger trees to the end of
the simulation in the entire simulation
volume

• Can go back and figure out where a
merger tree intersects an observer’s
lightcone in order to display information
from the merger tree in the right place at
the right time

COSMODC2 7

lightcone, Smith et al. (2017) choose the merger time ran-
domly per halo progenitor, and interpolate masses between
snapshots. For cosmoDC2, we take a simpler approach,
and assume that the merger has always happened prior to
it intersecting the lightcone surface (that is, for a merging
merger tree branch that crosses the lightcone at te, we as-
sert tmerge < te in all cases). We set the position of each
halo within the lightcone by interpolating between the cur-
rent halo position and that of its most massive progenitor, re-
taining all halo properties (mass, radius, etc.) as they appear
in the later snapshot at t j+1.

Figure 3. Schematic of the interpolation process which fills the
cosmoDC2 halo lightcone. Each plane represents a projected sim-
ulation snapshot, and time increases vertically, with the observer
located at o. A merger tree branch including halo h is seen crossing
the observer’s lightcone between snapshots j and j + 1 (the purple
worldlines of each halo are unknown between the snapshots). In-
terpolation between halo h and its most massive progenitor hmmp

(orange dashed line) is used to solve for the temporal and spatial
components of event h0, where we place an object with properties
(mass, etc.) identical to halo h.

3.5. Workflow
Having described the simulations and the data products

that are generated, we now provide a final summary by
discussing the workflow for producing the inputs to the
cosmoDC2 production pipeline. The workflow diagram is
shown in Figure 4 and begins with the particle catalogs from
the smaller AlphaQ simulation and the larger Outer Rim sim-
ulation. These are both processed by the halo finder to con-
struct halo catalogs which are then input into the merger tree
builder. In the case of the Outer Rim simulation, the merger
trees are used to build halo lightcones (see Sec. 3.4) that serve
as inputs for the Empirical-Model Pipeline and provide host
halos for the galaxies in cosmoDC2. For the AlphaQ simu-
lation the merger trees are used as inputs to the Galacticus

Outer Rim Particle
Lightcone

Outer Rim Halo
Lightcone

Particle-Lightcone
Generator (§3.4)

Halo-Lightcone
Generator (§3.4)

Outer Rim Halo
Merger Trees

Outer Rim Particles
(§3.1) Halo Finder (§3.3)

AlphaQ Halo
Catalog

AlphaQ Halo
 Merger Trees

Merger-Tree Builder
(§3.3)

Outer Rim Halo
Catalog

AlphaQ Particles
(§3.2)

Figure 4. Workflow to produce the Outer Rim and AlphaQ sim-
ulation data products used as inputs to the cosmoDC2 production
pipeline. Data products are shown as rectangles in dark and light
purple for data derived from the Outer Rim and AlphaQ simula-
tions, respectively. Code modules are shown as ovals in dark or-
ange. Numbers in parentheses refer to the sections in the paper
where a detailed description of the workflow component is given.

SAM that is subsequently used to build the Galacticus Li-
brary. The particle snapshots from the Outer Rim simulation
are also input into the particle-lightcone generator to produce
the inputs required for the Lensing Pipeline.

4. WEAK LENSING
Weak lensing distortions are key observables of the LSST

survey, providing constraints on the growth of cosmic struc-
ture and therefore dark energy (e.g., Mandelbaum 2018).
These distortions, which take the form of an isotropic change
in area (convergence) and an area-preserving change in shape
(shear), can be mimicked in simulations by following the
paths of photon rays as they traverse the matter field. In prac-
tice, maps of the lensing quantities are obtained as follows:
the particle lightcone is divided into discrete shells, then pho-
ton paths are traced backwards in time from an observer grid
to a ‘source’ shell, with deflections applied corresponding to
the surface density of particles at each ‘lens’ shell between
the source and observer using a ray-tracing algorithm (e.g.,
Das & Bode 2008; Hilbert et al. 2009).

The baseDC2 lensing maps are built with the pipeline pre-
sented in P. Larsen et al. (2019, in preparation). The full
workflow is illustrated in Figure 5. After we create a down-
sampled particle lightcone using the techniques described in
Sec. 3.4.1 and divide it into discrete shells, we compute the

Interpolating merger trees onto an observer’s lightcone.
CosmoDC2: https://arxiv.org/abs/1907.06530

https://arxiv.org/abs/1907.06530

9 Exascale Computing Project

Pre-Exascale (Early Petascale Era)

History
• Predecessor code was originally

developed as a gravity-only
cosmological N-body structure
formation code written for Los Alamos
National Laboratory's IBM
Roadrunner supercomputer, which
featured IBM Cell Broadband Engine
accelerators.

