
First ideas and experiences
Michael A. Heroux

Siva Rajamanickam
ECP Community BOF Days 2023

Exploring Generative
AI Tools for Scientific
Software Development

BOF Purpose

• Provide some brief examples of use
• Speculate on possible opportunities/challenges
• Real purpose:

• Connect with people interested in generative AI

• Start a conversation going forward

• Interested in further discussion?
• See Google Sheet sign up in Zoom chat

• And here: https://docs.google.com/spreadsheets/d/17NdjprJr0-
lVmoJjitIeEmgITfJRIduBoWO8jNX2b9M/edit?usp=sharing

https://docs.google.com/spreadsheets/d/17NdjprJr0-lVmoJjitIeEmgITfJRIduBoWO8jNX2b9M/edit?usp=sharing
https://docs.google.com/spreadsheets/d/17NdjprJr0-lVmoJjitIeEmgITfJRIduBoWO8jNX2b9M/edit?usp=sharing

What are
Generative AI Tools?

• Chat:

• Produce content by

• Accepting an input prompt

• Producing human-like output in response to the prompt

• Example:

• Prompt: Tell me about the first US moon landing

• https://beta.openai.com – Playground

• Inline suggested content:

• Predict what you need next as you type

• Example: GitHub Copilot auto-complete

https://beta.openai.com/

Tools I have used
• OpenAI: Company producing most-used tools

• GitHub Copilot:
• Have been tracking since Dec 2021
• Based on Codex: special OpenAI model for programming
• Available as a plugin for VSCode (how I use it)

• OpenAI Playground:
• Like ChatGPT with more flexible, complicated API (to GPT3)
• Less known, more available

• ChatGPT:
• Latest API (to GPT3.5)
• Raised broad awareness.

• Not tried: Jasper (also based on GPT3), Code Whisperer (Amazon)
• Many new tools emerging and expected in the coming months

Some ways to think
about these tools
• College roommate English major who lives to

help you with your writing assignments
• Programmer to produce code, scripts,

templates as starting point for you to consider
• Administrative assistant to help with detailed

content formatting tasks
• Elaborate auto-complete feature
• An on-demand intelligence

English major roommate
• Authoring

• Brainstorm topics

• Generate outline

• Recursively provide more detail

• Assessment
• Request AI review of content

• Improvement
• Steel-manning other perspectives

• Refine content – understandable by a novice, TL;DR, etc.

What does it mean to be the
author?
• Student essay due by midnight:

• Written with copy-and-paste and “lite” editing after dinner
• Is the student the author?

• Definition of author here:
• Ability to explain, defend, and elaborate on written content?
• True novelty seems unlikely

• How to assess knowledge:
• Assessing quality of writing OK but not content knowledge

• Assessment via dialogue seems essential

Basic rules for using sophisticated (including
AI) tools in content development – 2 versions

1. If used to assist creating/transforming your own content:
a) Make sure you truly understand/own the content
b) Beware of plagiarism

2. If used to incorporate others’ content:
a) Assure rights to use
b) Give credit

3. Do not list tools as authors

1. Report the use of these tools if used to create content

2. Assure that all authors take responsibility for content

3. Do not list tools as authors

Skills impact
• Low-level skills replaced by tools

• Programming:

• Syntax, formatting

• Programming standards

• Using APIs

• What to produce and how it’s designed are
relatively more important

Trends

• Soft skills become relatively more important

• Understanding the individual, teams, communities
become more important that technical skills

• Domain knowledge relatively more important

• What to produce – Requirements

• Design become more important & easier

• Rapid prototyping easier

• AI tools won’t replace people

• People who use AI tools will replace those who don’t

The best way to extract metadata from a GitHub repo is to use the GitHub API. It
provides a range of endpoints that allow you to access information about the
repo, such as the number of commits, pull requests, releases, and other metadata.
You can also use the GitHub GraphQL API to query more specific information.

https://beta.openai.com/playground
Bootstrapping a scripting tool – Step 1: Ask for advice

