
Darshan: Enabling Insights into HPC
I/O Behavior

Phil Carns, Sudheer Chunduri, Kevin Harms, Rob Latham, Rob Ross,
Shane Snyder
Argonne National Laboratory

Nik Awtrey, Tyler Reddy
Los Alamos National Laboratory

ECP Community BoF Days
May 12, 2022

2

BoF overview

• The ability to characterize and understand application
I/O workloads is critical to ensuring efficient use of an
evolving and complex HPC I/O stack

– Deep layers of coordinating I/O libraries and entirely
new-to-HPC storage paradigms (e.g., object storage)

– Emerging storage hardware (e.g., PMEM) and storage
architectures (e.g., burst buffers)

• I/O analysis tools are invaluable in helping to navigate
this complexity and to better understand I/O

– Characterize I/O behavior of individual jobs to inform
tuning decisions

– Characterize job populations to better understand
system-wide I/O stack usage and optimize deployments

3

BoF overview

In this BoF, we provide an overview of the Darshan I/O characterization tool and hear
from guest speakers on exciting new Darshan instrumentation/analysis activities

Agenda:
➢ Darshan overview (Shane Snyder, ANL)

○ Background
○ Usage on ECP platforms
○ New and upcoming features

➢ AutoPerf instrumentation modules (Kevin Harms, ALCF)
➢ PyDarshan interface and tools (Nik Awtrey, LANL)
➢ Understanding I/O behavior with interactive Darshan log analysis (Jean Luca Bez, LBL)
➢ Free time: Q/A, audience-driven discussion

3

Darshan:
An application I/O
characterization tool
for HPC

4

5

What is Darshan?

• Darshan is a lightweight I/O characterization tool that captures concise views of
HPC application I/O behavior
– Produces a summary of I/O activity for each instrumented job

• Counters, histograms, timers, & statistics
• Full I/O traces (if requested)

• Widely available
– Deployed (and commonly enabled by default!) at many HPC facilities around the world

• Easy to use
– No code changes required to integrate Darshan instrumentation
– Negligible performance impact; just “leave it on”

• Modular
– Adding instrumentation for new I/O interfaces or storage components is straightforward

5

https://www.mcs.anl.gov/research/projects/darshan/
https://github.com/darshan-hpc/darshan

6

How does Darshan work?

• Darshan can insert application I/O instrumentation at link-time (for static and dynamic
executables) or at runtime using LD_PRELOAD (for dynamic executables)
– Starting in version 3.2.0, Darshan supports instrumentation of any dynamically-linked executable (MPI or not)

using the LD_PRELOAD method

• Darshan records file access statistics for
each process as app executes

• At app shutdown, collect, aggregate,
compress, and write log data

• After job completes, analyze Darshan log
data

– darshan-job-summary - provides a summary PDF
characterizing application I/O behavior

– darshan-parser - provides complete text-format
dump of all counters in a log file

– PyDarshan - Python analysis module for Darshan
logs

6

Using Darshan on
ECP platforms

7

8

Using Darshan on Cori (NERSC) and Theta (ALCF)

➢ Darshan is already installed and enabled by default on Cori and Theta Cray
XC40 systems

○ Instrumentation enabled using software module that injects Darshan linker options
when compiling MPI applications using Cray compiler wrappers (cc, CC, etc.)

MPI applications

Use ‘module list’ to confirm
Darshan is actually loaded

Darshan 3.3.1 is the default
version on Cori (3.3.0 on

Theta)

If Darshan not loaded,
you can always load manually

using ‘module load’

8

9

Using Darshan on Cori (NERSC) and Theta (ALCF)

➢ OK, Darshan is loaded...now what?
○ Just compile and run your application!
○ Darshan inserts instrumentation directly into executable, regardless of linking mode

➢ LD_PRELOAD is another option for dynamically-linked executables:
○ This method is necessary for Python environments (i.e., mpi4py, h5py)
○ Also helpful for applications that cannot be recompiled

Manually set
LD_PRELOAD to
point to Darshan’s

shared library
before running

your application

MPI applications

9

10

Using Darshan on Summit (OLCF)

➢ Summit is an IBM Power9-based system that uses dynamic linking by default
○ Like Cori/Theta, software modules used to enable Darshan instrumentation
○ LD_PRELOAD mechanism used to interpose Darshan instrumentation libraries at

runtime – no recompile needed!

