
Autoperf

2

AutoPerf 1.0

• AutoPerf 1.0 was a standalone tool for collecting MPI and BG/Q specific data
– Deployed on ANL Mira system
– Aspects of the implementation were loosely modeled on Darshan
– Major findings published in

• https://dl.acm.org/doi/10.1109/SC.2018.00033
• https://dl.acm.org/doi/abs/10.1145/3392717.3392774

https://dl.acm.org/doi/10.1109/SC.2018.00033
https://dl.acm.org/doi/abs/10.1145/3392717.3392774

3

AutoPerf 2.0

• Decided to rebuild Autoperf as module of Darshan
– Reuse existing data capture and analysis frameworks
– Focus on adding value with with MPI, network and performance counters

• Limitations of 1.0
– Only data from 4 ranks is logged and thus far, only data from the avg. rank has been used (rank

with MPI time close to avg. MPI time)
– MPI specific issues:

• Per an MPI operation, only the average time is recorded – distribution is not captured
• Per an MPI operation, only the average message size used is recorded – distribution is not captured
• Message sizes for collectives like Alltoallv are not accurate
• MPI Multi-threading – correctness issues (counters support atomic increments or not)

4

AutoPerf 2.0 Design

• AutoPerf becomes a submodule within the Darshan library
– Reduce redundant work by leveraging existing logging/reporting framework
– Compiler/linker integration, log structure, testing, deployments

• MPI specific
– Intercept more MPI operations

• 359 total ops in MPI 3.1 standard

– 74 prominently used ops are intercepted
• MPI3 ops such as RMA and non-blocking collectives are also intercepted

– Add distribution counters for message size (six bins such as [0-256B], [256B-1K] … [1MB+])
– MPI stats from every rank is logged
– Reduction and analysis of the log records from all the ranks is by a post-processing tool
– A python based post-processing (pydarshan) is under development

5

Autoperf Module

• External to the darshan repo
– Autoperf has its own git repo: https://github.com/argonne-lcf/autoperf
– Modified darshan to allow for external modules

• Still require those modules to be defined with in darshan header
• Configuration parameters also in darshan repo

– Currently can only be built and run in the context of Darshan
– Future – simplified build, interception and log system to facilitate use separate from Darshan

• Designed as multiple modules for different aspects
– Users can choose what aspects of Autoperf they want to use on their systems
– apmpi – MPI counters, system agnostic
– apxc – Cray XC Aries counters
– apss – HPE Slingshot counters
– apnvgpu – Nvidia GPU performance data via TAU

6

GitHub View

7

darshan-log-format.h

8

Build and Use

• git submodule update --init

• Configure with --enable-apmpi-mod and/or --enable-apxc-mod to enable autoperf at
configuration time
– Build and run darshan as normal
– Darshan logs will contain these modules

• Data can be viewed with darshan-parser

• https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-runtime.html#_using_autoperf
_instrumentation_modules

https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-runtime.html#_using_autoperf_instrumentation_modules
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-runtime.html#_using_autoperf_instrumentation_modules

9

Analysis

• Initial prototype analysis in python

• Plan to integrate analysis tools into
pydarshan work

10

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration,

responsible for delivering a capable exascale ecosystem, including
software, applications, and hardware technology, to support the

nation’s exascale computing imperative.

