
Approved for public release

Early Experience of Application Developers with
SYCL/Data Parallel C++

ECP Community BoF Days May 10, 2022 11.00 am Eastern Time

 Abhishek Bagusetty (ANL)

 Michael D’Mello (Intel)

 Daniel Arndt (ORNL)

 Brian Homerding (ANL)

 Brian Holland (Intel)

 Thomas Applencourt (ANL)

 Esteban Rangel (ANL)

 Wayne Mitchell (LLNL)

 Varsha Madanath (Intel)

 Yasaman Ghadar (ANL)

Kokkos’
Experience
with SYCL

Daniel Arndt

Early Experience of
Application Developers
with SYCL/Data
Parallel C++

Daniel Arndt Kokkos’ Experience with SYCL May 10th, 2022 1 / 13

Feature Status

SYCL backend in Kokkos mostly feature-complete. Unimplemented

atomics for big types (device global variables)

WorkGraphPolicy

Tasks

Graphs

Daniel Arndt Kokkos’ Experience with SYCL May 10th, 2022 2 / 13

Applications

Current features (seemingly) sufficient for a large number of ECP applications like

ArborX

Cabana

LAMMPS

XGC

Daniel Arndt Kokkos’ Experience with SYCL May 10th, 2022 3 / 13

Missing SYCL Features

Features that are missing in Intel’s SYCL implementation, needed, e.g., for Trilinos
and ExaWind:

device global variables

virtual functions on the device/RTTI

querying device memory 1

printf in global namespace 2

better support for generic pointers

1Workaround kokkos-kernels#1225
2Workaround KOKKOS IMPL DO NOT USE PRINTF

Daniel Arndt Kokkos’ Experience with SYCL May 10th, 2022 4 / 13

https://github.com/kokkos/kokkos-kernels/pull/1225
https://github.com/kokkos/kokkos/blob/5574130fb333ac1745a52d4a6383ac95c64bdc0f/core/src/setup/Kokkos_Setup_SYCL.hpp#L51-L55

Gotchas - Named kernel calls
https://github.com/kokkos/kokkos/pull/4593

Final workgroup size must be divisible by range.
⇒ sycl::range: wokgroup size 1 for prime number ranges

Implict kernel range rounding only works well for named kernels. Not applicable
for generic launch wrappers like

[=] (s y c l : : i tem<1> i t em) {
const typename Po l i c y : : i n d e x t y p e i d = item . g e t l i n e a r i d () ;
m func to r (i d) ;

}

due to non-unique names.

In short, use named kernel calls like

cgh . p a r a l l e l f o r <FunctorWrapper<Functor , Po l i c y >>(range , f) ;

Daniel Arndt Kokkos’ Experience with SYCL May 10th, 2022 5 / 13

Gotchas - Named kernel calls - AXPBY (V100)

Unnamed call

cgh . p a r a l l e l f o r (range , f) ;

n = 524287: 8 .868529 e−01s 1 .321383 e+01 GB/ s
n = 524288: 4 .283028 e−02s 2 .736090 e+02 GB/ s
n = 524289: 3 .133845 e−01s 3 .739423 e+01 GB/ s

Named call

cgh . p a r a l l e l f o r <FunctorWrapper<Functor , Po l i c y >>(range , f) ;

n = 524287: 4 .648326 e−02 s 2 .521064 e+02 GB/ s
n = 524288: 4 .585346 e−02 s 2 .555696 e+02 GB/ s
n = 524289: 4 .766056 e−02 s 2 .458799 e+02 GB/ s

Daniel Arndt Kokkos’ Experience with SYCL May 10th, 2022 6 / 13

Gotchas - device-copyable member variables

SYCL doesn’t allow arbitrary member variables, must be trivially copyable.

Kokkos doesn’t control functors passed in by users, even Kokkos::View can’t be
used.