MPI applications

Summit also provides
‘module list’ command

Darshan 3.3.0 is the default version on Summit, ‘-lite’ just
means this module has no HDF5 support

Note: darshan-runtime and darshan-util are separate
modules, with only darshan-runtime loaded by default

10

11

Finding Darshan log files

➢ After the application terminates, look for
your log files: Darshan logs typically stored in a central

directory for all users for system-wide
deployments, use ‘darshan-config

--log-path’ to find

Logs further
indexed using

‘year/month/day’
the job executed.

Log file name starts with the following pattern:
‘username_exename_jobid…’

11

12

Using Darshan with non-MPI applications

➢ Starting in version 3.2.0, Darshan supports
instrumentation of non-MPI applications using
LD_PRELOAD (i.e., dynamically-linked binaries)

○ Users must additionally export
‘DARSHAN_ENABLE_NONMPI=1’ to enable this mode

➢ NOTE: With Darshan’s non-MPI environment set, log files will
be generated for every invoked process

○ Instrumentation scope can be limited to specific
commands using: ‘env DARSHAN_ENABLE_NONMPI=1
cmd <args>’

○ Darshan runtime configuration parameters (which we
will cover later) can help limit instrumentation to
specific application names

Darshan
instrumentation

12

Analyzing Darshan
logs

13

14

Analyzing Darshan logs

14

➢ After generating and locating your log, use Darshan analysis tools to inspect log
file data:

Copy the log file somewhere else
for analysis

Invoke darshan-parser to get
detailed counters

Modules use a common format for
printing counters, indicating the

corresponding module, rank,
filename, etc. -- here sample

counters are shown for both POSIX
and MPI-IO modules

15

Analyzing Darshan logs

➢ But, darshan-parser output isn’t so accessible for most users… use
darshan-job-summary tool to produce summary PDF of app I/O behavior

15

On Theta, texlive module is
needed for generating PDF

summaries -- may not be needed
on other systems

Invoke darshan-job-summary on
log file to produce PDF

A few simple statistics (total I/O
time and volume) are output on

command line

Output PDF file name based on
Darshan log file name

16

Analyzing Darshan logs

16

Result is a multi-page PDF
containing graphs, tables,

and performance estimates
characterizing the I/O

workload of the application

What’s new in
Darshan?

17

18

HDF5 instrumentation modules

➢ HDF5 offers application scientists a convenient
abstraction for large data collections
○ But, it can be difficult to understand interactions with

lower layers of the I/O stack that most impact
performance

➢ To better understand HDF5 usage and performance,
we have developed Darshan instrumentation modules
for HDF5 file (H5F) and dataset (H5D) APIs

○ What are file and dataset properties?
○ How are datasets organized within files?
○ How are datasets accessed?
○ Do HDF5 accesses decompose efficiently to lower-level

accesses? If not, do any optimizations make sense?
18

Available in Darshan 3.2.0+ versions

Number of elements accessed
in each dataset dimension for
the most common access for
MACSio benchmark runs. For
optimal performance, access
dimensions should match any

HDF5 chunking settings

19

Darshan runtime heatmaps

➢ Traditional Darshan instrumentation
captures coarse-grained I/O timing info
(start/end timestamps for open, read, write,
close operations)
○ DXT tracing can be enabled for fine-grained

details, but storing details of every I/O
operation would be an expensive default
mode for Darshan

