%OAK RIDGE

National Laboratory

Lessons-learned developing
performance portable QMCPACK

R
QlQ‘LQlDQ S

QLQ-X.XQXXQXQXQXQSQQXXQD\Q

IDEAS Seminar May 2023 R

Paul Kent (kentpr@ornl.gov)
Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy




Ouvutline

e Brief infroduction to Quantum Monte Carlo & QMCPACK
e Performance portability goals

 Challenges of using GPUs

e Development approach

e SUMMAry

Aim: illustrate for other developers & code owners what
has been productive for us and our ongoing pain points.
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Quantum Monte Carlo

 The most accurate, general approach for solving
Schrodinger’s equation for “real” materials. [Foulkes RMP 2001]

e The few approximations in QMC can be tested, unlike
standard methods. Nominally N3. Tradeoff: large
compuvutational cost.

« Not exact, but very accurate today, can treat “strong”

electron correlation, applicable to metals, insulators & o
molecules.
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Performance Portability Goals

1. Run performantly on the full range of hardware, from laptops
through to the #1 HPC machine and all 3 main vendor GPUs.

2. Use asingle code path on all architectures, to the extent
possible. Minimize maintenance burden, increase quality.

3. Retain ability to use specialized hardware & software, where
merited.
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QMCPACK QMCPACK.org & GitHub.com/QMCPACK

 Open source, openly developed on GitHub, ~quarterly
releases. Contributors credited on citation papers.

QMCPACK: an open source ab initio quantum
Monte Carlo package for the electronic

o CH++] 7, H DF5, OpeﬂMP+OpﬂonQ| Cu DA/H|P/SYC L+vendor structure of atoms, molecules and solids
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Recent QMC studies using QMCPACK

Crl; monolayers Staros JCP 156 014707 (2022), H phase diagram Niu PRL 130
076102 (2023), >103 molecules Huang JCTC 19 1712 (2023). We aim to suppor

and accelerate all of these calculations.

O(103) electrons

O(102) electrons

O(10'2) electrons
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A combined first principles study
of the structural, magnetic, and phonon
properties of monolayer Crls
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FIG. 1. Geometry of monolayer Crl; cleaved from the bulk structure reported in
Ref. 45. (a) Top view depicting a lattice constant of a = 6.867 A and the bond

2D materials { angles 8; and 6, computed in this work. (b) Side view depicting the Crs~I bond
als research. Due | distance of 2.726 A (purple) and the Cr;~Cr, bond distance of 3.965 A (blue).
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Stable Solid Molecular Hydrogen above 900 K from a Machine-Learned Potential Trained
with Diffusion Quantum Monte Carlo

Hongwei Niu (“%:11)©," Yubo Yang (#i#2i#)©,*" Scott Jensen®,’
Markus Holzmann,* Carlo Pierleoni®,’ and David M. Ceperley
'Department of Astronautical Science and Mechanics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
2Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
*Department of Physics, University of Hllinois, Urbana, Illinois 61801, USA
. *Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio 10, 1-67010 L'Aquila, Italy

® (Received 12 September 2022; revised 29 November 2022; accepted 12 January 2023; published 17 February 2023)

We survey the phase diagram of high-pressure molecular hydrogen with path integral molecular
dynamics using a machine-learned interatomic potential trained with quantum Monte Carlo forces and
energics. Besides the HCP and C2/¢-24 phases, we find two new stable phases both with molecular centers
in the Fmmm-4 stueture, separated by a molecular orientation transition with temperature. The high
temperature isotropic Frmmm-4 phase has a reentrant melting line with a maximum at higher temperature
(1450 K at 150 GPa) than previously estimated and crosses the liquid-liquid transition line around 1200 K
and 200 GPa.

DO 10.1103/PhysRevLett.130.076102

J.Chem. Phys. 156, 014707 (2022); do: 10.1063/5.0074848
Published under an exclusive license by AIP Publishing
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Toward DMC Accuracy Across Chemical Space with Scalable A-QML
Bing Huang,* O. Anatole von Lilienfeld,* Jaron T. Krogel,* and Anouar Benali*