1. Workaround: copy kernel to device explicitly.

2. Workaround: use sycl::is device copyable.

Daniel Arndt Kokkos’ Experience with SYCL May 10th, 2022 7 / 13

Copy kernel explicitly

template <typename Functor , typename Storage>
c l a s s SYCLFunctionWrapper<Functor , Storage , f a l s e> {

const Functor& m ke rne lFunc to r ;

pub l i c :
SYCLFunctionWrapper (const Functor& func to r , S to rage& s t o r a g e)

: m ke rne lFunc to r (s t o r a g e . copy f rom (f u n c t o r)) {}

s t d : : r e f e r e n c e w r a pp e r<const Functor> g e t f u n c t o r () const {
return {m ke rne lFunc to r } ;

}

s t a t i c void r e g i s t e r e v e n t (S to rage& s to r age , s y c l : : e v en t even t) {
s t o r a g e . r e g i s t e r e v e n t (even t) ;

}
} ;

Daniel Arndt Kokkos’ Experience with SYCL May 10th, 2022 8 / 13

sycl::is device copyable I

union Tr i v i a lWrappe r {
Tr i v i a lWrappe r () {}
Tr i v i a lWrappe r (const Functor& f) { s t d : : memcpy(&m f , &f , s i z eo f (m f)) ; }
Tr i v i a lWrappe r (const Tr i v i a lWrappe r& o th e r) {

s t d : : memcpy(&m f , &o th e r . m f , s i z eo f (m f)) ;
}
Tr i v i a lWrappe r& operator=(const Tr i v i a lWrappe r& o th e r) {

s t d : : memcpy(&m f , &o th e r . m f , s i z eo f (m f)) ;
return ∗ t h i s ;

}
∼Tr i v i a lWrappe r () { } ;

Functor m f ;
} ;

Daniel Arndt Kokkos’ Experience with SYCL May 10th, 2022 9 / 13

sycl::is device copyable II

template <typename Functor , typename Storage>
c l a s s SYCLFunctionWrapper<Functor , Storage , f a l s e> {
pub l i c :
SYCLFunctionWrapper (const Functor& func to r , S to rage&) :

m func to r (f u n c t o r) {}
const Functor& g e t f u n c t o r () const { return m functo r . m f ; }
s y c l : : e v en t g e t c o p y e v e n t () const { return {} ; }
s t a t i c void r e g i s t e r e v e n t (s y c l : : e v en t) {}

} ;

Daniel Arndt Kokkos’ Experience with SYCL May 10th, 2022 10 / 13

Gotchas - Non-device copyable member variables

1 Copy kernel to device explicitly.

need union to control special member functions
problems with SYCL+CUDA.
size restrictions

2 Use sycl::is device copyable.

need to manage lifetime of copied functors
no size restrictions

Daniel Arndt Kokkos’ Experience with SYCL May 10th, 2022 11 / 13

Gotchas - Workgroup size RangePolicy

Kokkos doesn’t allow to explicitly set workgroup/block sizes in general

Default workgroup sizes in general sufficiently good.

LaunchBounds can be used to set

maximum number of threads in a block
minimum number of blocks in a subslice/streaming multiprocessor as
optimization hints.

kokkos#4875 allows specifying the workgroup size for a functor through
chunk size explicitly.

Daniel Arndt Kokkos’ Experience with SYCL May 10th, 2022 12 / 13

https://github.com/kokkos/kokkos/pull/4875

Acknowledgments

This manuscript has been authored by UT-Battelle, LLC, under Contract
No. DE-AC0500OR22725 with the U.S. Department of Energy.

This research used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract
DE-AC02-06CH11357.

Daniel Arndt Kokkos’ Experience with SYCL May 10th, 2022 13 / 13

Integrating SYCL/DPC++ into the
RAJA Software Library

Brian Homerding

ALCF

ECP Community BOF Days

Early Experience of Application Developers with SYCL/Data Parallel C++

Argonne Leadership Computing Facility2

RAJA

RAJA is a software library of C++ abstractions to support architecture and programming model

portable parallel loop execution. It provides portable abstractions for simple and complex loops.

Through the execution policy RAJA kernels are mapped to execution backends.

