ExploringGenerative == == <<=

Al-Tools for Scientific - — -~ - -"-"-
SOftwa re Development First ideas and experiences

Michael A. Heroux
Siva Rajamanickam
ECP Community BOF Days 2023

BOF Purpose

Provide some brief examples of use
Speculate on possible opportunities/challenges
Real purpose:
« Connect with people interested in generative Al
« Start a conversation going forward
Interested in further discussion?

« See Google Sheet sign up in Zoom chat

* And here: https://docs.google.com/spreadsheets/d/17NdjprJrO-
IVmoJijitleEmgaITfJRIduBoWOS8jNX2b9M/edit?usp=sharing

https://docs.google.com/spreadsheets/d/17NdjprJr0-lVmoJjitIeEmgITfJRIduBoWO8jNX2b9M/edit?usp=sharing
https://docs.google.com/spreadsheets/d/17NdjprJr0-lVmoJjitIeEmgITfJRIduBoWO8jNX2b9M/edit?usp=sharing

 Chat:

* Produce content by

What are « Accepting an input prompt

* Producing human-like output in response to the prompt
Generative Al Tools? . Example:

Prompt: Tell me about the first US moon landing
« https:/beta.openai.com — Playground
 Inline suggested content:

Predict what you need next as you type
« Example: GitHub Copilot auto-complete

@ Overview Documentation Examples Playground

4 Upgrade (?) Help 0 Personal

Playground Load a preset... Save View code Share
Mode
Tell me about the first US moon landing 9
The first US moon landing was the Apollo 11 mission, which launched on July 16, 1969. Astronauts Neil Armstrong, Edwin "Buzz" Aldrin, and Michael
Collins comprised the crew of Apollo 11. On July 20, 1969, Armstrong and Aldrin became the first humans to ever set foot on the moon. Armstrong Model

famously said, "That's one small step for [a] man, one giant leap for mankind," as he took the first steps on the moon. The two astronauts spent about tertdavineiz003
two and a half hours outside the spacecraft collecting samples, conducting experiments, and taking photographs. After their historic moonwalk, the
astronauts returned to the spacecraft and began their journey back to Earth, splashing down in the Pacific Ocean on July 24, 1969.

Temperature 0.7

Maximum length 2651

https://beta.openai.com/

Tools | have used

* OpenAl: Company producing most-used tools

« GitHub Copilot:
« Have been tracking since Dec 2021
« Based on Codex: special OpenAl model for programming
 Available as a plugin for VSCode (how | use it)
« OpenAl Playground:
+ Like ChatGPT with more flexible, complicated API (to GPT3)
* Less known, more available
 ChatGPT:
« Latest API (to GPT3.5)
» Raised broad awareness.

* Not tried: Jasper (also based on GPT3), Code Whisperer (Amazon)
* Many new tools emerging and expected in the coming months

Some ways to think
about these tools

« College roommate English major who lives to
help you with your writing assignments

 Programmer to produce code, scripts,
templates as starting point for you to consider

« Administrative assistant to help with detailed
content formatting tasks

« Elaborate auto-complete feature
« An on-demand intelligence

English major roommate

« Authoring

« Brainstorm topics

« Generate outline

» Recursively provide more detalil
« Assessment

* Request Al review of content

* Improvement
« Steel-manning other perspectives
» Refine content — understandable by a novice, TL;DR, etc.

What does it mean to be the
author?

« Student essay due by midnight:

« Written with copy-and-paste and “lite” editing after dinner
* |s the student the author?

* Definition of author here:

« Ability to explain, defend, and elaborate on written content?
* True novelty seems unlikely

 How to assess knowledge:
« Assessing quality of writing OK but not content knowledge
« Assessment via dialogue seems essential

Basic rules for using sophisticated (including
Al) tools in content development - 2 versions

1.

If used to assist creating/transforming your own content:
a) Make sure you truly understand/own the content
b) Beware of plagiarism

If used to incorporate others’ content:

a) Assure rights to use
b) Give credit

Do not list tools as authors

Report the use of these tools if used to create content
Assure that all authors take responsibility for content
Do not list tools as authors

Skills impact

» Low-level skills replaced by tools
* Programming:
« Syntax, formatting

 Programming standards
» Using APlIs

» What to produce and how it's designed are
relatively more important

Trends

Soft skills become relatively more important

« Understanding the individual, teams, communities
become more important that technical skills

Domain knowledge relatively more important

« What to produce - Requirements

Design become more important & easier
« Rapid prototyping easier

Al tools won'’t replace people

» People who use Al tools will replace those who don'’t

https://beta.openai.com/playground
Bootstrapping a scripting tool — Step 1: Ask for advice

What is a good way to extract metadata from a GitHub repo?

