
Approved for public release

Building Custom Data Services with 
Mochi

Case Study: DataSpaces (and friends)

Philip Davis



2

DataSpaces Staging Framework

• Simple, powerful abstractions for making data available across all processes in a workflow

– In-memory data store (either in or out of process)

– Abstractions for scientific computing

• N-d array and metadata support optimized for access locality

– Designed to scale up to thousands of nodes putting and getting

• Distributed indexing

• RDMA data transfer

• Useful for in-situ workflows, where multiple process groups are producing and consuming short-lived data 
products

– Multi-simulation

– Simulation / Analysis / Visualization

• Opportunities for “smart” storage

– Analysis, I/O offload, etc.

– Data-dependent optimizations (pre-delivery, error detection, etc.)

https://github.com/rdi2dspaces/dspaces



3

DataSpaces – Architecture
• Client/Server

• Servers are dedicated threads/processes/jobs.

• Servers provide indexing and data storage 
(optionally) 

• Index constructed online using SFC mappings or 
other domain linearization 

– Optimized for locality of indexing (i.e. close 
data = close index)

• DHT used to maintain indexing metadata

– indexing domain split across servers by 
segmenting SFC linearization

– Locality of SFC reduces multiplication factor of 
indexing queries

• Communication overlay across DataSpaces clients 
and servers

– Independent of, coexists with MPI, etc.

– Use RDMA transport with RPC-triggered data 
reorganization



4

DataSpaces 2.0

• API extensions

– Publish/Subscribe interface

– Simplified concurrency control

– Python bindings

– Hybrid client/server processes

– Application-informed data placement

• Architectural enhancements

• Unified data transport layer

• Replaces parallel DIMES/DART 
objects storage models

• Replace RPC layer with Margo

• Software enhancements

• Cmake integration

• Reduced configuration complexity

• Low overhead running modes



5

Benesh
• A programming model for developing in-situ workflows

• Take existing codes and make them work together

• Abstractions aimed at supporting multiphysics use cases

• Programming-language hooks for a preparing an existing code for use in a Benesh workflow

• Workflow description language for specifying the interactions of workflow components

• Provide enough information about the workflow to make interactions flexible

• Middleware for instantiating Benesh workflows

Core

Benesh

Edge

Benesh

Coupler

Benesh



6

EKT – Everyone Knows That

• Benesh components need to send notifications that well-known events 
have occurred

• Components are process groups (i.e. each component is an 
mpirun instance)

• All ranks of a given component generate the same events 
(eventually)

• All ranks of a peer need to know about these events (eventually)

• Everyone Knows That (EKT)

• Precompute fan-out / fan-in overlay networks between 
components

• Broadcast messages with predefined structures using these 
overlay networks

• Use RPC (mercury) for network bootstrapping and message broadcast

1

2

1

2

3

4