Argonne Leadership Computing Facility3

RAJA-SYCL Status

• RAJA – v2022.03.0

⏤ Most recent release SYCL features include

§ RAJA::forall

§ RAJA::kernel

§ Reductions

§ Tiling

⏤ Recent updates to the SYCL execution policies

§ Removed seperate non-trivial kernel launch interface

§ Tiling support

o Supported in RAJA with mapping to groups and
items

§ ForI and TileT policy support

Device Execution
sycl_exec<block_size, async>

SyclKernel<...>

Execution Policies

sycl_global_0<block_size>

sycl_global_1<block_size>

sycl_global_2<block_size>

sycl_group_0_direct

sycl_group_1_direct

sycl_group_2_direct

sycl_group_0_loop

sycl_group_1_loop

sycl_group_2_loop

sycl_local_0_direct

sycl_local_1_direct

sycl_local_2_direct

sycl_local_0_loop

sycl_local_1_loop

sycl_local_2_loop

Reduction Object

sycl_reduce

Argonne Leadership Computing Facility4

Porting RAJA kernels to new platform

sycl_policies.h

typedef RAJA::sycl_exec<1024> PREDFORT_LOOP_POL;

using RHS4_EXEC_POL_ASYNC =
RAJA::KernelPolicy<
RAJA::statement::SyclKernel<
RAJA::statement::For<0, RAJA::sycl_global_0,
RAJA::statement::For<1, RAJA::sycl_global_1,
RAJA::statement::For<2, RAJA::sycl_global_2
RAJA::statement::Lambda<0>

>
>

>
>

>;

using ODDIODDJ_EXEC_POL2_ASYNC = RHS4_EXEC_POL_ASYNC;

{...}

omp_policies.h
typedef RAJA::omp_parallel_for_exec PREDFORT_LOOP_POL;

hip_policies.h
typedef RAJA::hip_exec<1024> PREDFORT_LOOP_POL;

cuda_policies.h

typedef RAJA::cuda_exec<1024> PREDFORT_LOOP_POL;

using RHS4_EXEC_POL_ASYNC =
RAJA::KernelPolicy<RAJA::statement::CudaKernelFixedAsync<256,
RAJA::statement::Tile<
0, RAJA::statement::tile_fixed<4>, RAJA::cuda_block_z_loop,
RAJA::statement::Tile<
1, RAJA::statement::tile_fixed<4>, RAJA::cuda_block_y_loop,
RAJA::statement::Tile<
2, RAJA::statement::tile_fixed<16>, RAJA::cuda_block_x_loop,
RAJA::statement::For<
0, RAJA::cuda_thread_z_direct,
RAJA::statement::For<
1, RAJA::cuda_thread_y_direct,
RAJA::statement::For<
2, RAJA::cuda_thread_x_direct,
RAJA::statement::Lambda<0>>>>>>>>>;

>;

using ODDIODDJ_EXEC_POL2_ASYNC = RHS4_EXEC_POL_ASYNC;

Argonne Leadership Computing Facility5

SYCL Kernel to RAJA-SYCL Kernel Mapping

•
using EXEC_POL =

RAJA::KernelPolicy<

RAJA::statement::SyclKernelAsync<

RAJA::statement::For<2, RAJA::sycl_global_0<1>,

RAJA::statement::For<1, RAJA::sycl_global_1<1>,

RAJA::statement::For<0, RAJA::sycl_global_2<256>,

RAJA::statement::Lambda<0>

>

>

>

>

>;

RAJA::kernel<EXEC_POL>(RAJA::make_tuple(RAJA::RangeSegment(0, ni),

RAJA::RangeSegment(0, nj),

RAJA::RangeSegment(0, nk)),

[=] (Index_type i, Index_type j, Index_type k) {

0 1 2

qu->submit([&] (sycl::handler& h) {

h.parallel_for(sycl::nd_range<3> (

sycl::range<3> (nk, nj, ni),

sycl::range<3> (1, 1, 256)),

[=] (sycl::nd_item<3> item) {

Index_type i = item.get_global_id(2);

Index_type j = item.get_global_id(1);

Index_type k = item.get_global_id(0);

});

});

Early Experience

Argonne Leadership Computing Facility7

Useful Features - Flexibility

There are many features which provide flexibility which are useful
for libraries

• sycl::nd_range
⏤RAJA by design exposes control over how to execute a kernel to the

application. Utilizing nd_ranges allows us to expose fine grained control to
the kernel execution policies

