
The Search for Concurrency!
Across Multiple Hardware Platforms
with OpenMP and SYCL on GPUs of tasks

Thomas Applencourt
February 15, 2023

Introduction

Disclaimer

• This is just a micro-benchmark! Do not over-extrapolate.
• This is a snapshot in time, with my current environment. Results
will change!

• Didn’t try that many compilers
• Don’t trust me, just measure1 by yourself

1https:
//github.com/argonne-lcf/HPC-Patterns/tree/main/concurency

1/20

https://github.com/argonne-lcf/HPC-Patterns/tree/main/concurency
https://github.com/argonne-lcf/HPC-Patterns/tree/main/concurency

What is OpenMP and SYCL?

We don’t have time for That! If you don’t know them, I will teach you
during the talk.

2/20

More seriously...

1. SYCL and OpenMP argue to be portable programming model
2. We will verify that they are ”performance” portable 2 so that you
can design your application accordingly

2For a tiny subset of behavior on A100, Mi250, PVC

3/20

What is Concurrency?

• ”Concurrency”: our tasks3 can be executed out-of-order
• ”Parallelism” the fact that our task are really executing at the
same time.

3Kernels, commands, programs, ...

4/20

General Goal of this Talk

Overlaps of computation and data-transfer is one of the 101
gpu-optimization. We will verify that OpenMP and SYCL in GPU can
do it!

• We will explore how to express ”task concurrency” in SYCL and
OpenMP4

• And verify is we achieve parallelism (we do HPC!)

We will not talk about concurrency inside kernel (work-item,
threads,...). But parallelism between tasks!

4Using multiple MPI rank per GPU is lame...

5/20

More precise goal of this talk

We will see if we can overlap:

• Compute Kernels
• Compute kernel and Data-Transfers
• Bi-directional data-transfers

6/20

Motivation

Doing things in parallel is better than doing serially

• GPUs are large. You want to maximize the ”global occupancy”
(how many compute units you are using)

• You may have no choose than to run multiple kernels in parallel
• PCI is damn slow! You want to:

• Saturate the Bandwidth! PCIs is a ”fully-duplex” protocol so do
concurrent bidirectional transfers5

• Overlaps compute and data-transfer

5if you are not doing it, you are wasting bandwidth

7/20

Concurrency

OpenMP Concurrency6

Host Threads
1 #pragma omp parallel for
2 for (auto c: commands)
3 #pragma omp target [...]
4 {}
5

No wait
1 for (auto c: commands)
2 #pragma omp target [...] nowait
3 {}
4
5 #pragma omp taskwait

(The target region can be anything. A target team distribute...

followed by a kernel, or a target update)

6Please implementer support meta-directive so I don’t need to ‘ifdef‘ my poor
benchmark and have two binaries

8/20

SYCL Concurrency

Out of order queue:
1 sycl::queue Q;
2 for (auto& c: commands)
3 do_work(Q, c);
4 Q.wait();

Pools of In order Queues:
1 const sycl::device D;
2 const sycl::context C(D);
3 std::vector<sycl::queue> Qs;
4 // Creating the in-order queues
5 for (auto _: commands)
6 Qs.push_back(
7 sycl::queue(
8 C, D,
9 sycl::property::queue::in_order{}

10);
11);
12 // Submitings jobs
13 for (int i = 0; i < commands.size(); i++)
14 do_work(Qs[i], commands[i]);
15 for (auto &Q : Qs)
16 Q.wait();

9/20

Measurement

Benchmark

• We will measure the time is take to perform N commands
serially. Commands can be

• Memcopy from Device memory to Host memory7

• Memcopy from Malloced memory to Device
• ...
• Compute kernel

• Them we will measure the time is took to perform them
concurrently

• Success is we have a N-x speed-up!

7Host memory = Pinned Memory

10/20

A little bit of technical details10

• We auto-tune the commands so they take the same times
• Data-transfer payload a large (few hundreds of megabyte). We are
reaching ”peak” BW.

• The compute kernel use only one work-item / cuda-threads. But
consist of large FMA chains8

• We run the experiment 200 times and take the min time9

• In openmp we first enter-data and then use update for the
memcopy

• For OpenMP pinned memory: We used omp_target_alloc_host and
try to use llvm_omp_target_alloc_host

8cl-peak like
9Principle of charity and this avoid dealing with all the JITing, power throttling, ...
noises
10Just to make you think that I know what I’m talking about...