Design
• Force-splitting

– Long-range component of gravity was
calculated with particle-mesh methods
and a distributed-memory Fourier
transform-based Poisson solver
implemented in MPI.

– Short-range component of gravity
calculated using direct particle-particle
comparisons and implemented in C with
intrinsics to take advantage of the FLOPS
available on the Cell accelerators.

10 Exascale Computing Project

Gravity Force Splitting
• Hardware/Hybrid Accelerated Cosmology Code (HACC)

– Gravity is infinite and unshielded

– 1 kpc force resolution in 1 Gpc box, 10^6 dynamic range

• Operator splitting
– Kick: forces used to update particle velocities; positions fixed

• Long-range: Particle-Mesh, deposit onto grid, FFT-based Poisson
solver, ~10^4 resolution from ~10k^3 grids, requires double precision

• Short-range: Particle-Particle interactions, FLOPS intense, maximize
architecture, ~10^2 resolution, single precision sufficient

– Stream: velocities used to update positions; velocities fixed

– Symplectic integration

• HACC Spectral Force Handover Technology™
– Use low-order Cloud-in-Cell (CIC) deposit

– Spectral shaping reduces noise and emulates smoother deposit

– Extremely compact, ~3 grid units, limit particle comparisons

~3 grid units!!!

11 Exascale Computing Project

HACC Design

• Overloading (between MPI ranks)
– Each MPI rank caches a thin shell of

particles from immediate neighbor MPI
ranks

– No particles need to be exchanged during
sub-cycles for short-range force
calculation

– Refresh particle cache periodically
between outer time steps

12 Exascale Computing Project

Preparing for Exascale (Frontier and Aurora)

Challenges
• More increased compute capabilities

than memory (e.g., Summit->Frontier)
– ~8x more FLOPS (peak)
– ~3x more memory

• Exascale systems will have multiple
programming models and frameworks
– CUDA, HIP, SYCL, OpenMP, Kokkos, …

• CPU analysis routines (on the host)
are becoming a larger fraction of the
overall execution time.

CRK-HACC
• Adds baryonic physics in addition to

gravity
– New Conservative Reproducing Kernel

(CRK) formulation of Smoothed Particle
Hydrodynamics (SPH)

– Resolves some discrepancies with grid-
based hydrodynamic schemes

– non-radiative hydrodynamics
– sub-grid models for radiative cooling, star

formation, and feedback from supernovae
and Active Galactic Nuclei (AGN)

13 Exascale Computing Project

ECP Software and Technology (ST) Projects

Collaborators
• ArborX

– Fast GPU-accelerated geometric search
library

• VeloC/SZ
– Low overhead checkpointing
– Lossy data compression where the error

can be bound and controlled

• ALPINE/ZFP
– Visualization

HACC
• ArborX

– FOF halo-finding
– AGN center-finding (hydro sub-grid)
– SOD halo-finding

• VeloC/SZ
– Checkpoint/restart
– Compressed analysis outputs

14 Exascale Computing Project

Preparing for Aurora

• Primary and ongoing development of CRK-HACC uses CUDA, with
HIP support (for Frontier) through macro transformations of API calls.

• SYCL was chosen by the HACC team for running on Aurora.
• HACC would support multiple build implementations, as it has

historically, to exploit low-level programming model features to
achieve the best possible performance on target systems.

15 Exascale Computing Project

CUDA to SYCL Migration

CUDA
Kernels

SYCLomatic

SYCL Functor
Clang-Tool

Kernel Test
Harness

CRK-HACC

Rapid Prototyping
and Analysis

GPU API Wrappers
CUDA Kernels SYCL Kernels

SYCL Kernels

HIP Macros

Semi-automated
Migration Pipeline

16 Exascale Computing Project

Adiabatic Hydro Simulation on Sunspot (Aurora TDS)

Credit: Silvio Rizzi, Argonne LCF

Performance, Portability, and Productivity Study,
using SYCL

Paper to appear in the P3HPC Workshop as part of SC23

18 Exascale Computing Project

Experimental Setup

Hardware Configuration for Systems

System CPU GPU FP32 Peak
per GPU

Aurora 2 x Intel®
Xeon® CPU
Max 9470C,
52 cores

6 x Intel® Data
Center GPU
Max 1550

45.9 TFLOPS

Polaris 1 x AMD
EPYC 7543P,
32 cores

4x NVIDIA
A100-SXM4-
40GB

19.5 TFLOPS

Frontier 1 x AMD
EPYC 7A53,
64 cores

4 x AMD
Instinct
MI250X

53 TFLOPS

Problem Size
2x 5123 particles

5 timesteps (4 fixed sub-cycles)