• unnamed lambda
⏤Libraries which launch kernels user defined kernels cannot provide useful

and unique kernel names

Argonne Leadership Computing Facility8

Useful Features - Compatibility

There are several features which help the SYCL backend provide
similiar functionality to the existing backends

• extended atomics
⏤Providing consistent support for atomics across backends requires support

for additional types and memory scopes

• unified shared memory
⏤RAJA is all about kernel execution. In order to seperate the memory

management from the kernel execution, USM is needed

Argonne Leadership Computing Facility9

Challenges Related to Integrating SYCL

• Providing a consistent context across the application, RAJA and
the memory management software

• Getting access to local and group id in components which have a
complicated call path with existing interfaces.

• Allocating shared local memory outside of the kernel launch

Thank you

ECP BoF: Early Experience of Application Developers
with SYCL/Data Parallel C++

MFIX
Brian Holland, Intel Center of Excellence

May 10, 2022

2

Background

▪ Fluid Is a continuum solved on a grid, whereas particles
are individually tracked (one-to-one)

▪ Fluid and particles are coupled through volume fraction
and interphase interactions (e.g., drag force)

▪ Advantages

• Use first principles to account for particle-particle and particle-
boundary interactions

• Fewer complex closures therefore less overall model uncertainty

▪ Limitations

• Computationally expensive

• Fluid-particular interactions are modeled

Computational Fluid Dynamics-Discrete Element Methods (CFD-DEM)

3

MFIX

▪ Written in C++

▪ Built on AMReX software framework

• using AMReX data structures and performance portability
constructs

▪ Fully ported to GPUs using amrex::Parallelfor

• Normal for loop when running on CPUS

• GPU Kernel launch with DPC++

▪ Users AMReX’s Embedded Boundaries (EB) for
specifying complex geometries

▪ AMReX native Multi-level Multi-Grid (MLMG) for
linear solvers

▪ Supports in situ (i.e. real-time) visualization

4

AMReX - DPC++ for Intel GPUs

#include <AMReX_PlotFileUtil.H>
#include <AMReX_ParmParse.H>
using namespace amrex;
int main (int argc, char* argv[])
{

amrex::Initialize(argc,argv);

main_main();

amrex::Finalize();
return 0;

}

for (int step = 1; step <= nsteps; ++step) {
phi_old.FillBoundary(geom.periodicity());

// loop over boxes
for (MFIter mfi(phi_old); mfi.isValid(); ++mfi){

const Box& bx = mfi.validbox();
const Array4<Real>& phiOld = phi_old.array(mfi);
const Array4<Real>& phiNew = phi_new.array(mfi);

// advance the data by dt
amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) {

phiNew(i,j,k) = phiOld(i,j,k) + dt *
((phiOld(i+1,j,k) - 2.*phiOld(i,j,k) + phiOld(i-1,j,k)) / (dx[0]*dx[0])
+(phiOld(i,j+1,k) - 2.*phiOld(i,j,k) + phiOld(i,j-1,k)) / (dx[1]*dx[1])

#if (AMREX_SPACEDIM == 3)
+(phiOld(i,j,k+1) - 2.*phiOld(i,j,k) + phiOld(i,j,k-1)) / (dx[2]*dx[2])

#endif
);

});
}

time = time + dt;
MultiFab::Copy(phi_old, phi_new, 0, 0, 1, 0);
amrex::Print() << "Advanced step " << step << "\n";
if (plot_int > 0 && step%plot_int == 0){

const std::string& pltfile = amrex::Concatenate("plt",step,5);
WriteSingleLevelPlotfile(pltfile, phi_new, {"phi"}, geom, time, step);

}
}

#elif defined(AMREX_USE_DPCPP)

amrex::launch(nblocks, MT, Gpu::gpuStream(),
[=] AMREX_GPU_DEVICE (sycl::nd_item<1> const& item) noexcept
{

int ibox, icell;
int blockIdxx = item.get_group_linear_id();
int threadIdxx = item.get_local_linear_id();
if (dp_nblocks) {

ibox = amrex::bisect(dp_nblocks, 0, nboxes,
static_cast<int>(blockIdxx));

icell = (blockIdxx-dp_nblocks[ibox])*MT + threadIdxx;
} else {

ibox = blockIdxx / block_0_size;
icell = (blockIdxx-ibox*block_0_size)*MT + threadIdxx;

