
1

Performance Portability Today:
A NERSC Computational
Scientist & AMReX Developer’s
Perspective

Performance Portability for ECP Applications and Software
ECP Community BoF Days
Feb 15, 2023

Kevin Gott
NERSC

2

Introduction

This talk has gone through a lot of different revisions.

Late last night, I realized all of these are highlights of a
piece of my picture of performance portability today.

So, I’m going to try to do them all!

NERSC’s Portability/Performance Strategy

4

Performance and Programming model strategy
• Support for mainstream languages and models on Perlmutter

o C++, Fortran, python
o CUDA, HIP, SYCL/DPC++
o OpenMP, OpenACC
o MPI

• NESAP, publications, docs.nersc.gov and user engagement
o cast a wide net for hack-a-thons
o partner with users to implement best practices

• Active engagement with vendors and community
o e.g. LLVM, flang, standards groups, vendor NRE

• New “Programming Environment and Models” group, being led by Brandon
Cook

5

Generic best practices
• Use optimized libraries
• parameterize data structures

o don’t hard code SIMD, GPU warp size, etc
o avoid hard coded magic numbers for things like tile or block sizes

• follow standards
o compilers have varying levels of strictness, turn on the strict checks!
o report any observed non-conformance in compilers to vendors

• minimize data movement
• adopt a kernel over loops mindset

o i.e. replace sequential loops -> unsequenced parallel form

6

GPU programming at NERSC

7

And similar for OLCF / ALCF, too:

8

Results so far:
This strategy is working great: KPPs are being met, NESAP goals are
being accomplished, best practices are being established, libraries are
being optimized, users are being taught GPU strategies.

In 2022 NERSC saw strong adoption of Perlmutter and GPUs by
NERSC users!

We have already seen a lot of great science come from Perlmutter and
we’re looking forward to doing even more!

If anything, there’s too much to do!

WarpX / AMReX

10

AMReX: Block-Structured AMR Software Framework
• Mesh, Particle, AMR, Linear Solvers,

Cut-Cell Embedded Boundary
• Written in C++ (with optional Fortran

interfaces)
o MPI + X
o OpenMP on CPU
o CUDA, HIP, DPC++ internally on GPU

• Solution of parabolic and elliptic systems
using geometric multigrid solvers

• Interoperability with Hypre, PETSc,
SUNDIALS, HDF5 and other popular
libraries.

• Native I/O format – supported by Visit,
Paraview, yt, AmrVis.

• Fortran ordered data storage.

Initial setup for a pair of stars. Different color boxes show
different levels of AMR refinement. Provided by the Mike
Zingale and the CASTRO team.

11

AMReX Across Science

Combustion (Pele) Astrophysics (Castro) Cosmology (Nyx)

Accelerators (WarpX)

Multiphase flow (MFIX-Exa)

Other applications:
● Phase field models
● Microfluids
● Ionic liquids
● Non-Newtonian flow
● Fluid-structure

interaction

AMRWind

● Shock physics
● Cellular automata
● Low Mach number

astrophysics
● Defense science

12

Overview of AMReX / WarpX

AMReX is ready for hardware! (And has been for a while)

• Working with engineers to solve/research a variety of
topics on NVIDIA, AMD and Intel architectures.

• Overall, AMReX and the applications are testing, getting
good results, finding issues and reporting them to
vendors: the community is contributing substantially!

• New AMReX applications being developed right now.

13

Example recent issues
Intel warp size changed from 16 to 32:
Works better for a large variety of
kernels with most recent software and
hardware.

Device Sync vs. Stream Synchs:
DeviceSync or a loop over StreamSync
have two different performance
outcomes on NVIDIA & AMD
architechtures.

User team actively submitting PRs to
get SYCL with CUDA backend fully
functional:
Very exciting and interesting.
Uncovering lots to clean up.

Investigating long compile times in
WarpX in SYCL:
Appears to be due to a forced inline
function called multiple times.

14

WarpX won the 2022 Gordon Bell Award
Accumulation of all the ECP
efforts and work over the past
~3-4 years.

- Amazing application from
Luca Fedeli’s team at CEA.

- Incredible technical
discussion from Axel Hubel,
Jean-Luc Vay and WarpX
team.

- Impressive results across 4
of the top 10 machines.

https://www.computer.org/csdl/proceedings-articl
e/sc/2022/544400a025/1I0bSKaoECc

https://www.computer.org/csdl/proceedings-article/sc/2022/544400a025/1I0bSKaoECc
https://www.computer.org/csdl/proceedings-article/sc/2022/544400a025/1I0bSKaoECc

Stream-Triggered Communication

16

Stream Triggered Communication
Investigating using stream triggered MPI calls in AMReX’s primary
comm routines.
• Investigated to improve certain communication patterns.
• Also, may change the paradigm of AMReX codes –

synchronization-free! – which could have application wide
impact.