Cite This: https://doi.org/10.1021/acs jctc.2c01058 I:I Read Online
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ABSTRACT: In the past decade, quantum diffusion Monte Carlo (DMC) has been
demonstrated to successfully predict the energetics and properties of a wide range of
molecules and solids by numerically solving the electronic many-body Schrodinger
equation. With O(N?) scaling with the number of electrons N, DMC has the potential to
be a reference method for larger systems that are not accessible to more traditional
methods such as CCSD(T). Assessing the accuracy of DMC for smaller molecules
becomes the stepping stone in making the method a reference for larger systems. We =
show that when coupled with quantum machine learning (QML)-based surrogate
methods, the computational burden can be alleviated such that quantum Monte Carlo
(QMC) shows clear potential to undergird the formation of high-quality descriptions
across chemical space. We discuss three crucial approximations necessary to accomplish
this: the fixed-node approximation, universal and accurate references for chemical bond
dissociation energies, and scalable minimal amons-set-based QML (AQML) models.
Numerical evidence presented includes converged DMC results for over 1000 small
organic molecules with up to five heavy atoms used as amons and 50 medium-sized organic molecules with nine heavy atoms to
validate the AQML predictions. Numerical evidence collected for A-AQML models suggests that already modestly sized QMC
training data sets of amons suffice to predict total energies with near chemical accuracy throughout chemical space.
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B INTRODUCTION awide range of physical and chemical systems in any dimension,
boundary condition, etc. Among the most widely used flavors for
electronic structure are variational Monte Carlo (VMC)™" and
diffusion Monte Carlo (DMC).® Both VMC and DMC are
variational methods and allow the energy and properties of a
given trial wavefunction to be estimated without requiring
computation of the matrix elements, posing no restriction on its
functional form. Using the VMC algorithm, through a stochastic
numerical integration scheme, the expectation value of the
energy for any form of the trial wavefunction can be estimated by
averaging the local energy over an ensemble of configurations
distributed as y* sampled during a random walk in the
configuration space using the Metropolis® or Langevin
algorithm.” The fluctuations of the local energy depend on the
quality of the trial wavefunction, and they are zero if the exact
wavefunction is used (zero-variance principle). The DMC
algorithm is very similar, but the sampling goes beyond the y*
distribution function by solving the Schrodinger equation in
imaginary time 7 = it using a projector- or Green's function-
based method. Any initial state ly) that is not orthogonal to the
ground state I¢b,) will evolve to the ground state in the long-time

The predictive accuracy of quantum machine learning (QML)
models trained on quantum chemistry data and used for the
navigation of chemical compound space (CCS) is inherently
limited by the predictive accuracy of the approximations used
within the underlying quantum theory." Consequently, in order
for QML models to achieve the coveted threshold of chemical
accuracy (~1 keal/mol average deviation of calculated values
from of atomization energies), it is
necessary to rely on training data generated at least at the post-
Hartree—Fock level, e.g, CCSD(T)/CBS. Unfortunately, the
“gold standard” in the field, CCSD(T)/CBS, generally imposes
considerable computational cost due to steep prefactors and
scaling o O(N7) (where N is the system size).” Thus, the routine
generation of large high-quality quantum data sets has remained
elusive, even for relatively small organic molecules with only four
or five “heavy” (second-row) atoms. Here we demonstrate for an
exemplary subset of CCS (namely, organic molecules) the
usefulness of recently implemented and numerically more
efficient quantum Monte Carlo (QMC) methods for computing
QML training data. The subset is then used to assess the quality
of the approximations used in the method, setting the
foundation for the study of larger databases. Our numerical
evidence indicates the possibility to routinely train QML models
that achieve predictive power similar to QMC but at much
reduced computational cost.

QMC approaches solve the many-body electronic Schro-
dinger equation stochastically. QMC is general and applicable to

Received:  October 25, 2022
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Challenge of exploiting GPUs

e Exascale-generation GPUs from NVIDIA, AMD, and Intel have >104 compute
elements. Need >10¢ similar operations in flight for optimum performance.

« If we only have 1044 electrons, there naively will not be enough work.
 Generally, no single hot kernel. Kernels are both compute & memory bound.

 Few proven designs. QMC less mature than, e.g., guantum chemistry and
classical molecular dynamics where multiple performant implementations
are available.

NVIDIA AT00 GPUs & AMD Milan CPUs
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Parallel Scalability
Despite needing communications every timestep, scalability is high
due to high computational cost/step, careful MPl implementation.

See Kim et al. JPCM (2018) 10.1088/1361-648X/aab9c3

Strong scaling (fixed total samples) on Summit
32 T T T T 1 05

Weak scaling (fixed samples per node) on Summit
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Key operations

Real space QMC uses both particle-based and dense linear algebra operations. Particle
counts + matrix sizes can be small (102-104), requiring different choices to standard classical

molecular dynamics or guantum chemistry techniques.