}
#endif

Box const& b = dp_boxes[ibox];
int ncells = b.numPts();
if (icell < ncells) {

const auto len = amrex::length(b);
int k = icell / (len.x*len.y);
int j = (icell - k*(len.x*len.y)) / len.x;
int i = (icell - k*(len.x*len.y)) - j*len.x;
AMREX_D_TERM(i += b.smallEnd(0);,

j += b.smallEnd(1);,
k += b.smallEnd(2);)

for (int n = 0; n < ncomp; ++n) {
parfor_mf_detail::call_f(f, ibox, i, j, k, n);

}
}

});
}
AMREX_GPU_ERROR_CHECK();

}

From amrex-tutorials:

https://github.com/AM
ReX-Codes/amrex-
tutorials/blob/main/Ex
ampleCodes/Basic/Hea
tEquation_EX0_C/Sour
ce/main.cpp

https://github.com/AMReX-
Codes/amrex/blob/development/Src/Base/AMReX_MFParallelForG.H

5

G
h

o
s
t C

e
lls

MFIX - Algorithm Structure within AMReX

Eulerian Gas
Phase (Fluid)

Lagrangian
Particle Phase

Phasic Coupling

Mesh Data

MultiFab

BoxArray

FBoxArray

array of boxes/grids at
single level of refinement

single grid

FBoxArray

…
Linear Solvers

MaxProjector
access linear solves and
MLMG solvers for Fluid

Convective Update

NodalProjector

access linear solves and
MLMG solvers for fluid - node
pressures and cell velocities

fluid mass and momentum conservation

discrete position, linear and angular velocities

Transferring Lagrangian
(Particle) Data on the

Eulerian Grid

ParallelFor

Grid

Coarser

Mesh

Efficient stencil iteration with AMReX optimized
communication to fill ghost cells

A
M
R
eX

M
F
IX

6

Thank You

Interoperability of SYCL & OpenMP

Thomas Applencourt
Argonne National Laboratory

2

• Your HPC applications is written in C++ / OpenMP
• But you may want to be interfaced with SYCL:

- Some SYCL API are more flexible than the OpenMP counterpart
- OneMKL provide both an OpenMP and SYCL API,

but SYCL API give access to more function (batched DGEMM for example)

- Some API only exist in SYCL
- For example, oneDPL (Intel oneAPI thrust)

- You want to use SYCL to allocate memory (host, device, shared)

• Interoperability to the rescue!

#pragma omp target enter data map(to: data[0:N])
T* data_gpu;
#pragma omp target data use_device_ptr(data) { data_gpu = data }
sycl::queue q = get_interopt_queue(); //Magic Function, more about it later

//SYCL parallel stl using an OpenMP device pointer
std::sort(oneapi::dpl::execution::make_device_policy(q), data_gpu, data_gpu + N);

OpenMP ⬌ SYCL: An HPC Story

3

• Use #pragma omp interop to get Native Handler (OpenMP 5.1)
• Use those handlers to create SYCL Object (SYCL 2020)
• POC: Implementation using L0 API and ICPX:

- https://github.com/argonne-lcf/HPC-Patterns/blob/main/sycl_omp_ze_interopt/interop_omp_ze_sy
cl.cpp

• Code example:

omp_interop_t o;
#pragma omp interop init(targetsync: o)
auto hDevice = static_cast<ze_device_handle_t>(
 omp_get_interop_ptr(o, omp_ipr_device, &err));
#pragma omp interop destroy(o)

const sycl::device sycl_device =
 sycl::make_device<sycl::backend::ext_oneapi_level_zero>(hDevice);

