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Outline

• Brief introduction to Quantum Monte Carlo & QMCPACK

• Performance portability goals

• Challenges of using GPUs

• Development approach

• Summary

Aim: illustrate for other developers & code owners what 
has been productive for us and our ongoing pain points. 
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Quantum Monte Carlo
• The most accurate, general approach for solving 

Schrodinger’s equation for “real” materials. [Foulkes RMP 2001]

• The few approximations in QMC can be tested, unlike 
standard methods. Nominally N3. Tradeoff: large 
computational cost.

• Not exact, but very accurate today, can treat “strong” 
electron correlation, applicable to metals, insulators & 
molecules.

• For details and tutorials, see QMCPACK YouTube channel & 
https://github.com/QMCPACK/qmc_workshop_2021
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Performance Portability Goals
1. Run performantly on the full range of hardware, from laptops 

through to the #1 HPC machine and all 3 main vendor GPUs.

2. Use a single code path on all architectures, to the extent 
possible. Minimize maintenance burden, increase quality.

3. Retain ability to use specialized hardware & software, where 
merited.
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QMCPACK
• Open source, openly developed on GitHub, ~quarterly 

releases. Contributors credited on citation papers.

• C++17, HDF5, OpenMP+optional CUDA/HIP/SYCL+vendor
dense linear algebra libraries. Highly vectorized, mixed 
precision supported.

• O(2x105) source lines. 

• Science production using OpenMP target offload on NV 
GPUs with release versions of LLVM.

• New design has flexible dispatch, solves data movement 
and CPU fallback problem. Will always run unlike 
“legacy” GPU version.

• Code has undergone several major transitions: AoS to 
SoA CPU code for KNL, removal of “legacy” GPU version, 
ongoing removal of old CPU code paths.

1 © 2018 IOP Publishing Ltd Printed in the UK
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Recent QMC studies using QMCPACK
CrI3 monolayers Staros JCP 156 014707 (2022), H phase diagram Niu PRL 130
076102 (2023), >103 molecules Huang JCTC 19 1712 (2023). We aim to support 
and accelerate all of these calculations.

Toward DMC Accuracy Across Chemical Space with Scalable Δ‑QML
Bing Huang,* O. Anatole von Lilienfeld,* Jaron T. Krogel,* and Anouar Benali*

Cite This: https://doi.org/10.1021/acs.jctc.2c01058 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: In the past decade, quantum di!usion Monte Carlo (DMC) has been
demonstrated to successfully predict the energetics and properties of a wide range of
molecules and solids by numerically solving the electronic many-body Schrödinger
equation. With O(N3) scaling with the number of electrons N, DMC has the potential to
be a reference method for larger systems that are not accessible to more traditional
methods such as CCSD(T). Assessing the accuracy of DMC for smaller molecules
becomes the stepping stone in making the method a reference for larger systems. We
show that when coupled with quantum machine learning (QML)-based surrogate
methods, the computational burden can be alleviated such that quantum Monte Carlo
(QMC) shows clear potential to undergird the formation of high-quality descriptions
across chemical space. We discuss three crucial approximations necessary to accomplish
this: the fixed-node approximation, universal and accurate references for chemical bond
dissociation energies, and scalable minimal amons-set-based QML (AQML) models.
Numerical evidence presented includes converged DMC results for over 1000 small
organic molecules with up to five heavy atoms used as amons and 50 medium-sized organic molecules with nine heavy atoms to
validate the AQML predictions. Numerical evidence collected for Δ-AQML models suggests that already modestly sized QMC
training data sets of amons su"ce to predict total energies with near chemical accuracy throughout chemical space.

