
Getting Started with Mochi
&

Recent Updates

2

Where to begin

• Start here for documentation:

– https://mochi.readthedocs.io/

• Don’t hesitate to contact us if you have questions!

– Ask questions on the mailing list or Slack space.

– https://www.mcs.anl.gov/research/projects/mochi/

• We also have quarterly meetings for users and developers.

– Join our mailing list to receive meeting notifications and
request agenda items for discussion.

– We plan to start hosting short presentations on focused
topics this year.

– Each quarterly meeting also has a corresponding newsletter:

https://mochi.readthedocs.io/
https://www.mcs.anl.gov/research/projects/mochi/

3

Installing Mochi with Spack

We strongly recommend using Spack to install any Mochi components.

• Spack simplifies dependency resolution (recall that Mochi is inherently made
up of many components).

• No special privileges are needed to install any Mochi components.

• We provide an external package repository that enables rapid
integration of new Mochi component releases without updating Spack itself.

– https://github.com/mochi-hpc/mochi-spack-packages/tree/main/packages

• We also provide build recipes for several platforms.

– These are expressed as Spack environment configuration files.

– One unified spack.yaml file contains all preferred build settings
(e.g., network transport, compiler, storage backend) for a given platform.

– The recipes also include job script examples with suggested runtime environment
settings where applicable.

– https://github.com/mochi-hpc-experiments/platform-configurations

https://github.com/mochi-hpc/mochi-spack-packages/tree/main/packages
https://github.com/mochi-hpc-experiments/platform-configurations

4

Platform support

Available example
configurations

Spack environment
file specifying system
packages to use and
recommended options

Runtime job example

5

Platform support

Phase 1 system
with HPE Slingshot
10 (Verbs transport)

Early access
system with HPE
Slingshot 11
(CXI transport)

We will also track Aurora and other
platforms as early access opens up.

6

Mochi source code

• All Mochi source code is available on github.com.

– https://github.com/mochi-hpc/

– The Mochi software is actually a collection of components
maintained in separate repositories.

– Bug reports and contributions are welcome!

– PR contributors will be prompted automatically for
contributor licensing information.

What should you do once you have a Mochi service up and
running and you want to understand it better?

https://github.com/mochi-hpc/

7

Things to do once your service is running:
Validate service layout

• The Mochi “Bedrock” component can be used to configure and bootstrap combinations of services
with json or jx9 configuration files; we’ll see examples later in this BoF.

• How to do you validate / visualize a configuration, though?

• Try mochi-json-vis (https://github.com/mochi-hpc/mochi-json-vis)

It translates the json configuration into a visual mapping of services (i.e., Mochi providers) to
execution resources. See README.md for an explanation of the figures.

https://github.com/mochi-hpc/mochi-json-vis

8

Things to do once your service is running:
Integrate self-diagnostics

• The Mochi-quintain provider is a vehicle for adding
synthetic workload processing to an existing service.

• https://github.com/mochi-hpc/mochi-quintain

• You can then run parameterized benchmarks against the
Quintain component to help isolate performance
phenomena in your system.

• The example on the right shows the distribution of
response times for RPCs to a single server under load.

• Work in progress! We will improve Quintain benchmarking
and visualization capabilities over time.

https://github.com/mochi-hpc/mochi-quintain

9

Things to do once your service is running:
investigate performance

• How do you tune the performance of a Mochi service?

– Step 1: Use the best (native) network transport for your platform

– Step 2: Use Mochi diagnostic and profiling tools* to understand where
service time is spent

• Basic performance diagnostic and profiling capability is already built
into any Mochi service.

– No need to modify or recompile application or service

– Automatically tracks Mochi RPCs

– Automatically tracks RPC dependencies

– Includes intra-node, inter-node, and inter-process calls

* Functionality developed by Srinivasan Ramesh of U. Oregon, see:

SYMBIOSYS: A Methodology for Performance Analysis of Composable HPC Data Services
Srinivasan Ramesh, Allen D. Malony, Philip Carns, Robert B. Ross, Matthieu Dorier, Jerome
Soumagne, and Shane Snyder (to appear in IPDPS 2021)

10

Enable profiling of an existing service

• Set environment variables to enable profiling

• Run your service / application

• Generate profile summary

• Render RPC dependency graph

• Look at the results

See README.md in mochi-margo for more information

11

Example: How much cumulative time was spent
in each RPC?

This graph shows
the top 5 RPCs in
terms of cumulative
time.

Unusual example:
target (server) side
of this RPC
consumed more
time than clients,
indicating presence
of completion delay
after sending ack.

RPCs are labeled by name, with
a chain showing call provenance

12

Thank you!