Working with a Georgia Tech graduate student, Yijian (Tim) Hu, to
design, test, track many implementations, and generate a proof of
concept in AMReX.

17

How it works

No Wait

Finish

1) (Comm patterns are pre-calced and cached)
2) Post Receives – IRecv, alloc recvs.
3) Prepare Send Buffers – Calc sizes and allocate memory

○ Typically pinned + non-aware GPU has been fastest.
4) Pack Send Buffers

○ Single, fused launch to minimize launch overhead.
5) Post Sends – ISend
6) Do Local Work

7) WaitAll for Sends
8) Unpack Sends

○ Single, fused launch again. Free Send Buffers
9) WaitAll for Recvs

10) Clean up – free Recv buffers, clear data object.

MPI calls are enqueued into a
stream, allowing the CPU thread to
do work while the critical code path
(on the GPUs & NICs) is being
completed.

● Requires also carefully
enqueuing the freeing of
buffers and cached information.
(cudaHostFunc)

● Builds naturally into AMReX’s
comm pattern, which already
includes pattern caching and
non-blocking implementation.

18

Current Results
Got first successful results
last week with NVIDIA’s
MPI-ACX over Cray-MPI:

About 14% diff,
~ equal to CPU
time in comms!

19

Next Steps

Further proof of concept tests targeted to be completed next
week for a talk at SIAM-CSE23 in two weeks:

• Test with different FABs, to capture potential gains
including pattern calculation.

• Apply to Heat Equation (all mesh & Fill Boundary
comms), as proof of user-friendly API.

• Test with MPICH – really want CUDA-Aware + ST.

A Moment of Recognition for our
Code Developers (RSEs):

21

DOE’s Code Developers (RSEs):

I posit: one of the biggest reasons for the ECP’s success.

● Plan paths forward to accommodate everyone’s needs and desires.
● Develop and improve build systems.
● Track a large number of libraries, features, tools and compiler statuses.
● Interact with users, vendors, scientists and PIs.
● Fix bugs, respond to issues inline with the overall code plan.
● Test new features, libraries, opportunities and workflows.
● Maintain, expand and respond to CI testing suites.
● Work with other developers to create missing tools and resources.
● Teach users software design, engineering and abstractions.

Often, our primary sources of knowledge, leadership, mentoring and stability.

22

DOE’s Code Developers (RSEs):
I also posit: this may be one of the most complex and difficult times to be a DOE HPC
code developer.

Users:
Code Teams, ECP & Development
Goals:

Highly motivated to use the new
features.

● Learned about the methods
and techniques.

● Systems exist and cool
science is at their fingertips.

● Want to try new things
themselves, start new
research, develop their
careers.

Testbeds are all available, but:
● Still in a period or rapid

development and change.
● Continue to uncover new issues,

bugs and feature requests as
cross-comparisons continue.

● Continue to track, monitor and

23

Simple Example: GPU-Aware MPI

AMReX has been tracking GPU-Aware MPI performance for years.
● Initial addition was early in development, focusing on Summit.
● Added to AMReX as a run-time flag: use pinned comm buffer or a device comm buffer.
● Regularly tested to see if GPU-Aware is better – i.e. at hackathons.
● Just recently has started to see improvement, but it’s still not ready to be turned on

everywhere by default.
● But, interactions with other things are growing

Effort or
Work

Time

GPU-Aware’s research lifecycle is
sitting right about here.

And so are a LOT of other
features, tests, bug, issues, etc.

24

DOE’s Code Developers (RSEs):

Sadly, I don’t have any amazing ideas on how to help.

But, I would love to see the community discuss how to best support,
develop and grow our RSE community into a more efficient, effective,
permanent and stable (as they’ve done for our scientific code ecosystem).

I heavily support (if I had the power, I would require) a substantial
discussion of the impact of RSEs in ECP’s final report.

If anyone has ideas on how to make their lives better, reduce their
workload, make things more efficient for them, please let me know.

Conclusions

26

Optimistic outlook with lots of room to grow:

This is an amazing time to be working in HPC, both as a
scientist and as a developer.

ECP has been massively influential to users, researchers,
and lots of cool new stuff is coming in the near future.

Hug (with permission) your local RSEs (or, help out in any
other way that you can).