OpenMP ➡ Backend ➡ SYCL

https://github.com/argonne-lcf/HPC-Patterns/blob/main/sycl_omp_ze_interopt/interop_omp_ze_sycl.cpp
https://github.com/argonne-lcf/HPC-Patterns/blob/main/sycl_omp_ze_interopt/interop_omp_ze_sycl.cpp

4

• Pro: It work! (something similar used by QMCPACK)
sycl::queue Q = get_intereopt_queue(); // Where the magic happens
 T *ompMem = (T*) malloc(N*sizeof(T));
T *syclMem = sycl::malloc_device<T>(N,Q);

• OpenMP Target using “SYCL memory”
#pragma omp target is_device_ptr(syclMem) map(from:ompMem[0:N])

for (size_t i=0 ; i < N; i++)

ompMem[i] = syclMem[i];

• SYCL using “OpenMP memory”
 T* ompMem_gpu;

#pragma omp target enter data map(to:ompMem[0:N])

#pragma omp target data use_device_ptr(ompMem) { ompMem_gpu = ompMem }

Q.copy<T>(cpuMem, ompMem_gpu, N).wait();

• Con:

- Backend specific (need to cast pointer | specialize the templated API)

- Only tested on ICPX & need to use non-standard interoperability API to workaround some bugs

Collaboration are welcome to tests/implements support for more compiler / backend!

OpenMP ⬌ SYCL Work

Supporting CUDA, HIP,
and SYCL in HACC

Steve Rangel, CPS Division ANL

ECP BoF: Early Experience of Application Developers with SYCL/Data Parallel C++

HACC’s Codebase (overview)

full simulation step (625x)

Half Kick LR Half Kick SR

hydro step (adaptive)

Poisson solver (distributed FFT) :

C/C++and MPI

Architecture specific

programming model or

language: CUDA, HIP, DPC++

Half Kick SRCRK-SPH Kick Stream Half Kick LRCRK-SPH Kick

sub-cycle (4x)

HACC’s Codebase (overview)

full simulation step (625x)

Half Kick LR Half Kick SR

hydro step (adaptive)

Poisson solver (distributed FFT) :

C/C++and MPI

Architecture specific

programming model or

language: CUDA, HIP, DPC++

Half Kick SRCRK-SPH Kick Stream Half Kick LRCRK-SPH Kick

sub-cycle

Execute

short-range

gravity, hydro,

sub-grid

models

20+ kernels

Setup

• device

malloc/

memset

• host->dev

memcpy

• create

stream/

queue

Teardown

• dev->host

memcpy

• device free

• …

Supporting Multiple APIs

• HACC GPU kernels are implemented in the vendor preferred programming model
(namely CUDA, HIP, SYCL/DPC++), with the goal to achieve maximum performance
over portability.

• Primary development using CUDA.

• Porting to HIP requires minimal code changes.

• Porting to SYCL is semi-automated, done with the help of the Intel DPC++
Compatibility Tool (DPCT) for device kernels, file by file, and manually for host-side
code.

• Calls to specific APIs are “wrapped” so build targets can reuse the same host-side
source files.
• Most functionality has a direct one-to-one mapping:

https://developer.codeplay.com/products/computecpp/ce/1.1.4/guides/sycl-for-cuda-develo
pers/migration

https://developer.codeplay.com/products/computecpp/ce/1.1.4/guides/sycl-for-cuda-developers/migration
https://developer.codeplay.com/products/computecpp/ce/1.1.4/guides/sycl-for-cuda-developers/migration

Wrapping Kernel Invocation

InvokeGPUKernel (CUDA) InvokeGPUKernel (SYCL)

• Note the above requires the functor implementation of a SYCL kernel,
which is currently not supported by DPCT. We wrote an additional
Clang-based tool to automate the transformation.

• Variadic arguments are used to generalize the invocation
wrapper.

Wrapping Common API Calls

• In general, we take the union of function arguments used by the
supported APIs to provide a common interface to the host.

• Notice how the stream argument in the CUDA wrapper for GPUMalloc
is not used, but is necessary for SYCL.

Summery

• HACC is supporting CUDA, HIP, and SYCL for the upcoming exascale
systems.

• The SYCL implementation uses the same explicit memory
management model as the CUDA implementation.

