Argonne &
The Search for Concurrency!

Across Multiple Hardware Platforms
with OpenMP and SYCL on GPUS of tasks

Thomas Applencourt
February 15, 2023

Introduction

Disclaimer

- This is just a micro-benchmark! Do not over-extrapolate.

- This is a snapshot in time, with my current environment. Results
will change!

- Didn't try that many compilers

- Don't trust me, just measure' by yourself

Thttps:
//github.com/argonne-1cf/HPC-Patterns/tree/main/concurency

1/20

https://github.com/argonne-lcf/HPC-Patterns/tree/main/concurency
https://github.com/argonne-lcf/HPC-Patterns/tree/main/concurency

What is OpenMP and SYCL?

We don’t have time for That! If you don’t know them, | will teach you
during the talk.

............... 2/20

More seriously...

1. SYCL and OpenMP argue to be portable programming model

2. We will verify that they are "performance” portable ? so that you
can design your application accordingly

2For a tiny subset of behavior on A100, Mi250, PVC

.................. 3/20

What is Concurrency?

- "Concurrency”: our tasks® can be executed out-of-order

- "Parallelism” the fact that our task are really executing at the
same time.

3Kernels, commands, programs, ...

.................. 4120

General Goal of this Talk

Overlaps of computation and data-transfer is one of the 101
gpu-optimization. We will verify that OpenMP and SYCL in GPU can
do it!

- We will explore how to express "task concurrency” in SYCL and
OpenMPpP*

- And verify is we achieve parallelism (we do HPC!)

We will not talk about concurrency inside kernel (work-item,
threads,...). But parallelism between tasks!

“Using multiple MPI rank per GPU is lame...

.................. 5/20

More precise goal of this talk

We will see if we can overlap:

- Compute Kernels
- Compute kernel and Data-Transfers

- Bi-directional data-transfers

.................. 6/20

Doing things in parallel is better than doing serially

- GPUs are large. You want to maximize the "global occupancy”
(how many compute units you are using)

- You may have no choose than to run multiple kernels in parallel
- PClis damn slow! You want to:

- Saturate the Bandwidth! PCls is a "fully-duplex” protocol so do
concurrent bidirectional transfers®
- Overlaps compute and data-transfer

>if you are not doing it, you are wasting bandwidth

.................. 7/20

Concurrency

OpenMP Concurrency®

Host Threads No wait
#pragma omp parallel for 1 for (auto c: commands)

for (auto c: commands) 2 #pragma omp target [...] nowait
#pragma omp target [...] 3
{} 4

< O U R

#pragma omp taskwait

(The target region can be anything. A target team distribute. ..
followed by a kernel, or a target update)

6please implementer support meta-directive so | don't need to ‘ifdef' my poor
benchmark and have two binaries

8/20

SYCL Concurrency

Pools of In order Queues:

1 const sycl::device D;
2 const sycl::context C(D);
3 std::vector<sycl::queue> Qs;
4 // Creating the in-order queues
. 5 for (auto _: commands)
Out of order queue: . P
1 sycl::queue Q; 7 sycl::queue(
2 for (auto& c: commands) 8 C, D,
3 do_work(Q, c); 9 sycl::property: :queue::in_order{}
4 Q.wait(); 10 ;
11)5
12 // Submitings jobs
13 for (int i = 0; i < commands.size(); i++)
14 do_work(Qs[i], commands[i]);
15 for (auto &Q : Qs)
16 Q.wait();
Argonne &

.................. 9/20

Measurement

- We will measure the time is take to perform N commands
serially. Commands can be

- Memcopy from Device memory to Host memory’
- Memcopy from Malloced memory to Device

- Compute kernel

- Them we will measure the time is took to perform them
concurrently

- Success is we have a N-x speed-up!

"Host memory = Pinned Memory

.................. 10/20

A little bit of technical details™

- We auto-tune the commands so they take the same times
- Data-transfer payload a large (few hundreds of megabyte). We are
reaching "peak” BW.
- The compute kernel use only one work-item / cuda-threads. But
consist of large FMA chains®
- We run the experiment 200 times and take the min time®

- In openmp we first enter-data and then use update for the
memcopy

- For OpenMP pinned memory: We used omp_target_alloc_host and
try to use 1ivm_omp_target_alloc_host

8cl-peak like

Principle of charity and this avoid dealing with all the JITing, power throttling, ...
noises

0Just to make you think that | know what I'm talking about...