8 MPI ranks

Aurora: 1 rank/tile

Polaris: 2 ranks/GPU
note: measured ∼11% lower efficiency

Frontier: 1 rank/GCD

18

19 Exascale Computing Project

Initial Results

Aggregate of all GPU Kernels

Frontier Polaris Aurora
0

100

200

300

400

500

E
xe

cu
ti
on

T
im

e
(s

)

CUDA (Default)

CUDA (Fast Math)

HIP (Default)

HIP (Fast Math)

SYCL (Default)

SYCL (Optimized)

• Fast Math optimizations were not enabled by
default on all compilers.

• Frontier HIP code uses a wavefront size of 64,
and the SYCL code uses a sub-group size of 64

• Polaris CUDA code uses a warp size of 32, and the
SYCL code uses a sub-group size of 32

• Aurora SYCL code uses a sub-group size of 32
and/or 16

19

Performance results are based on testing dates and configurations used and may not reflect all publicly available updates.

20 Exascale Computing Project

Optimizations to GPU (solver) Kernels

Hotspot Kernels
1. Geometry: measures the volumes of gas particles

2. Corrections: computes the reproducing kernel
coefficients of the higher order smoothed particle
hydrodynamics (SPH) solver

3. Extras: evaluates the density and state gradients

4. Acceleration: calculates the momentum derivative

5. Energy: solves the derivative of the internal energy.

The SIMD lane data layout of the “half-warp” algorithm.
Lanes [0-15] load and update particles from leaf A, while
lanes [16-31] operate on particles from leaf B.

10/10/23 20

21 Exascale Computing Project

Optimizing Cross-lane Communication

• The communication pattern of the “half-warp”
algorithm for interacting particles from leaves A
and B within the same warp.

• This represents one of the total (|𝐿𝑒𝑎𝑓𝐴| ×
|𝐿𝑒𝑎𝑓𝐵|/𝑤𝑎𝑟𝑝_𝑠𝑖𝑧𝑒) instances required.

• The pair-wise symmetry is critically important for
the correctness of the algorithm

• XOR-based shuffle pattern implemented as the
__shfl intrinsic for CUDA
sycl::select_from_group in SYCL

21

22 Exascale Computing Project

Optimizing Cross-lane Communication

Intel® Data Center GPU Max 1550 assembly snippets for
sycl::select-from-group
Elements are gathered from the registers specified in a0 and written into r2
using indirect register access
...
shl (16|M0) r24.0<1>:uw r82.0<2;1,0>:uw 0x2:uw
add (16|M0) a0.0<1>:uw r24.0<1;1,0>:uw 0x640:uw
mov (16|M0) r2.0<1>:ud r[a0.0]<1,0>:ud
...

alternative instruction sequence employing register regioning is more performant
but not always achievable by the compiler
...
add (16|M0) r24.0<1>:f r68.0<1;1,0>:f -r14.0<0;1,0>:f
add (16|M0) r26.0<1>:f r68.0<1;1,0>:f -r14.1<0;1,0>:f
add (16|M0) r30.0<1>:f r68.0<1;1,0>:f -r14.2<0;1,0>:f
...

Cross-lane Communication Strategies explored
• Shared Local Memory

– Uses sycl::local_accessor to reserve a small amount
of work-group local memory per sub-group to
communicate instead of via registers.

• Broadcasts
– Restructure loops so that sufficient information is

known about the communication pattern at
compile-time to generate more efficient
assembly.

• Optimized Instruction Sequences (Intel)
– Explicitly code the assembly instructions for each

communication step needed.

22

23 Exascale Computing Project

Optimizing Cross-lane Communication (Intel)

Specialized butterfly-shuffle communication pattern,
which provides the same pair-wise symmetry property of
the XOR-based pattern Register view of the specialized butterfly-shuffle

23

Efficiently performed with 4 mov instructions

24 Exascale Computing Project

Optimization Results (Hotspot Kernels)

Aurora
Intel® Data Center GPU Max 1550

upBarAc upBarAcF upBarDu upBarDuF upBarEx upCor upGeo
Kernel

0.0

0.2

0.4

0.6

0.8

1.0

A
p
p
li
ca

ti
on

E
±

ci
en

cy

Broadcast

Memory, 32-bit

Memory, Object

Select

vISA

• Broadcast uses a sub-group size of 16, all
other variants use a sub-group size of 32

• Restructuring the loops to use broadcasts also
allows us to generate fewer atomic instructions,
more noticeable in the Extras and Corrections
kernels

24

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See slide 4 for configuration details.