■ INTRODUCTION
The predictive accuracy of quantum machine learning (QML)
models trained on quantum chemistry data and used for the
navigation of chemical compound space (CCS) is inherently
limited by the predictive accuracy of the approximations used
within the underlying quantum theory.1 Consequently, in order
for QML models to achieve the coveted threshold of chemical
accuracy (∼1 kcal/mol average deviation of calculated values
from experimental measurements of atomization energies), it is
necessary to rely on training data generated at least at the post-
Hartree−Fock level, e.g., CCSD(T)/CBS. Unfortunately, the
“gold standard” in the field, CCSD(T)/CBS, generally imposes
considerable computational cost due to steep prefactors and
scaling∝O(N7) (whereN is the system size).2 Thus, the routine
generation of large high-quality quantum data sets has remained
elusive, even for relatively small organicmolecules with only four
or five “heavy” (second-row) atoms. Here we demonstrate for an
exemplary subset of CCS (namely, organic molecules) the
usefulness of recently implemented and numerically more
e"cient quantumMonte Carlo (QMC)methods for computing
QML training data. The subset is then used to assess the quality
of the approximations used in the method, setting the
foundation for the study of larger databases. Our numerical
evidence indicates the possibility to routinely train QMLmodels
that achieve predictive power similar to QMC but at much
reduced computational cost.
QMC approaches solve the many-body electronic Schrö-

dinger equation stochastically. QMC is general and applicable to

a wide range of physical and chemical systems in any dimension,
boundary condition, etc. Among themost widely used flavors for
electronic structure are variational Monte Carlo (VMC)3,4 and
di!usion Monte Carlo (DMC).5 Both VMC and DMC are
variational methods and allow the energy and properties of a
given trial wavefunction to be estimated without requiring
computation of the matrix elements, posing no restriction on its
functional form. Using the VMC algorithm, through a stochastic
numerical integration scheme, the expectation value of the
energy for any form of the trial wavefunction can be estimated by
averaging the local energy over an ensemble of configurations
distributed as ψ2, sampled during a random walk in the
configuration space using the Metropolis6 or Langevin
algorithm.7 The fluctuations of the local energy depend on the
quality of the trial wavefunction, and they are zero if the exact
wavefunction is used (zero-variance principle). The DMC
algorithm is very similar, but the sampling goes beyond the ψ2

distribution function by solving the Schrödinger equation in
imaginary time τ = it using a projector- or Green’s function-
based method. Any initial state |ψ⟩ that is not orthogonal to the
ground state |ϕ0⟩ will evolve to the ground state in the long-time

Received: October 25, 2022
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Stable SolidMolecular Hydrogen above 900 K from aMachine-Learned Potential Trained
with Diffusion Quantum Monte Carlo

Hongwei Niu (牛宏伟) ,1 Yubo Yang (杨煜波) ,2,3,* Scott Jensen ,3
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We survey the phase diagram of high-pressure molecular hydrogen with path integral molecular
dynamics using a machine-learned interatomic potential trained with quantum Monte Carlo forces and
energies. Besides the HCP and C2=c-24 phases, we find two new stable phases both with molecular centers
in the Fmmm-4 structure, separated by a molecular orientation transition with temperature. The high
temperature isotropic Fmmm-4 phase has a reentrant melting line with a maximum at higher temperature
(1450 K at 150 GPa) than previously estimated and crosses the liquid-liquid transition line around 1200 K
and 200 GPa.

DOI: 10.1103/PhysRevLett.130.076102

Introduction.—Experimental methods for probing the
phase diagram of high-pressure hydrogen are limited. At
room temperature and below, the diamond anvil cell
(DAC) has allowed exploration for pressures up to
roughly 450 GPA [1–3]. However, the small size of the
cell and fragility of the sample limit experimental probes
to low-power optics such as infrared and Raman spec-
troscopy [4]. Hydrogen weakly scatters x rays [5], making
structural determination difficult. Recently, direct meas-
urement of the structure of solid molecular hydrogen has
been achieved up to pressures of 254 GPa [5,6]. At
temperatures below 100 K, pressures above 400 GPa
can be achieved in DAC, but x-ray structural determi-
nation is not yet available. At higher temperatures, shock
wave compression methods have achieved higher pres-
sures, but due to the transient nature of these experiments,
acquiring and analyzing shock-wave data is challenging.
Notably, one cannot directly measure temperature, which
may cause difficulty interpreting results [7–9]. Given
the experimental difficulties, accurate simulations are
necessary to inform and complement experimental
works [10].
Simulation of high-pressure hydrogen requires accurate