The best way to extract metadata from a GitHub repo is to use the GitHub API. It
provides a range of endpoints that allow you to access information about the

repo, such as the number of commits, pull requests, releases, and other metadata.
You can also use the GitHub GraphQL API to query more specific information.

https://beta.openai.com/playground

Write a script to extract basic activity information from the Trilinos GitHub repo

#!/usr/bin/env python3
import requests

Enter your GitHub personal access token here
token = '<YOUR_TOKEN_HERE>'

The GitHub repository to query
repo = 'trilinos/Trilinos'

Get the list of commits

url = f'https://api.github.com/repos/{repo}/commits'
headers = {'Authorization': f'token {token}'}

response = requests.get(url, headers=headers).json()

Print the commit count
print(f'Commit count: {len(response)}’)

Get the list of pull requests

url = f'https://api.github.com/repos/{repo}/pulls'
headers = {'Authorization': f'token {token}'}

response = requests.get(url, headers=headers).json()

Print the pull request count
print(f'Pull request count: {len(response)})

Get the list of releases

url = f'https://api.github.com/repos/{repo}/releases'
headers = {'Authorization": f'token {token}'}

response = requests.get(url, headers=headers).json()

Print the release count
print(f'Release count: {len(response)}’)

https://beta.openai.com/playground

Step 2: Generate script

https://beta.openai.com/playground

https://beta.openai.com/playground
Step 3: Learn about token

How do | determine my github personal access token?

To generate a GitHub personal access token, you must first log in to your GitHub account. Once
logged in, go to your Settings page, select “Developer settings” from the left sidebar, and then
“Personal access tokens”. On the next page, click “Generate new token”. You will then be
prompted to give your token a name and select the scopes for which the token will be granted
access. Once you have set your token’s name and scopes, click “Generate token”. Your token will
then be displayed on the next page.

https://beta.openai.com/playground

https://beta.openai.com/playground
Step 4: Experiment

Write a github API python script to list the contributors and number of commits to a github repo with user
provided name

import requests
import json

Get the user input
user_input = input("Please enter the GitHub repo name: ")

API call to get the list of contributors

url = "https://api.github.com/repos/{}/contributors".format(user_input)
r = requests.get(url)

Parse the response
data = json.loads(r.text)

Print the result

print("List of Contributors and Number of Commits to {}".format(user_input))
for contributor in data:

print("{}: {}".format(contributor(['login'], contributor['contributions']))

https://beta.openai.com/playground

ComputeWAXPBY_ref.cpp 2 X

src > ComputeWAXPBY_ref.cpp > ...

2 int ComputeWAXPBY_ref(const local_int_t n, const double alpha,
const double beta, const Vector & y, Vector & w) {

assert(x.localLength>=n);
assert(y.localLength>=n);

const double * const xv = x.values;
const double * const yv = y.values;
double % const wv = w.values;

if (alpha==1.0) {
#ifndef HPCG_NO_OPENMP
#pragma omp parallel for
#endif

const Vector & Xx,

for (local_int_t i=@; i<n; i++) wv[i] = xv[i] + beta * yv[il;

} else if (beta==1.0) {
#ifndef HPCG_NO_OPENMP
#pragma omp parallel for

#endif
for (local_int_t i=@; i<n; i++) wv[i] = alpha * xv[il + yvI[il;
} else {

#ifndef HPCG_NO_OPENMP
#pragma omp parallel for
#endif
for (local_int_t i=@; i<n; i++) wv[i

return 0;

71

alpha x xv[i]l + beta * yv[il;

VSCode+Copilot
HPCG Benchmark WAXPBY Kernel

VSCode with GitHub Copilot Plugin

Copilot aware of complete HPCG code base
Copilot also trained on many specialized APls:

* Intel Vector ISA

« Kokkos Performance Portability API

* Apple, HIP, etc...
Copilot generates equivalent versions of C++ code
Comment starts the generation process

Intel_ComputeWAXPBY.cpp (] VSCOde+COpi|Ot
src > Intel_ComputeWAXPBY.cpp HPCG BenChmark WAXPBY Kernel