• SYCL requires more effort for porting but is significantly helped by
using the Intel DPC++ Compatibility Tool.

• The specific API calls are wrapped to promote code reuse and ease
maintainability.

LLNL-PRES-834846

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Wayne Mitchell

Support for Intel GPUs with SYCL in hypre

ECP Annual Meeting BoF Sessions

May 11th, 2022

2
LLNL-PRES-834846

Introduction to hypre

§ hypre is a library of scalable linear solvers produced by

Lawrence Livermore National Lab (LLNL)

— Geometric multigrid preconditioners for structured problems

— BoomerAMG (algebraic multigrid) for unstructured problems

3
LLNL-PRES-834846

GPU support

§ Most of hypre is written in plain C and was originally developed

for large parallel CPU machines

§ GPU support originally focused on CUDA

§ Expanding support for HIP and SYCL

§ hypre is designed to have minimal dependencies

— Options for use of Kokkos or RAJA (with limited use cases) but we do not

rely on these or other portability frameworks

— Native use of CUDA/HIP and now SYCL

4
LLNL-PRES-834846

Current SYCL support in hypre

§ Target Intel GPUs on upcoming Aurora system at Argonne

— Use Intel’s Data Parallel C++ (DPC++) implementation of SYCL

— Currently testing on early access systems for Aurora

§ hypre functionality running on Intel GPUs:

— Structured interface solvers (full support)

— Basic CSR infrastructure and linear algebra

— BoomerAMG solve phase (with Jacobi relaxation)

— In progress: BoomerAMG setup phase

• Matrix-matrix multiplication

• Interpolation routines

• Coarsening routines

5
LLNL-PRES-834846

Usage of oneMKL in hypre

§ The unstructured interface is based on a parallel CSR format for

storing matrices

§ Basic sparse linear algebra may be supplied by vendor libraries:

cuSPARSE, rocSPARSE, oneMKL

§ Solve phase for BoomerAMG is mostly matrix-vector products

— No custom matrix-vector product

— Rely on oneMKL sparse gemv()

§ Setup phase for BoomerAMG utilizes matrix-matrix product

— Custom matrix-matrix product is faster than cuSPARSE

— Currently use oneMKL sparse matmat()

6
LLNL-PRES-834846

Porting BoomerAMG setup

§ The setup phase of BoomerAMG involves

— Generating a strength of connection matrix

— Choosing a coarse grid (partition dofs into C/F points)

— Build interpolation and restriction operators

— Form a coarse-grid operator Ac = RAP

§ Requires a lot of specialized kernels and use of Thrust algorithms!

i m

n k

l

0 1

7
LLNL-PRES-834846

Translating kernels

§ Use macros to unify kernel launch syntax between CUDA/HIP/SYCL

#define HYPRE_GPU_LAUNCH(kernel_name, gridsize, blocksize, ...)

§ SYCL kernels need an additional sycl::nd_item argument

__global__ void

hypre_ExampleKernel(

#if defined(HYPRE_USING_SYCL)

sycl::nd_item<1> item,

#endif
…

§ Obtaining thread/subgroup IDs and subgroup collective

operations (shuffle, etc.) also require translation

8
LLNL-PRES-834846

Translating Thrust algorithms

§ Many Thrust algorithms have std or oneapi equivalents

§ Notable exceptions:

— gather() and scatter()

— Conditional operations with an extra arguments for the stencil

thrust::copy_if(first, last, stencil, result, pred);

§ These can be easily implemented using permutation/zip iterators

§ Helpful to write wrapper functions that translate missing Thrust

function calls

9
LLNL-PRES-834846

Conclusions and outlook

§ hypre support for Intel GPUs with SYCL is well underway

— Structured interface is completely supported

— BoomerAMG solve phase is supported

— BoomerAMG setup phase is coming soon

— Additional specialized solvers will be continually added

§ Additional focus going forward on achieving good performance

on early access hardware for Aurora

§ Special thanks to the Intel COE team!

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States

government. Neither the United States government nor Lawrence Livermore National Security,

LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal

liability or responsibility for the accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States government or Lawrence

Livermore National Security, LLC. The views and opinions of authors expressed herein do not

necessarily state or reflect those of the United States government or Lawrence Livermore

National Security, LLC, and shall not be used for advertising or product endorsement purposes.