methods both in the description of the electronic ground-
state Born-Oppenheimer (BO) potential energy surface
(PES) and the inclusion of nuclear quantum effects beyond
the harmonic approximation. Many calculations have been
performed on structures found with density functional
theory (DFT) based random structure searches [11]. The
Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional often used in DFT studies incorrectly predicts

that the molecular structures in phase III are metallic [12].
Benchmarks using diffusion Monte Carlo (DMC) [13] have
established that the van der Waals density functional (vdW-
DF1) is the best compromise for molecular hydrogen at
pressures above 100 GPa. But exploring large pressure and
temperature ranges using first-principles methods is so time
consuming that establishing convergence with respect to
supercell size and trajectory length is difficult to achieve.
Calculations using the most accurate simulation tech-

nique, coupled electron ion Monte Carlo (CEIMC), which
calculates electronic energies using explicitly correlated
wave functions, find that solid molecular hydrogen remains
stable at higher temperatures than indicated by simulations
based on PBE forces and at higher temperatures than
experimental estimates. However, the number of atoms
and the length of trajectories accessible by CEIMC is
limited by computer resources. This is particularly worry-
ing for disoriented molecular phases: alternative algorithms
for studying the melting line are needed.
In recent years, machine-learned (ML) interatomic

potentials have emerged as a promising tool providing a
balance between accuracy and efficiency thus allowing for
accurate but less expensive calculations [14–16] that can
address the temporal and spatial limitations of first-
principle simulations. ML methods have recently been
applied to dense hydrogen. However, there are several
conflicting theoretical results regarding dissociation, melt-
ing, and the critical point obtained with the various
simulation methods [17–20].
In this Letter, we perform large-scale simulations of

molecular hydrogen using quantum protons with a ML

PHYSICAL REVIEW LETTERS 130, 076102 (2023)
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ABSTRACT
The first magnetic 2D material discovered, monolayer (ML) CrI3, is particularly fascinating due to its ground state ferromagnetism.
However, because ML materials are difficult to probe experimentally, much remains unresolved about ML CrI3’s structural, elec-
tronic, and magnetic properties. Here, we leverage Density Functional Theory (DFT) and high-accuracy Diffusion Monte Carlo (DMC)
simulations to predict lattice parameters, magnetic moments, and spin–phonon and spin–lattice coupling of ML CrI3. We exploit a
recently developed surrogate Hessian DMC line search technique to determine CrI3’s ML geometry with DMC accuracy, yielding lattice
parameters in good agreement with recently published STM measurements—an accomplishment given the ∼10% variability in previ-
ous DFT-derived estimates depending upon the functional. Strikingly, we find that previous DFT predictions of ML CrI3’s magnetic
spin moments are correct on average across a unit cell but miss critical local spatial fluctuations in the spin density revealed by more
accurate DMC. DMC predicts that magnetic moments in ML CrI3 are 3.62 �B per chromium and −0.145 �B per iodine, both larger
than previous DFT predictions. The large disparate moments together with the large spin–orbit coupling of CrI3’s I-p orbital suggest
a ligand superexchange-dominated magnetic anisotropy in ML CrI3, corroborating recent observations of magnons in its 2D limit. We
also find that ML CrI3 exhibits a substantial spin–phonon coupling of ∼3.32 cm−1. Our work, thus, establishes many of ML CrI3’s
key properties, while also continuing to demonstrate the pivotal role that DMC can assume in the study of magnetic and other 2D
materials.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0074848

I. INTRODUCTION

2D materials represent an exciting new frontier for materi-
als research.1 Due to their reduced dimensionality, these materi-
als tend to exhibit stronger and longer-range electron correlation
than their 3D counterparts that give rise to exotic new physics
and phase behavior, including Moiré patterns,2,3 two-dimensional
superconductivity,4 and exotic spin and charge density waves.5–7

The properties of 2D materials can also be tuned just by stacking,8–10

crinkling,11 straining,12–14 and twisting15–18 them. This versatility
facilitates the layer-by-layer construction of designer materials with
unique properties through the careful selection and ordering of their
constituent layers.19

An exciting recent development in this regard is the discovery
of new magnetic 2D materials.20 While the Mermin–Wagner
theorem21,22 prohibits finite-temperature magnetism for the

J. Chem. Phys. 156, 014707 (2022); doi: 10.1063/5.0074848 156, 014707-1

Published under an exclusive license by AIP Publishing

O(103) electrons O(102) electrons O(101-2) electrons
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Challenge of exploiting GPUs
• Exascale-generation GPUs from NVIDIA, AMD, and Intel have  >104 compute 

elements. Need >106 similar operations in flight for optimum performance.