Performance results are based on testing dates and configurations used and may not reflect all publicly available updates.

25 Exascale Computing Project

Optimization Results (Hotspot Kernels)

Polaris
NVIDIA A100-SXM4-40GB

upBarAc upBarAcF upBarDu upBarDuF upBarEx upCor upGeo
Kernel

0.0

0.2

0.4

0.6

0.8

1.0

A
p
p
li
ca

ti
on

E
±

ci
en

cy

Broadcast

Memory, 32-bit

Memory, Object

Select

Frontier
AMD Instinct MI250X

upBarAc upBarAcF upBarDu upBarDuF upBarEx upCor upGeo
Kernel

0.0

0.2

0.4

0.6

0.8

1.0

A
p
p
li
ca

ti
on

E
±

ci
en

cy

Broadcast

Memory, 32-bit

Memory, Object

Select

25

Performance results are based on testing dates and configurations used and may not reflect all publicly available updates.

26 Exascale Computing Project

Performance Portability Analysis
Cascade plot of application efficiency and performance portability of CRK-HACC variants.

0.0

0.2

0.4

0.6

0.8

1.0

A
p
p
li
ca

ti
on

E
±

ci
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

P
erform

an
ce

P
ortab

ility
1 2 3

Platform

A B C
C
B A C
B C A
B A C
B C A
B C A
C B A
A B

CUDA/HIP (Fast Math)

SYCL (Broadcast)

SYCL (Memory, 32-bit)

SYCL (Memory, Object)

SYCL (Select + Memory)

SYCL (Select + vISA)

SYCL (Select)

SYCL (vISA)

Unified (Fast Math)

A Polaris B Frontier C Aurora

26

where 𝑎 is an application, 𝑝 is a specific input
problem, 𝐻 is the set of platforms of interest, and
𝑒𝑖 (𝑎, 𝑝) is the efficiency with which application 𝑎
solves problem 𝑝 on platform 𝑖

application efficiency is calculated relative to a
hypothetical application that is able to use the
best version of each kernel on every platform

<latexit sha1_base64="sNCpd0nhlStbcnTAPe+4DKSfyc8=">AAADzniclVJLbxMxEN5teJRAoYUjF4umqJVKtIuAIiSkCi45Bok+pDiKvM5sYtX2ura3D7kWV34DVzjwl/g3zKYp0MeFkSyNvhl/8/imMFI4n2W/0oXWrdt37i7ea99/sPTw0fLK411X1ZbDDq9kZfcL5kAKDTteeAn7xgJThYS94uBjE987AutEpT/7UwNDxSZalIIzj9BoJV0i1Jh1tmk2exvkfZvQAiZCB46cLrYJoePSMh7OemcxUFcrKoUS3o2CIFRo0osXGXkMMBIN00aM5DnSMltUJwM/DN38NfVw4o/F2E+RpvGDKCPp0LKyTEoyJ+sQquG4mYV0Lsga6JBknUgptpOR/zHsYlar8lOwx8IBdossFPT4z4RUsgJkgMN3xsTR8mrWzWZGrjv53FlN5tbHBf6k44rXCrTnkjk3yDODIzPrBZcQ27R2YBg/YBMYoKuZAjcMM+EiWUNkTHAH+LQnM/TfH4Ep505VgZmK+am7GmvAm2KD2pdvh0FoU3vQ/LxQWUviK9JcARkLC9zLU3QYtwJ7JXzKUEaPt3KpSq1R7UtjhKacdeUNqK8qeQU20wq04ILp2F5r1OWVUgz3j2eHp2ChlNgJHkro0BmxCv2IYqsDsPrFlqr/okh87X8jbxO8IaoiUhrToScOm4FG2/yqkted3Zfd/E03//RqdfvDXOXF5GnyLFlP8mQr2U56ST/ZSXjq02/p9/RHq986asXWl/PUhXT+50lyyVpffwNXiDao</latexit>

PP(a, p,H) =

8
>><

>>:

|H|
P
i2H

1

ei(a, p)

if 8i 2 H

ei(a, p) 6= 0

0 otherwise

27 Exascale Computing Project

Productivity Analysis

A navigation chart showing the performance portability
and code convergence of CRK-HACC variants

0.0 0.2 0.4 0.6 0.8 1.0
Code Convergence

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

P
or

ta
b
il
it
y

(A
p
p
.