What is a good way to extract metadata from a GitHub repo?

https://beta.openai.com/playground

Write a script to extract basic activity information from the Trilinos GitHub repo

https://beta.openai.com/playground
Step 2: Generate script

#!/usr/bin/env python3

import requests

Enter your GitHub personal access token here
token = '<YOUR_TOKEN_HERE>'

The GitHub repository to query
repo = 'trilinos/Trilinos'

Get the list of commits
url = f'https://api.github.com/repos/{repo}/commits'
headers = {'Authorization': f'token {token}'}
response = requests.get(url, headers=headers).json()

Print the commit count
print(f'Commit count: {len(response)}')

Get the list of pull requests
url = f'https://api.github.com/repos/{repo}/pulls'
headers = {'Authorization': f'token {token}'}
response = requests.get(url, headers=headers).json()

Print the pull request count
print(f'Pull request count: {len(response)}')

Get the list of releases
url = f'https://api.github.com/repos/{repo}/releases'
headers = {'Authorization': f'token {token}'}
response = requests.get(url, headers=headers).json()

Print the release count
print(f'Release count: {len(response)}')

https://beta.openai.com/playground

How do I determine my github personal access token?

https://beta.openai.com/playground
Step 3: Learn about token

To generate a GitHub personal access token, you must first log in to your GitHub account. Once
logged in, go to your Settings page, select “Developer settings” from the left sidebar, and then
“Personal access tokens”. On the next page, click “Generate new token”. You will then be
prompted to give your token a name and select the scopes for which the token will be granted
access. Once you have set your token’s name and scopes, click “Generate token”. Your token will
then be displayed on the next page.

https://beta.openai.com/playground

Write a github API python script to list the contributors and number of commits to a github repo with user
provided name

https://beta.openai.com/playground
Step 4: Experiment

import requests
import json

Get the user input
user_input = input("Please enter the GitHub repo name: ")

API call to get the list of contributors
url = "https://api.github.com/repos/{}/contributors".format(user_input)
r = requests.get(url)

Parse the response
data = json.loads(r.text)

Print the result
print("List of Contributors and Number of Commits to {}".format(user_input))
for contributor in data:

print("{}: {}".format(contributor['login'], contributor['contributions']))

https://beta.openai.com/playground

VSCode+Copilot
HPCG Benchmark WAXPBY Kernel

VSCode with GitHub Copilot Plugin

• Copilot aware of complete HPCG code base
• Copilot also trained on many specialized APIs:

• Intel Vector ISA
• Kokkos Performance Portability API
• Apple, HIP, etc...

• Copilot generates equivalent versions of C++ code
• Comment starts the generation process

VSCode+Copilot
HPCG Benchmark WAXPBY Kernel

VSCode with GitHub Copilot Plugin

• Type comment (green text)
• Wait for Copilot to generate code
• Tab to accept

VSCode+Copilot
HPCG Benchmark WAXPBY Kernel

VSCode+Copilot
HPCG Benchmark WAXPBY Kernel

VSCode with GitHub Copilot Plugin

• Same approach for Kokkos

VSCode+Copilot
HPCG Benchmark WAXPBY Kernel

VSCode+Copilot
HPCG Benchmark WAXPBY Kernel

VSCode with GitHub Copilot Plugin

• Same approach for Apple ISA
• And so on

VSCode and Copilot for LaTeX

• VSCode with:
• LaTeX Workshop plugin
• GitHub Copilot plugin

• Grammerly plugin

• Makes an awesome writing environment:
• Syntax-aware

• Text predicting – including LaTeX syntax
• Bug-free compilation

• And much more..