• If we only have 102-4 electrons, there naively will not be enough work.

• Generally, no single hot kernel. Kernels are both compute & memory bound.

• Few proven designs. QMC less mature than, e.g., quantum chemistry and 
classical molecular dynamics where multiple performant implementations 
are available. 

NVIDIA A100 GPUs & AMD Milan CPUs

Intel Xe GPUs and Xeon CPUsAMD GPUs and AMD CPUs
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Parallel Scalability
Despite needing communications every timestep, scalability is high 
due to high computational cost/step, careful MPI implementation.

See Kim et al. JPCM (2018) 10.1088/1361-648X/aab9c3
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Key operations
Real space QMC uses both particle-based and dense linear algebra operations. Particle 
counts + matrix sizes can be small (102-104), requiring different choices to standard classical 
molecular dynamics or quantum chemistry techniques.

Example Qs: Is it worth maintaining neighbor lists? Benefits, tradeoffs from sparsity?

riI

rij

Particle operations
movement, interparticle 

distances, functions of position, 
minimum image when periodic 

Dense vector, matrix operations
Spline and Gaussian basis set 

evaluation, determinant update, 
wavefunction optimization, BLAS1-3
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Miniqmc miniapp for design & performance experiments
• https://github.com/QMCPACK/miniqmc

• Order of magnitude smaller than QMCPACK

• Resulted in new design of QMCPACK with 
revised internal APIs and flexible runtime 
dispatch.

• Picked OpenMP target offload as default 
implementation route, supplemented if 
needed by vendor specific optimized code.

• Miniapp requires ongoing effort to maintain 
and update to keep synced with main 
application. => Unfortunately, miniqmc is 
currently out of date…

Profile validated vs main app
(“proxy not imposter”)

Easier profiling of miniapp aids in 
testing multithreaded offload strategy
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Algorithmic Challenge – How to map QMC to GPUs?

• Works well on CPUs. Usually, 1 CPU thread per Monte Carlo walker.

• For GPUs, simply offloading the compute for each walker is not efficient since there is not 
enough numerical work. 

Canonical QMC Algorithm
do time step i [ 1K-100K ]

do walker j  [ M walkers, ~1 per core, OpenMP ]
do electron k [ N=102-104 ]

propose new position rk’ [ O(~1-N2) cost ]
evaluate 𝜳(rk’)  [ O(~N-N2) cost ]
accept/reject using ~|𝜳’|2/|𝜳|2
if (accept) update 𝜳 [ O(N2) cost ]

end k
evaluate Hamiltonian, Observables

end j
spawn/kill walkers, load balance

end i



1313

Previous GPU approach:
Batching many independent walker moves

• Batch (group) all operations over M walkers (Markov chains), now operations are O(MxN) 
or O(MxN2). Choose M large enough to saturate GPU, typically 10-1000.

• CUDA version runs very efficiently, Esler et al. CISE 14 40 (2012)

Batched Metropolis QMC Algorithm,  M walkers/node
do time step i [ 1K-100K ]

do electron k [ N=102-104 ]
propose M new positions {rk’}M [ O(~M-MN2) cost ]
evaluate {𝜳(rk’)}M [ O(~MN-MN2) cost ]
accept/reject using ~|𝜳’|2/|𝜳|2
if (accept) update {𝜳}M [ O(MN2) cost ]

end k
evaluate Hamiltonian, Observables for all M walkers

spawn/kill walkers, load balance
end i
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New approach: multithreaded offload
Batching smaller “crowds” of walkers

Use multiple smaller batches (“crowds”) launched from different host threads, not a single 
large batch.
• Trades some kernel efficiency for more asynchronous work and potentially greater 

throughput. Highly dependent on problem, hw+sw stack.
• Can recover original GPU algorithm with 1 crowd/thread.
• Highly beneficial if there is any significant CPU work remaining

Illustrative only. Not to scale

EvalOrbitals EvalDeterminants

EvalOrbitals

EvalOrbitals

EvalOrbitals

EvalDetermi
nants

EvalDetermi
nants

EvalDetermi
nants

Launched but can’t run. GPU busy.