2 int

VSCode with GitHub Copilot Plugin

Type comment (green text)
Wait for Copilot to generate code
Tab to accept

Intel_ComputeWAXPBY.cpp [] VSCOde+COpi|Ot
src > Intel_ComputeWAXPBY.cpp HPCG BenChmark WAXPBY Kernel

int ComputeWAXPBY_ref(const local int t n, const double alpha, const Vector & x,
const double beta, const Vector & y, Vector & w)

assert(x.localLength>=n);
assert(y.localLength>=n);

const double * const xv = x.values;
const double * const yv = y.values;
double * const wv = w.values;

if (alpha==1.0) {
if (beta==1.0

for (local_int t i=@; i<n; i+=4) {
__builtin_prefetch(&xv([i+16], @, 0);
__builtin_prefetch(&yvI[i+16], @, 0);
_ _builtin_prefetch(&wv[i+16], 1, 1);
const _ m128d vx = _mm_load_pd(&xv[i]);
const _ ml128d vy = _mm_load_pd(&yvI[il);
const _ m128d vw = _mm_add_pd(vx, vy);

22 _mm_store_pd(&wv[i], vw);
}

2 else

const _ m128d vb = _mm_setl pd(beta);
for (local_int t i=0; i<n; i+=4) {
__builtin_prefetch(&xvI[i+16], @, 0);
__builtin_prefetch(&yv[i+16], @, 0);
__builtin_prefetch(&wv[i+16], 1, 1);
, const _ m128d vx = _mm_load_pd(&xv[i]);
2 const _ m128d vy = _mm_load_pd(&yvI[il);
: const _ ml128d vw = _mm_add_pd(vx, _mm_mul_pd(vb, vy));
_mm_store_pd(&wv[il, vw);

}

Kokkos_ComputeWAXPBY.cpp VSCOde+COpi|Ot
src > Kokkos_ComputeWAXPBY.cpp HPCG BenChmark WAXPBY Kernel

VSCode with GitHub Copilot Plugin

« Same approach for Kokkos

Kokkos_ComputeWAXPBY.cpp VSCOde'l'COp'IOt
src > Kokkos_ComputeWAXPBY.cpp > @ ComputeWAXPBY (const local_int_t, const double, const Ve HPCG BenChmark WAXPBY Kernel

2 int ComputeWAXPBY(const local_int_t n, const double alpha, const Vector & x,
: const double beta, const Vector & y, Vector & w) E

assert(x.localLength>=n);
assert(y.localLength>=n);

const double * const xv = x.values;
const double * const yv = y.values;
double % const wv = w.values;

12 if (alpha==1.0) {
if (beta==1.0

Kokkos::parallel_for(n, KOKKOS_LAMBDA (const local_int_t i) {
wv[i]l = xv[il + yvI[il;

i

else

20 Kokkos::parallel_for(n, KOKKOS_LAMBDA (const local_int_t i) {
Z wv[i] = xv[i] + beta * yvI[il;
};

} else if (beta==1.0) {

26 Kokkos::parallel_for(n, KOKKOS_LAMBDA (const local_int_t i) {
wv[i] = alpha x xv[il + yv[il;

2 s

2¢ } else {

Kokkos::parallel_for(n, KOKKOS_LAMBDA (const local_int_t i) {
wv[i] = alpha % xv[i] + beta x yvI[i];

Apple_ComputeWAXPBY_ref.cpp X Intel_ComputeWAXPBY.cpp ® Compute VSCOde+COpi|Ot

src > G Apple_ComputeWAXPBY_ref.cpp HPCG Benchmark WAXPBY Kernel

2 LHL ComputeWAXPBY_ref(const local_int t n, const double alpha, const Vector & x,
const double beta, const Vector & y, Vector & w)

assert(x.localLength>=n); VSCode with GitHub Copilot Plugin

assert(y.localLength>=n);

const double * const xv = x.values; Same approaCh for Apple ISA
const double * const yv = y.values; And so on
double * const wv = w.values;

if (alpha==1.0) {
if (beta==1.0

for (local _int t i=@; i<n; i+=4) {
__builtin_prefetch(&xv[i+16], @, 0);
_ builtin_prefetch(&yv[i+16], @, 0);
__builtin_prefetch(&wv[i+16], 1, 1);
const vector double vx = vec_1d(@, &xv[il);
const vector double vy = vec_ld(0, &yv[il);
const vector double vw = vec_add(vx, vy);
vec_st(vw, 0, &wv[il);