Particle operations Dense vector, matrix operations
movement, interparticle Spline and Gaussian basis set
distances, functions of position, evaluation, determinant update,
minimum image when periodic wavefunction optimization, BLAS1-3

O .
. i1
Ifﬁ .... .
o)
)

Example Qs: Is it worth maintaining neighbor listse Benefits, fradeoffs from sparsitye
0 %OAKRIDGE
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Minigmc miniapp for design & performance experiments

e https://github.com/QMCPACK/minigmc i TR

» Order of magnitude smaller than QMCPACK el | ﬂ

« Resulted in new design of QMCPACK with
revised internal APls and flexible runtime ool |
dispatch. "% & &8 & 3

e Picked OpenMP target offload as default Prof(i[? :gxﬁdg;??rgsggp,fpp
implementatfion route, supplemented if — "
needed by vendor specific optimized code. e S ——————

 Miniapp requires ongoing effort to maintain -~ == e ——
and update to keep synced with main e —
application. => Unfortunately, minigmcis ———————
currently out of date... RSP e ey e

Easier profiling of miniapp aids in
%Qﬁlfll}{DGE testing multithreaded offload strategy
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Algorithmic Challenge - How to map QMC to GPUs?

Canonical QMC Algorithm
do time stepi [ 1K-100K ]
do walker| [ M walkers, ~1 per core, OpenMP |
do electron k [ N=102%-10%]

propose new positionr,’' [ O(~1-N2) cost ]
evaluate ¥(r.') [ O(~N-N?) cost ]
accept/rejectusing ~|¥' |2/ | W |2
if (accept) update ¥ [ O(N?) cost ]

end k

evaluate Hamiltonian, Observables
end |
spawn/kill walkers, load balance

end i

 Works well on CPUs. Usually, 1 CPU thread per Monte Carlo walker.

« For GPUs, simply offloading the compute for each walker is not efficient since there is not
enough numerical work.

AK RIDGE
12 %gt G

ional Laboratory




Previous GPU approach:
Batching many independent walker moves

Batched Metropolis QMC Algorithm, M walkers/node
do time stepi [ 1K-100K ]

do electron k [ N=102-104 ]
propose M new positions {r,'}u [ O(~M-MN?2) cost ]
evaluate {¥(r.' ) 3w [ O(~MN-MN?2) cost ]
accept/rejectusing ~|¥' |2/ | W |2
if (accept) update {¥},, [ O(MN?) cost ]

end k

evaluate Hamiltonian, Observables for all M walkers

spawn/kill walkers, load balance

end i

« Batch (group) all operations over M walkers (Markov chains), now operations are O(MxN)
or O(MxNZ?). Choose M large enough to saturate GPU, typically 10-1000.

« CUDA version runs very efficiently, Esler et al. CISE 14 40 (2012)
3 %g{XKRIDGE
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New approach: multithreaded offload
Batching smaller “crowds” of walkers

Time

crowd N
GPU empty while CPU work performed
Three smaller _ -

total work
lllustrative only. Noft to scale \Lounched but can’t run. GPU busy.

Kernel running on
GPU

Use multiple smaller batches (“crowds”) launched from different host threads, not a single
large batch.
« Trades some kernel efficiency for more asynchronous work and potentially greater

throughput. Highly dependent on problem, hw+sw stack.
« Canrecover original GPU algorithm with 1 crowd/thread.
« Highly beneficial if there is any significant CPU work remaining
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Results: 128 atoms

15 I3
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Results: 128 atoms
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Results: 128 atoms

¥
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Rate of work (1/DMC time per walker) 1/seconds
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>2x Increase in throughput
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Revisiting key algorithms

« We have replaced older algorithms with

more compute bound/less memory

i 128(768) —a—
obound algorithms. 51 oanee)

Bulk NiO supercells. Key: Atoms(Electrons per spin)

 New delayed update algorithm 2T
counterintuitively increases the
operation count for higher performance.

DMC speed-up

o Matrix multiply rich but extra work per
step. Uses Sherman-Morrison-Woodbury
formula to obtain wavefunction ratios N AT00
during a delay period n, then update
inverse. Avoid recalculating e
infermediates. Improves on our earlier 2 4 8 16 32 64 128 256
algorithm (McDaniel 2017). Number of delays

o« ~2x faster on GPUs, ~10x faster on CPUEs.