Single large 
crowd

Three smaller
crowds, same 

total work

Time

Kernel running on 
GPU

GPU empty while CPU work performed



1515

Results: 128 atoms NiO / 1536 electrons

Summit@OLCF
Power9+NVIDIA V100
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Results: 128 atoms NiO / 1536 electrons

Summit@OLCF
Power9+NVIDIA V100
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Results: 128 atoms NiO / 1536 electrons

>2x Increase in throughput
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Revisiting key algorithms
• We have replaced older algorithms with 

more compute bound/less memory 
bound algorithms. 

• New delayed update algorithm 
counterintuitively increases the 
operation count for higher performance.

• Matrix multiply rich but extra work per 
step. Uses Sherman-Morrison-Woodbury 
formula to obtain wavefunction ratios 
during a delay period n, then update 
inverse. Avoid recalculating 
intermediates. Improves on our earlier 
algorithm (McDaniel 2017).

• ~2x faster on GPUs, ~10x faster on CPUs. 

Bulk NiO supercells. Key: Atoms(Electrons per spin)

A100
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Development approach
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General approach
• Focus on making the best use of our time

• Pragmatically adopt “best practices”. Refine based on actual 
data from code review, CI, tools experience.

• Keep barrier for new developers, open-source contributions low.

• Limit required dependencies. Define a support policy for 
compilers, libraries etc. 

E.g. Transitioned documentation to use sphinx & readthedocs. 
Minimal barrier to doc edits, plus full CI on changes. 
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Ecosystem challenges: version control of dependencies

• Even “low dependency” apps have many dependencies. These are all 
undergoing development… changing GPU support, python module 
changes, HDF5 API updates etc. can all lead to breakage.

• For nightly testing, “version control” achived via spack package manager 
(https://spack.io/) to cover a sparse matrix of older/newer software. 
However, users use ~any combination of versions…