➢ To address this, we have implemented
runtime I/O heatmaps to capture
per-process histograms of I/O activity
○ Histograms are a fixed size, with bins being

resized as the app executes
○ Heatmaps for POSIX, MPI-IO, and STDIO

interfaces are currently supported

Heatmaps can quickly provide users
insight into how I/O intensity varies
over time, ranks, and I/O interfaces

Available in Darshan 3.4.0+ versions

19

20

Darshan runtime library configuration

➢ Motivated by persistent user reports of Darshan
exhausting memory, new comprehensive runtime
library configuration mechanisms have been
implemented:

○ Environment variables
○ Config files

➢ Allow runtime control over the following:
○ Enabled/disabled modules
○ Number of records to allocate for each module
○ Record name exclusion/inclusion regexes
○ App name exclusion/inclusion regexes
○ Total Darshan memory for module data (MODMEM)

and name records (NAMEMEM)

➢ Enable facilities to fine-tune Darshan behavior after it
has been deployed

Available in Darshan 3.4.0+ versions

Example Darshan config file to modify
Darshan’s memory usage and

instrumentation scope

20

21

Other recent Darshan developments

➢ AutoPerf instrumentation modules (v3.3.0) 🟊
○ MPI communication characterization
○ Network counters for Cray XC systems
○ Contributions by Sudheer Chunduri

➢ Stable PyDarshan interface (v3.4.0) 🟊
○ Including first cut at a new job summary tool
○ Contributions by Nik Awtrey, Tyler Reddy, Jakob Luettgau

➢ Performance optimizations to improve overhead of Darshan
wrappers, locks, and timers (v3.4.0)

➢ Adopted automake/libtool support for Darshan’s build
(v3.4.0)
○ Contribution by Wei-Keng Liao

🟊 More about this shortly

21

Next up on the
Darshan roadmap

22

23

DAOS instrumentation modules

➢ DAOS offers a novel storage paradigm for HPC
apps: object-based storage over a combo of
SCM and SSD devices

○ libdfs: DAOS’s POSIX file system emulation API
○ libdaos: DAOS’s native object (key-val) API

➢ Understanding usage/performance
characteristics can be critical to realizing full
system I/O potential

○ Development of Darshan instrumentation modules
for DAOS is in progress and should be ready for
release soon

23

DAOS I/O stack for HPC
applications and I/O middleware.

Figure courtesy of IntelDFS module available for experimental use:
https://github.com/darshan-hpc/darshan/pull/739

24

DAOS instrumentation modules

➢ The file-based DFS interface is a natural fit
for Darshan’s traditional instrumentation
strategy (per-file I/O statistics)
○ Design follows closely that of Darshan’s

POSIX module, as you would expect

➢ On the other hand, a Darshan
instrumentation module for the DAOS object
interface poses a major challenge:
○ How can Darshan succinctly capture access

details for objects that are key-vals?
○ Key access patterns will be critical to

understanding how DAOS objects are used
in the wild

24

DAOS object storage model. Objects can
either be byte arrays or entire key-val stores.

Figure courtesy of Intel

We are still investigating what
characteristics about key access

patterns to capture and are seeking
feedback from early DAOS users

25

Other next steps for Darshan

➢ Increase instrumentation coverage
○ Support more APIs (e.g., PnetCDF, currently in a PR)
○ Extend DXT tracing capabilities to new APIs (HDF5, STDIO, etc.)

➢ Iterate more on PyDarshan-based log analysis tools
○ Methods to extract actionable I/O insights from raw log data

■ “looks like your Lustre striping parameters were poorly chosen,
consider doing X”

○ Workflow-aware log analysis utilities
■ Existing tools operate on single jobs, but workflows are

foundational to HPC and warrant deeper understanding

25

26

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration,

responsible for delivering a capable exascale ecosystem, including
software, applications, and hardware technology, to support the

nation’s exascale computing imperative.

26