.................. 11/20

Example of logfile:

Small Log of a AMD run:

./sycl in_order --commands H2D D2H
Minimum Measured Total Time Serial: 69793us
Minimum Time Command @ (HD): 34912us (28.6434 GBytes/s)
Minimum Time Command 1 (DH): 34881us (28.5405 GBytes/s)
Maximum Theoretical Speedup: 1.99911x
Minimum Measured Total Time //: 42465us (46.9922 GBytes/s)
Speedup Relative to Serial: 1.64354x
in_order | HD DH | SUCCESS: Close from Theoretical Speedup

Success!"

"l have kind of a "easy” threshold for success, 30% of ideal

.................. 12/20

Nvdia A100: OpenMP

Using:

* clang version 16.0.0 https://github.com/intel/1lvm.git aa69e4d9b86

* cudatoolkit 11.8.0

commands host threads nowait

ccC SUCCESS FAILURE
CM2D SUCCESS FAILURE
CD2Mm SUCCESS FAILURE
H2D D2H NOT RUN NOT RUN
M2D D2M FAILURE FAILURE

- Was not able to get Host allocation to work
- Nowait -> OpenMP Runtime Issue

.................. 13/20

NVDIA A100: SYCL

Using:

* clang version 16.0.0 https://github.com/intel/1lvm.git 055ee225

* cudatoolkit 11.8.0

commands Qs in-order Q out-of-order
ccC SUCCESS SUCCESS
CM2D SUCCESS SUCCESS
CD2M SUCCESS SUCCESS
H2D D2H kind of SUCCESS Kind of SUCCESS
M2D D2M FAILURE FAILURE

Bidirectional bandwidth higher than unidirectional, but not in the
30% tolerance

.................. 14/20

AMD MI250: OpenMP

Using:

* AMD clang version 15.0.0
https://github.com/RadeonOpenCompute/llvm-project roc-5.4.0 22465 d6f0fe8

* rocm-5.4.0

commands host threads nowait

ccC SUCCESS FAILURE
CM2D SUCCESS FAILURE
CD2M SUCCESS FAILURE
H2D D2H NOT RUN NOT RUN
M2D D2M FAILURE FAILURE

- Was not able to get Host allocation to work
- Nowait -> OpenMP Runtime Issue

.................. 15/20

AMD MI250: SYCL

Using:
* clang version 16.0.0 (git@github.com:intel/1lvm.git 0b1fd8df661)

* rocm-5.4.0

commands Qs in-order Q out-of-order

cc SUCCESS SUCCESS
CM2D SUCCESS SUCCESS
CD2Mm SUCCESS SUCCESS
H2D D2H SUCCESS SUCCESS
M2D D2M FAILURE FAILURE

M2D, D2M Failure -> Not a SYCL issue. Lower level problem

Argonne & 16/20

Intel PVC: OpenMP

- Using OneAPI 202212.30.003
* ZE_AFFINITY_MASK=0.0
* LIBOMPTARGET_LEVEL_ZERO_USE_IMMEDIATE_COMMAND_LIST=1

* LIBOMPTARGET_LEVELO_USE_COPY_ENGINE=main

commands host threads nowait

CccC SUCCESS SUCCESS
CM2D SUCCESS SUCCESS
CD2M SUCCESS SUCCESS
H2D D2H FAILURE FAILURE
M2D D2M FAILURE FAILURE

H2D, H2M -> We are aware of the bug. Working with Intel to mitigate
it.

Argonne & 7120

Intel PVC: SYCL

- Using OneAPI 2022.12.30.003

* ZE_AFFINITY_MASK=0.0

* SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1

commands Qs in-order Q out-of-order

CccC SUCCESS SUCCESS
CM2D SUCCESS SUCCESS
CD2Mm SUCCESS SUCCESS
H2D D2H FAILURE FAILURE
M2D D2M FAILURE FAILURE

H2D, H2M -> We are aware of the bug. Working with Intel to mitigate
it.

Argonne & 18720

Conclusion

Conclusion

Good news:
- Overlaps of compute/compute and compute/data-transfert
work in all Hardware, all programming model!
- intel/SYCL rocks in all the backend!
- If you want PCI bi-directional data-transfer concurrency one
need need to use Host Memory™

Not so Good news:

- Currently PVC doesn’t exploit PCI full-duplex capability
- OpenMP Nowait need some love on AMD, NVDIA

- | was not able to use host-memory on AMD, NVDIA

2Also know at pinned memory

.................. 19/20

Acknowledgment

Thanks for a lot of people who helped me with this talk (Colleen,
Abhi, Aksel, ...).

This research was supported by the Exascale Computing Project
(17-5C-20-SC), a collaborative effort of the U.S. Department of Energy
(DOE) Office of Science and the National Nuclear Security
Administration.

This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357.

.................. 20/20

	Introduction
	Concurrency
	Measurement
	Result time!

	Conclusion