}

else

const vector double vb = vec_splats(beta);

for (local_int t i=0; i<n; i+=4) {
__builtin_prefetch(&xv[i+16], @, 0);
__builtin_prefetch(&yv[i+16], 0, 0);
_ _builtin_prefetch(&wv[i+16], 1, 1);
const vector double vx = vec_1d(@, &xvI[il);
const vector double vy = vec_ld(@0, &yv[il);
const vector double vw = vec_madd(vb, vy, vx);
vec_st(vw, 0, &wv[il);

VSCode and Copilot for LaTeX

« VSCode with:
« LaTeX Workshop plugin
« GitHub Copilot plugin
« Grammerly plugin
« Makes an awesome writing environment:
« Syntax-aware
« Text predicting — including LaTeX syntax
« Bug-free compilation
* And much more..

® & © @ telo (@) persona OpenAl Playground
AztecOO Belos Parameters

Playgroun Playground Load a preset... Save Viewcode Share
Playc
Build a te Build a teuchos parameterlist to solve an ill-conditioned non-symmetric linear system using muelu and belos
g€l 1.uchos. Teuchos:ParameterList MueLuList;
Syr
// MueLu // MueLu preconditioner parameters
. L Ll MueLuList.set("max levels", 10);
// ! MuelLuLis MuelulList.set("prec type", "MGV");

Hin MueLuList.set("aggregation: type", "uncoupled");

MuelulLis

#in MuelLulLis MuelLulList.set("aggregation: damping factor", 0.5);
R Muelulist.set("aggregation: max agg size", 3);
EIE MuelulList.set("aggregation: min agg size", 2);

// d VL L L MuelulList.set("smoother: type", "Chebyshev");

TeL - MuelulList.set("smoother: sweeps", 5);
MuelulLis
MuelulList.set("smoother: pre or post", "both");

ifpi MueLulis .) e !
ifpi MueLuLis MueLuList.set("coarse: type", "Amesos-KLU");

ifpi
. VIEEEE // Belos solver parameters
pri Teuchos::ParameterList BelosList;
Teuchos::
- BelosList.set("Maximum Iterations", 500);
BelosList

BelosList.set("Convergence Tolerance", 1e-10);
TeL BelosList BelosList.set("Verbosity", 33);

BelosList BelosList.set("Output Frequency", 10);
azt BelosList.set("Output Style", 1);

/] ¢ BelosList

BelosList
azt BelosList BelosList.set("Implicit Residual Scaling", "Norm of Initial Residual");
ozt // Combine MuelL d Bel ter list
azt // Combil ombine MuelLu and Belos parameter lists

Teuchos:: Teuchos::ParameterList params;

params.s params.set("Preconditioner", MuelLuList);

paramss | Params.set("Solver”, BelosList);

OpenAl Playground
BibTeX citations
Convert from MLA-style format

Convert the following citations to bibtex format:

Articles:

U. M. Yang, L. C. Mcinnes, “xSDK: Building an ecosystem of highly efficient math libraries for exascale”, SIAM News v. 54 issue 1, pages 8-9, January 2021.

P. Luszczek, U. Yang, “Building Community through Software Policies”, Better Scientific Software, blog article, https://bssw.io/blog_posts/building-community-through-software-policies, August 2019

Plenary talks:
Ulrike Yang, “Elements of an Effective Ecosystem of Math Libraries for Exascale”, invited plenary talk at Second Joint SIAM/CAIMS Annual Meeting (AN20), July 6-17, 2020, online.
Ulrike Yang, “xSDK: an Ecosystem of Interoperable Independently Developed Math Libraries”, invited plenary talk at 1st MarDI Workshop on Scientific Computing, Muenster, Germany, Oct 26-28, 2022.

Invited presentations:

U. M. Yang, “Performance Portability in the Extreme-scale Scientific Software Kit", invited talk, ECCOMAS 2022, June 3-6, 2022, Oslo, Norway.