libpciaccess@0.17%gcc@12.2.0/4auqyoo

libtool@2.4.7%gcc@12.2.0/apxleje util-macros@1.19.3%gcc@12.2.0/pprnrts

pkgconf@1.8.0%gcc@12.2.0/nygkiht

diffutils@3.9%gcc@12.2.0/cm5bfjs

libiconv@1.17%gcc@12.2.0/w3xpv6h

boost@1.82.0%gcc@12.2.0/qcl6svo

pmix@4.2.3%gcc@12.2.0/nfmv4u2

hwloc@2.9.1%gcc@12.2.0/5ybdqu5libevent@2.1.12%gcc@12.2.0/77z2udp

gettext@0.21.1%gcc@12.2.0/qybsqe7

xz@5.4.1%gcc@12.2.0/zp4prak

ncurses@6.4%gcc@12.2.0/beqchtb

libxml2@2.9.13%gcc@12.2.0/35uimh3

bzip2@1.0.8%gcc@12.2.0/fqyrmpx

tar@1.34%gcc@12.2.0/fqmhnjc

numactl@2.0.14%gcc@12.2.0/babycgs

m4@1.4.19%gcc@12.2.0/ikbet5p

automake@1.16.5%gcc@12.2.0/u2c22xk

autoconf@2.69%gcc@12.2.0/wk4yytd

ca-certificates-mozilla@2023-01-10%gcc@12.2.0/3zn4zvr

libsigsegv@2.14%gcc@12.2.0/vpv6kv3

bison@3.8.2%gcc@12.2.0/z45ht5v

perl@5.36.0%gcc@12.2.0/ihrkfji

gdbm@1.23%gcc@12.2.0/eeqioee

readline@8.2%gcc@12.2.0/vcipr4z

util-linux-uuid@2.38.1%gcc@12.2.0/2zips3v

libffi@3.4.4%gcc@12.2.0/2mqqaft

zlib@1.2.13%gcc@12.2.0/i3bt4l3

berkeley-db@18.1.40%gcc@12.2.0/zj24u2j

krb5@1.20.1%gcc@12.2.0/uc6dbe5

openssl@1.1.1t%gcc@12.2.0/jnjjbj5

gmake@4.4.1%gcc@12.2.0/vxqpo4l

libmd@1.0.4%gcc@12.2.0/d2qztdh

python@3.10.10%gcc@12.2.0/xh36ycb

expat@2.5.0%gcc@12.2.0/obe6xww

sqlite@3.40.1%gcc@12.2.0/g3dqtkw

libxcrypt@4.4.33%gcc@12.2.0/hdevd2m

openmpi@4.1.4%gcc@12.2.0/2jtqzvx

openssh@9.3p1%gcc@12.2.0/hmznuu7

cmake@3.26.2%gcc@12.2.0/peqt3sf

libbsd@0.11.7%gcc@12.2.0/lokuqlu

hdf5@1.10.9%gcc@12.2.0/wrixuwm

zstd@1.5.5%gcc@12.2.0/uqputva

fftw@3.3.10%gcc@12.2.0/pjjqegg

qmcpack@3.16.0%gcc@12.2.0/hbositc

openblas@develop%gcc@12.2.0/q442c22

pigz@2.7%gcc@12.2.0/wpila2k

libedit@3.1-20210216%gcc@12.2.0/abngft6

Minimal QMCPACK dependencies excluding compilers, many optional python dependencies
(spack graph output) 

https://spack.io/
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Testing and Continuous Integration
• Large set of unit, deterministic, & stochastic 

integration tests built up. Test subset run in CI, plus 
more extensive sets nightly and weekly for many 
different compiler, CPU, GPU, library combinations.

• Helps us make large changes to the code, onboard 
new developers, engage with vendors, contributors.

• Pull requests undergo review, testing, coverage 
reporting, sanitizer tests. Procedures for reviews 
developed, e.g., merger can not be at same 
institution as PR.

• CI uses GitHub actions, plus our own hardware, 
needed to test GPUs not available in cloud. Aim for 
O(1h) turnaround. Window for input to vendors for 
fixes in their next release is small.

• OpenMP target offload “GPU” code partly tested via 
offload to host CPUs with LLVM. Huge time, $ savings.
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Many edge case bugs found & resolved

Examples

• QMCPACK:
– State machines associated with efficient Monte Carlo.
– Handling of optional features via legacy #ifdefs requiring separate builds. 

• Wider software stack:
– Compilers, particularly OpenMP offload. Problems with complex reductions, 

multithreading... Latest releases of LLVM in production on NV.
– Libraries. E.g. Numerically incorrect results from GPU dense linear algebra libraries, 

threading problem in CPU OpenBLAS (fixed promptly).
– Many transient packaging and compatibility issues associated with specific versions of 

libraries, compilers, tools. Important to have latest versions promptly in spack, in addition 
to older versions.

For QMCPACK problems, testing regimen minimizes chance of recurrence. Statistics let 
us (re)focus testing effort on most critical areas. For external problems, comprehensive 
testing allows us to give prompt feedback to the relevant developers.
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Status
As of LLVM 15.0 (released 9/2022), performance portable version sufficiently 
close in performance to limited feature legacy GPU implementation for 
science production, but with full capabilities available. 
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Ongoing challenges, open questions
• Further maturation of the ecosystem is necessary. Having 

Frontier, Aurora, Polaris (etc.) in production will help.

• Helpful to have “stable” and “leading edge” machines 
available for CI. It is not practical for every app team to run 
their own CI. Lack of access slows development velocity.

• Automated testing at facilities would help catch issues with 
vendor provided software, MPI, their unique environment etc.

• Can we obtain ~full performance with only OpenMP using 
newer/revised versions of the standard, or will some 
CUDA/HIP/SYCL still be required? What is needed in future C++ 
standards?  
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Conclusions
• Performance portable QMC is a challenge!

• Performance portable QMCPACK is in science production.

• Next challenges: taming memory usage, science features.

• Modern development practices, particularly testing, has 
improved code quality, enabled large changes, and increased 
our efficiency overall. These practices require dedicated 
resourcing and staff.

Questions, comments? kentpr@ornl.gov
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