" %OAK RIDGE
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Development approach




General approach
e Focus on making the best use of our time

 Pragmatically adopt “best practices”. Refine based on actuadl
data from code review, Cl, tools experience.

« Keep barrier for new developers, open-source conftributions low.

e Limit required dependencies. Define a support policy for
compilers, libraries etfc.

E.g. Transitioned documentation 1o use sphinx & readthedocs.
Minimal barrier to doc edits, plus full Cl on changes.

%OAK RIDGE
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Ecosystem challenges: version control of dependencies

Minimal QMCPACK dependencies excluding compilers, many optional python dependencies
(spack graph output)

 Even “low dependency” apps have many dependencies. These are all
undergoing development... changing GPU support, python module
changes, HDF5 APl updates etc. can all lead to breakage.

e For nightly testing, “version control” achived via spack package manager
(https://spack.io/) to cover a sparse matrix of older/newer software.

However, users use ~any combination of versions...
%OAKRIDGE

National Laboratory
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https://spack.io/

Testing and Continuous Integration

Large set of unit, deterministic, & stochastic
integration tests built up. Test subset run in Cl, plus
more extensive sets nightly and weekly for many
different compiler, CPU, GPU, library combinations.

Helps us make large changes to the code, onboard
new developers, engage with vendors, conftributors.

Pull requests undergo review, testing, coverage
reporting, sanitizer tests. Procedures for reviews
developed, e.g., merger can not be at same
institution as PR.

Cl uses GitHub actions, plus our own hardware,
needed to test GPUs not available in cloud. Aim for
O(1h) furnaround. Window for input to vendors for
fixes in their next release is small.

OpenMP target offload “"GPU"” code partly tested via
offload to host CPUs with LLVM. Huge time, $ savings.

o %OAK RIDGE
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Many edge case bugs found & resolved

For QMCPACK problems, testing regimen minimizes chance of recurrence. Statistics let
us (re)focus testing effort on most critical areas. For external problems, comprehensive
testing allows us to give prompt feedback to the relevant developers.

Examples
« QMCPACK:

- State machines associated with efficient Monte Carlo.
- Handling of optional features via legacy #ifdefs requiring separate builds.

e Wider software stack:

— Compilers, particularly OpenMP offload. Problems with complex reductions,
multithreading... Latest releases of LLVM in production on NV.

— Libraries. E.g. Numerically incorrect results from GPU dense linear algebra libraries,
threading problem in CPU OpenBLAS (fixed promptly).

— Many transient packaging and compatibility issues associated with specific versions of
libraries, compilers, tools. Important to have latest versions promptly in spack, in addition
to older version:s.

AK RIDGE
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Status

As of LLVM 15.0 (released 9/2022), performance portable version sufficiently
close in performance to limited feature legacy GPU implementation for
science production, but with full capabilities available.

3.5

[ I I [ |
mmmm QMCPACK v3.14, Clang 15dev 20220317 V100 16GB
mmmm QMCPACK v3.13, Clang 15dev 20220211 V100 16GB
3.0 | ™= QMCPACK v3.11, Clang 12dev 20210112 V100 16GB _
' s QMCPACK v3.10, Clang 11RC1 V100 16GB
—— QMCPACK Legacy CUDA Reference V100 16GB

DN
o (&)}

—
o

Relative throughput

—
o

o
o

o
o

16 32 64 128 256 512
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Ongoing challenges, open questions

e Further maturation of the ecosystem is necessary. Having
-ronftier, Aurora, Polaris (efc.) in production will help.

e Helpful fo have “stable” and "“leading edge” machines

available for Cl. It is not practical for every app team to run
their own CI. Lack of access slows development velocity.

« Automated testing at facilities would help catch issues with
vendor provided software, MPI, their unigue environment etc.

e Can we obtain ~full

oerformance with only OpenMP using

newer/revised versions of the standard, or will some
CUDA/HIP/SYCL still be required? What is needed in future C++

standardse

%OAK RIDGE
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Conclusions

Performance portable QMC is a challenge!
Performance portable QMCPACK is in science production.

Next challenges: taming memory usage, science features.

« Modern development practices, partficularly testing, has

Improved code quality, enabled large changes, and increased
our efficiency overall. These practices require dedicated
resourcing and staff.

Questions, commentse kentpr@ornl.gov
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