OpenAI Playground
AztecOO Belos Parameters

OpenAI Playground
BibTeX citations

Convert from MLA-style format

OpenAI Playground
BibTeX citations

To BibTeX database format

OpenAI Playground
Tl;dr assistant

Original text:

We seek to gain improved insight into how Web search engines should cope with the evolving Web, in an attempt to provide users
with the most up-to-date results possible. For this purpose we collected weekly snapshots of some 150 Web sites over the course of
one year, and measured the evolution of content and link structure. Our measurements focus on aspects of potential interest to search
engine designers: the evolution of link structure over time, the rate of creation of new pages and new distinct content on the Web,
and the rate of change of the content of existing pages under search-centric measures of degree of change. Our findings indicate a
rapid turnover rate of Web pages, i.e., high rates of birth and death, coupled with an even higher rate of turnover in the hyperlinks
that connect them. For pages that persist over time we found that, perhaps surprisingly, the degree of content shift as measured using
TF.IDF cosine distance does not appear to be consistently correlated with the frequency of content updating. Despite this apparent
non-correlation, the rate of content shift of a given page is likely to remain consistent over time. That is, pages that change a great deal
in one week will likely change by a similarly large degree in the following week. Conversely, pages that experience little change will
continue to experience little change. We conclude the paper with a discussion of the potential implications of our results for the design
of effective Web search engines.

Tl;dr version

The Web is constantly evolving, with new pages being created and old ones being deleted or modified. Search engines need to be able
to cope with this changing landscape in order to provide users with the most up-to-date results possible. Our study found that the rate
of change of Web content is much higher than the rate of change of the links that connect it. This means that search engines need to
be able to adapt quickly to changes in the content of Web pages, in order to provide the most relevant and up-to-date results.

Tl;dr. Here is a WWW’04 conference paper abstract I use in a compact
writing exercise, followed by the AI-generated Tl;dr version. I chose the
abstract because it presents significant opportunities for improvement.

OpenAI Playground
Second-grader

Prompt:
Summarize this (my paragraph) for a second-grade student:

The demands of massive concurrency and increased resilience required for effective exascale computing have led to
claims that our existing approach to application programming must be replaced. In this article I argue that disruption is
inevitable, but from the programming perspective will not require new languages or programming environments.
Instead the disruption will be in application architecture, introducing a new control layer that will provide the
concurrency, adaptability and resilience features we need in order to achieve effective exascale performance levels.

OpenAI Playground Generated Second-grader text:

The article is discussing how the way we currently write programs will have to change in order to be effective at
exascale computing. Exascale computing is a type of computing where programs can use a billion billion calculations
per second. This is different from our current approach, which the article claims will need to be replaced in order to be
effective. The new way of writing programs will include a new control layer that provides features like concurrency,
adaptability, and resilience.

Here is an opening paragraph for an article I wrote a few years ago, followed by the second-
grader translation. Very interesting that the AI inserted the definition of exascale computing.

OpenAI Playground
More specific promptsWriting detailed prompts help to produce more usable content

Takeaways – AI Tools Transform
our ability to use software APIs
• Script APIs: Makes possible the use of GitHub API example:

• Go from no knowledge to a working meta-data access script in 15
minutes (with help from StackOverflow)

• Device-specific APIs: WAXPBY generic C++ kernel:
• Generate starter versions for Intel/Apple vector ISA, Kokkos, and

more

• Accelerates transition to Kokkos
• Perhaps increases tolerance for code divergence?

• Scientific library APIs: Trilinos (AztecOO, Ifpack, Muelu, Belos)
• Generate starter parameter lists

• Generate library calls
• Can change how we ramp up new user

Takeaways – Makes writing
better, faster, cheaper
• BibTeX – Easy tedious work

• Predictive, syntax-aware text generation (LaTeX)

• Compact writing – Summarize/Tl;dr

• Translation for different audiences – 2nd grader

• Companion for all writing activities

Takeaways – Generative AI Tools give
us (way) better, faster, and cheaper
• We need to assure that everyone who generates or

transforms content has access to generative tools

• Sooner rather than later – stakes are high!

• Two paths to explore for isolated environments:
• Drop GPTX.Y on a hard drive and bring it in-house

• Internally build models using custom-curated content

• Both paths seem essential