U. M. Yang, “Building an Effective Ecosystem of Math Libraries for Exascale”, invited talk, E4S Workshop, EuroMPI/US'20, 9-24-20

U. M. Yang, P. Lusczcek, “Building an Effective Ecosystem with Community Policies”, invited talk, SIAM Conference on Computational Science and Engineering (SIAM CSE21), March 1-5, 2020, virtual.
U. M. Yang, “xSDK: a Community of Diverse HPC Software Packages”, invited talk, The First Extreme-scale Scientific Software Forum (E4S Forum), IEEE Cluster 2019, Albuquerque NM, 9-23-19
Ulrike Yang, “xSDK: a Community of Diverse Numerical HPC Software Packages”, invited talk, Final SPPEXA Symposium, October 21-23, 2019, Dresden, Germany.

Ulrike Yang, “xSDK: Foundations of a Numerical Software Ecosystem for High-performance CSE", SIAM CSE 2019, Feb 25 — Mar 1, 2019, Spokane, invited talk.

Minisymposia:
Co-organized 2-part minisymposium at SIAM CSE21: K. Teranishi, U. Yang, J. Willenbring, “Programming Environments for Exascale Computing — Ecosystem Perspectives”, SIAM Conference on
Computational Science and Engineering (SIAM CSE21), March 1-5, 2020,

ECP annual meeting posters and sessions:

“Extreme-scale Scientific Software Development Kit (xSDK) for ECP", poster at 2020 ECP annual meeting, Houston, TX, Feb 5, 2020.

“Extreme-scale Scientific Software Development Kit (xSDK) for ECP", poster at 2021 ECP annual meeting, virtual, April 12-16, 2021.

“Extreme-scale Scientific Software Development Kit (xSDK) for ECP", poster at 2022 ECP annual meeting, virtual, May 2022.

T. Munson, J. Willenbring, U. M. Yang, “What can be learned from applying "team of teams’ principles to Exascale Computing Projects PETSc, Trilinos, xXSDK and E4S7?*, Breakout Session, ECP Annual
Meeting 2022, May 4,2022.

@article{yang2021xsdk,
title={xSDK: Building an ecosystem of highly efficient math libraries for exascale},
author={U. M. Yang and L. C. Mcinnes},
journal={SIAM News},
volume={54},
number={1},
pages=(8-9},
year={2021}
}

@misc{yang2019building,
title={Building Community through Software Policies},
author={P. Luszczek and U. Yang},
howpublished=(wrkhttps://bssw.io/blog_posts/building-community-through-software-policies}},
year={2019}

}

@inproceedings{yang2020elements,
title={Elements of an Effective Ecosystem of Math Libraries for Exascale},
author={U. Yang},
booktitle={Second Joint SIAM/CAIMS Annual Meeting (AN20)},
year={2020},
url={https://www.siam.org/meetings/an20/}

}

@inproceedings{yang2022xsdk,
title={xSDK: an Ecosystem of Interoperable Independently Developed Math Libraries},
author={U. Yang},
booktitle={1st MarDIl Workshop on Scientific Computing},
year={2022},
address={Muenster, Germany}

}

@inproceedings{yang2022performance,
titte={Performance Portability in the Extreme-scale Scientific Software Kit},
author={U. M. Yang},
booktitle={ECCOMAS 2022},
year={2022},
address={Oslo, Norway}
}

OpenAl Playground
BibTeX citations
To BibTeX database format

@inproceedings{yang2020building,
title={Building an Effective Ecosystem of Math Libraries for Exascale},
author={U. M. Yang},
booktitle={E4S Workshop, EuroMPI/US"20},
year={2020},
uri={https://www.euro-mpi.orq/2020/}

}

@inproceedings{yang2020xsdk,
title={xSDK: a Community of Diverse HPC Software Packages},
author={U. M. Yang},
booktitle={The First Extreme-scale Scientific Software Forum (E4S Forum), |IEEE Cluster 2019},
year={(2019},
address={Albuguergue NM}

}

@inproceedings{yang2019xsdk,
title={xSDK: a Community of Diverse Numerical HPC Software Packages},
author={U. Yang},
booktitle={Final SPPEXA Symposium},
year={(2019},
address={Dresden, Germany}
b

OpenAl Playground
Tl;dr. Here is a WWW’04 conference paper abstract | use in a compact Tl:.dr assistant

writing exercise, followed by the Al-generated Tl;dr version. | chose the
abstract because it presents significant opportunities for improvement.

