
Approved for public release

Understanding I/O Behavior with
Interactive Darshan Log Analysis

Jean Luca Bez
Suren Byna

2

The HPC I/O stack is complex!

● Multiple layers

● Interplay of factors can affect I/O performance

● Plethora of tunable parameters

● Each layer brings a new set of parameters

● Various optimizations techniques available

● Using all the layers efficiently is a tricky problem

Scientific Applications

Storage DevicesHDD, SSD, RAID

3

The HPC I/O stack is complex!

● Multiple layers

● Interplay of factors can affect I/O performance

● Plethora of tunable parameters

● Each layer brings a new set of parameters

● Various optimizations techniques available

● Using all the layers efficiently is a tricky problem

Scientific Applications

Storage DevicesHDD, SSD, RAID

High-Level I/O Libraries

POSIX I-O

MPI-IO

I/O Forwarding Layer

Parallel File System

HDF5, NetCDF, ADIOS

OpenMPI, MPICH
 (ROMIO)

IBM CIOD, Cray DVS,
IOFSL, IOF

Lustre, GPFS, PVFS2,
OrangeFS

4

Interactive Exploration!

● Darshan can collect fine grain traces with DXT

● Static plots have limitations

● Features we seek:

● Observe POSIX and MPI-IO together

● Zoom-in/zoom-out in time and subset of ranks

● Contextual information about I/O calls

● Focus on operation, size, or spatiality

● By visualizing the application behavior, we are one step closer to optimize the application

● There is still a lack of translation from I/O bottlenecks to optimizations

I/O
Problems

Applying
I/O Tuning

Interactive
Exploration

Trace
Analysis

Mapping to
Solutions

Trace
Collection

if problem persists

5

github.com/hpc-io/dxt-explorer

docker pull hpcio/dxt-explorer

Spack recipe coming soon!

6

What options do we have?

usage: dxt-explorer [-h] [-o OUTPUT] [-t] [-s] [-d] [-l] [--start START] [--end END] [--from START_RANK] [--to END_RANK] darshan

DXT Explorer:

positional arguments:

 darshan Input .darshan file

optional arguments:

 -h, --help show this help message and exit

 -o OUTPUT, --output OUTPUT

 Name of the output file

 -t, --transfer Generate an interactive data transfer explorer

 -s, --spatiality Generate an interactive spatiality explorer

 -d, --debug Enable debug mode

 -l, --list List all the files with trace

 --start START Report starts from X seconds (e.g., 3.7) from beginning of the job

 --end END Report ends at X seconds (e.g., 3.9) from beginning of the job

 --from START_RANK Report start from rank N

 --to END_RANK Report up to rank M

7

Exploring I/O operations…

Explore the timeline by zooming in and out and observing how the MPI-IO calls are translated
to the POSIX layer. For instance, you can use this feature to detect stragglers.

8

Context is important!

Visualize relevant information in the context of each I/O call (rank, operation, duration, request
size, and OSTs if Lustre) by hovering over a given operation.

9

Exploring request sizes…

Explore the operations by size in POSIX and MPI-IO. You can, for instance, identify small or
metadata operations from this visualization.

10

Exploring spatiality…

Explore the spatiality of accesses in file by each rank with contextual information.

11

Let’s focus!

12

What can we see with OpenPMD?

collective calls
translate into several

POSIX calls

same amount of
data in each

timestep

some stragglers
make the collective

calls take longer

stragglers observed
in different ranks

Rank: 25
Operation: write
Duration: 12.07 seconds
Size: 32768 KB
Offset: 16273899520

OST information will
show up if available

(e.g. Lustre)

13

OpenPMD use case

● Collective I/O using ROMIO: 1.54x speedup

● GPFS large block I/O + HDF5 collective metadata: +3.8x speedup

○ Discovered an issue with collective metadata introduced in HDF5 1.10.5

● Fix combined with previous optimizations gives a total of 6.8x speedup from baseline

110.6s

BASELINE

16.1s

OPTIMIZED

6.8x

14

FLASH use case

● 2 checkpoint files (≈2.3TB each) and 2 plot file (≈14GB each)

● FLASH was not using collective MPI-IO calls

● Optimizations: collective I/O, HDF5 alignment, and defer metadata flush

1495s

BASELINE

361s

OPTIMIZED

4.1x

15

Conclusion

● DXT Explorer

● Adds an interactive component to Darshan DXT trace analysis

● Moves a step closer towards connecting the dots between bottleneck detection and tuning

● We can only do something about it, if we know something is wrong

● Our tool is publicly available at github.com/hpc-io/dxt-explorer

● There is still the need for further R&D

● How to better report findings to end-users?

● How to make automatic recommendations by mapping problems to tuning options?

Approved for public release

Thank you!

You can reach us by email:

jlbez@lbl.gov

github.com/hpc-io/dxt-explorer

docker pull hpcio/dxt-explorer

bit.ly/dxt-explorerDEMO