E
Æ
.)

Unportable

CUDA/HIP (Fast Math)

SYCL (Broadcast)

SYCL (Memory, 32-bit)

SYCL (Memory, Object)

SYCL (Select + Memory)

SYCL (Select + vISA)

SYCL (Select)

SYCL (vISA)

Unified (Fast Math)

Code Divergence

<latexit sha1_base64="uJeJvIDZ3dxcVj6w3vRbrxBAiT0=">AAACXXicbVHPT9swGHWysUHHWLcdOOzyadUkkEqVVNvggoSAQ45MooDUdJHjumBqO5H9Baky+Se5jQv/Ck6pJn49ydLTe8/25+e8lMJiFP0Lwjdvl969X15pfVj9uPap/fnLiS0qw/iAFbIwZzm1XArNByhQ8rPScKpyyU/z6UHjn15xY0Whj3FW8pGi51pMBKPopayN4JEqihdGuYPDeoN2y26yCbuQ5kIXyl0n17Xr13/dVlz74JQbvdX/pSpIbaUylzrRhcvUW0JDAikKxS0k/6Pxjo+6cTaPNadDuVln7U7Ui+aAlyRekA5Z4Chr36TjglWKa2SSWjuMoxJHjhoUTPK6lVaWl5RN6TkfeqqpH2Lk5u3U8MMrY5gUxi+NMFcf73BUWTtTuU82PdjnXiO+5g0rnOyMnNBlhVyzh4smlQQsoKkaxsJwhnLmCWVG+FmBXVBDGfoPafkS4udPfklO+r34dy/+87Ozt7+oY5l8I9/JBonJNtkjCTkiA8LIbUCClaAV3IVL4Wq49hANg8Wer+QJwvV7NWOxIg==</latexit>

CD(a, p,H) =

✓
|H|
2

◆�1 X

{i,j}2H⇥H

di,j(a, p)

27

where 𝑑𝑖,𝑗 (𝑎, 𝑝) represents the distance
between the source code required to solve
problem 𝑝 using application 𝑎 on platforms 𝑖
and 𝑗 (from platform set 𝐻).

28 Exascale Computing Project

Disclaimers

• Performance varies by use, configuration and other factors.
Learn more at https://www.intel.com/performanceindex

• Performance results are based on testing as of dates shown in configurations and may
not reflect all publicly available updates. See Slide 4 for configuration details. No
product or component can be absolutely secure. Intel does not control or audit third-
party data. You should consult other sources to evaluate accuracy.

• Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the property
of others. Khronos is a registered trademark and SYCL and SPIR are trademarks of The
Khronos Group Inc.

• No license (express or implied, by estoppel or otherwise) to any intellectual property
rights is granted by this document, with the sole exception that code included in this
document is licensed subject to the Zero-Clause BSD open source license (OBSD),
http://opensource.org/licenses/0BSD.

10/6/23 28

https://www.intel.com/performanceindex
http://opensource.org/licenses/0BSD

29 Exascale Computing Project

Conclusion

• HACC has introduced new physics (hydrodynamics and sub-grid modeling) into the simulation
capabilities, made possible with the increased computing power of Exascale supercomputers.

• Described a process to migrate and maintain a CUDA codebase to SYCL

• Identified that “shuffle” operations are not performance-portable from NVIDIA to Intel GPUs

• Developed a straightforward workaround to replace “shuffles” with local memory operations that
can be generally useful to other developers.

• Demonstrated the practical potential for writing performance portable applications in SYCL
ultimately achieving a performance portability of 0.96 with near-zero code divergence -- and a
pure SYCL implementation performance portability of 0.91.

10/6/23 29

30 Exascale Computing Project

Key Takeaways

• Code (outside solvers), e.g., in situ analysis, are becoming
bottlenecks and need GPU acceleration.

• The increased complexity of code makes maintaining multiple
implementations more burdensome and highlights the need for
performance-portable programming models.

• The SYCL version of CRK-HACC is an exciting proof-of-concept for
using a single programming model across GPUs from Intel, NVIDIA,
and AMD without sacrificing performance.

31 Exascale Computing Project

Acknowledgments

• This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

• This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357.

• This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

10/6/23 31

Thank you

Contact:
Esteban Rangel, CPS

erangel@anl.gov