Original text:

We seek to gain improved insight into how Web search engines should cope with the evolving Web, in an attempt to provide users
with the most up-to-date results possible. For this purpose we collected weekly snapshots of some 150 Web sites over the course of
one year, and measured the evolution of content and link structure. Our measurements focus on aspects of potential interest to search
engine designers: the evolution of link structure over time, the rate of creation of new pages and new distinct content on the Web,
and the rate of change of the content of existing pages under search-centric measures of degree of change. Our findings indicate a
rapid turnover rate of Web pages, i.e., high rates of birth and death, coupled with an even higher rate of turnover in the hyperlinks
that connect them. For pages that persist over time we found that, perhaps surprisingly, the degree of content shift as measured using
TF.IDF cosine distance does not appear to be consistently correlated with the frequency of content updating. Despite this apparent
non-correlation, the rate of content shift of a given page is likely to remain consistent over time. That is, pages that change a great deal
in one week will likely change by a similarly large degree in the following week. Conversely, pages that experience little change will
continue to experience little change. We conclude the paper with a discussion of the potential implications of our results for the design
of effective Web search engines.

Tl;dr version

The Web is constantly evolving, with new pages being created and old ones being deleted or modified. Search engines need to be able
to cope with this changing landscape in order to provide users with the most up-to-date results possible. Our study found that the rate
of change of Web content is much higher than the rate of change of the links that connect it. This means that search engines need to
be able to adapt quickly to changes in the content of Web pages, in order to provide the most relevant and up-to-date results.

OpenAl Playground
Second-grader

Here is an opening paragraph for an article | wrote a few years ago, followed by the second-
grader translation. Very interesting that the Al inserted the definition of exascale computing.

Prompt:
Summarize this (my paragraph) for a second-grade student:

The demands of massive concurrency and increased resilience required for effective exascale computing have led to
claims that our existing approach to application programming must be replaced. In this article | argue that disruption is
inevitable, but from the programming perspective will not require new languages or programming environments.
Instead the disruption will be in application architecture, introducing a new control layer that will provide the
concurrency, adaptability and resilience features we need in order to achieve effective exascale performance levels.

OpenAl Playground Generated Second-grader text:

The article is discussing how the way we currently write programs will have to change in order to be effective at
exascale computing. Exascale computing is a type of computing where programs can use a billion billion calculations
per second. This is different from our current approach, which the article claims will need to be replaced in order to be

effective. The new way of writing programs will include a new control layer that provides features like concurrency,
adaptability, and resilience.

Writing detailed prompts help to produce more usable content

OpenAl Playground
More specific prompts

Playground Load a preset Save

Using an existing 2-slide presentation, with bullet points on the second slide, write a python script to update ¢
the bullet points on the second slide

#Import the necessary libraries
from pptx import Presentation
#0pen the presentation
prs = Presentation('existing_2_slide_presentation.pptx')
#Update the bullet points on the second slide
for slide in prs.slides:
if slide.slide_index ==1:
for shape in slide.shapes:
if shape.has_text_frame:
for paragraph in shape.text_frame.paragraphs:
for run in paragraph.runs:
run.text = 'Updated bullet point'

#Save the updated presentation

prs.save('u pdated_2_s|ide_presentation.pptx')|

Takeaways - Al Tools Transform
our ability to use software APIs

« Script APIs: Makes possible the use of GitHub API example:

« Go from no knowledge to a working meta-data access script in 15
minutes (with help from StackOverflow)

« Device-specific APIs: WAXPBY generic C++ kernel:

« Generate starter versions for Intel/Apple vector ISA, Kokkos, and
more

» Accelerates transition to Kokkos
« Perhaps increases tolerance for code divergence?
 Scientific library APIs: Trilinos (AztecOOQO, Ifpack, Muelu, Belos)
« Generate starter parameter lists
« Generate library calls
« Can change how we ramp up new user

Takeaways - Makes writing
better, faster, cheaper

* BibTeX — Easy tedious work

 Predictive, syntax-aware text generation (LaTeX)
« Compact writing - Summarize/Tl;dr

» Translation for different audiences — 2nd grader
« Companion for all writing activities

Takeaways - Generative Al Tools give
us (way) better, faster, and cheaper

* WWe need to assure that everyone who generates or
transforms content has access to generative tools

« Sooner rather than later — stakes are high!

» Two paths to explore for isolated environments:
* Drop GPTX. on a hard drive and bring it in-house
* Internally build models using custom-curated content
« Both paths seem essential