11/20

Example of logfile:

Small Log of a AMD run:
./sycl in_order --commands H2D D2H
Minimum Measured Total Time Serial: 69793us
Minimum Time Command 0 (HD): 34912us (28.6434 GBytes/s)
Minimum Time Command 1 (DH): 34881us (28.5405 GBytes/s)

Maximum Theoretical Speedup: 1.99911x
Minimum Measured Total Time //: 42465us (46.9922 GBytes/s)
Speedup Relative to Serial: 1.64354x
in_order | HD DH | SUCCESS: Close from Theoretical Speedup

Success!11

11I have kind of a ”easy” threshold for success, 30% of ideal

12/20

Nvdia A100: OpenMP

Using:

• clang version 16.0.0 https://github.com/intel/llvm.git aa69e4d9b86

• cudatoolkit 11.8.0

commands host threads nowait

C C SUCCESS FAILURE
C M2D SUCCESS FAILURE
C D2M SUCCESS FAILURE
H2D D2H NOT RUN NOT RUN
M2D D2M FAILURE FAILURE

• Was not able to get Host allocation to work
• Nowait -> OpenMP Runtime Issue

13/20

NVDIA A100: SYCL

Using:

• clang version 16.0.0 https://github.com/intel/llvm.git 055ee225

• cudatoolkit 11.8.0

commands Qs in-order Q out-of-order

C C SUCCESS SUCCESS
C M2D SUCCESS SUCCESS
C D2M SUCCESS SUCCESS
H2D D2H kind of SUCCESS Kind of SUCCESS
M2D D2M FAILURE FAILURE

Bidirectional bandwidth higher than unidirectional, but not in the
30% tolerance

14/20

AMD MI250: OpenMP

Using:

• AMD clang version 15.0.0

https://github.com/RadeonOpenCompute/llvm-project roc-5.4.0 22465 d6f0fe8

• rocm-5.4.0

commands host threads nowait

C C SUCCESS FAILURE
C M2D SUCCESS FAILURE
C D2M SUCCESS FAILURE
H2D D2H NOT RUN NOT RUN
M2D D2M FAILURE FAILURE

• Was not able to get Host allocation to work
• Nowait -> OpenMP Runtime Issue

15/20

AMD MI250: SYCL

Using:

• clang version 16.0.0 (git@github.com:intel/llvm.git 0b1fd8df661)

• rocm-5.4.0

commands Qs in-order Q out-of-order

C C SUCCESS SUCCESS
C M2D SUCCESS SUCCESS
C D2M SUCCESS SUCCESS
H2D D2H SUCCESS SUCCESS
M2D D2M FAILURE FAILURE

M2D, D2M Failure -> Not a SYCL issue. Lower level problem

16/20

Intel PVC: OpenMP

• Using OneAPI 2022.12.30.003
• ZE_AFFINITY_MASK=0.0

• LIBOMPTARGET_LEVEL_ZERO_USE_IMMEDIATE_COMMAND_LIST=1

• LIBOMPTARGET_LEVEL0_USE_COPY_ENGINE=main

commands host threads nowait

C C SUCCESS SUCCESS
C M2D SUCCESS SUCCESS
C D2M SUCCESS SUCCESS
H2D D2H FAILURE FAILURE
M2D D2M FAILURE FAILURE

H2D, H2M -> We are aware of the bug. Working with Intel to mitigate
it.

17/20

Intel PVC: SYCL

• Using OneAPI 2022.12.30.003
• ZE_AFFINITY_MASK=0.0

• SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1

commands Qs in-order Q out-of-order

C C SUCCESS SUCCESS
C M2D SUCCESS SUCCESS
C D2M SUCCESS SUCCESS
H2D D2H FAILURE FAILURE
M2D D2M FAILURE FAILURE

H2D, H2M -> We are aware of the bug. Working with Intel to mitigate
it.

18/20

Conclusion

Conclusion

Good news:

• Overlaps of compute/compute and compute/data-transfert
work in all Hardware, all programming model!

• intel/SYCL rocks in all the backend!
• If you want PCI bi-directional data-transfer concurrency one
need need to use Host Memory12

Not so Good news:

• Currently PVC doesn’t exploit PCI full-duplex capability
• OpenMP Nowait need some love on AMD, NVDIA
• I was not able to use host-memory on AMD, NVDIA

12Also know at pinned memory

19/20

Acknowledgment

Thanks for a lot of people who helped me with this talk (Colleen,
Abhi, Aksel, ...).

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
(DOE) Office of Science and the National Nuclear Security
Administration.

This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357.

20/20

	Introduction
	Concurrency
	Measurement
	Result time!

	Conclusion