11
LLNL-PRES-834846

Structured solvers in SYCL

§ Structured interface is based on

boxes and stencils

§ Computational kernels are

defined as “BoxLoops”

§ Porting to different backends

involves rewriting the BoxLoops

§ Loops that involve a reduction

require special treatment

Argonne Leadership Computing Facility1

Early Experiences with SYCL in TestSNAP

Yasaman Ghadar
Argonne Leadership Computing Facility

ECP Community BoF, May 2022

We gratefully acknowledge the computing resources provided and operated by the Joint

Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

Argonne Leadership Computing Facility2

Overview of EXAALT Project

• ECP EXAALT project seeks to extend accuracy, length and time scales of material science simulations
for fission/fusion reactors using LAMMPS

⏤ Task management layer to create MD tasks, manage task queues, and store results in databases

⏤ Long-time, high-accuracy MD simulations with DFTB method

⏤ Long-time, large-scale MD simulations with machine learned SNAP (Spectral Neighbor Analysis Potential) potential

• Programming models:
⏤ ParSplice: C++

⏤ LAMMPS: C/C++, OpenMP, GPU-enabled (Kokkos, CUDA, OpenCL, ROCm)

⏤ LATTE: F90, OpenMP, GPU-enabled (CUDA)

• Performance directly depends on single-node performance for SNAP

⏤Energy is a function of geometric descriptor of atomic environments

Argonne Leadership Computing Facility3

TestSNAP

• TestSNAP is a stand-alone proxy app for the
SNAP potential that can be run independently of
LAMMPS and is written in C++ using OpenMP
Target, CUDA, Kokkos and other programming
models.

• Each of the compute routines iterate over the bi-
spectrum components (id_max) and store their
individual contributions in a 1D array.

⏤For 2J14, idx_max is 15

⏤For 2J8, idx_max is 9

⏤For 2J2, idx_max is 3

for (int natom = 0; natom < num_atoms ; ++ natom)

{

// build neighbor - list for all atoms

build_neighborlist ();

// compute atom specific coefficients

compute_U (); // Ulist [idx_max] and Ulisttot [idx_max]

compute_Y (); // Ylist [idx_max]

// for each (atom , neighbor) pair

for (int nbor = 0; nbor < num_nbor ; ++ nbor)

{

compute_dU (); // dUlist [idx_max][3]

compute_dE (); // dElist [3]

update_forces ()

}

Pseudo-code for TestSNAP

Argonne Leadership Computing Facility4

TestSNAP Main Kernels

loops

over all
the atoms

in the
simulatio

n to

compute
the forces
per time

step.

The compute_U routine

calculates the
expansion coefficients
for each (atom,
neighbor) pair and
stores the information

in Ulist.

The Clebsch-Gordan

products for each atom
are calculated in the

routine compute_Y and
stored in Ylist.

The expansion

coefficients for each
atom are summed over
all its neighbors and
stored in Ulisttot.

As a precursor to force

calculations, derivatives of
expansion coefficients

which are stored in Ulist are
computed by the

compute_dU in all 3

dimensions using spherical
coordinates and stored in

dUlist.

Using dUlist and

Ylist, the force
vector for each

(atom, neighbor)
pair is computed by
compute_dE and

stored in dElist

Finally, the force on

each atom is
computed from
dElist in update

forces. A
correctness check

is built-in which
compares the
output against
reference data

Start Compute_U Compute_Y

Compute_du

Compute_dE Final

Argonne Leadership Computing Facility5

Kokkos Implementation of TestSNAP

Kokkos is the main

programming model for

EXAALT workload in LAMMPS

CUDA
OpenMP

Offload

Target

SYCL

HIP

Rapid Exploration of Optimization Strategies on Advanced Architectures using TestSNAP and LAMMPS
R. Gayatri, S. Moore, E. Weinberg, N. Lubbers, S. Anderson, J. Deslippe, D. Perez, and A. P. Thompson, Computer Science, Distributed, Parallel and Cluster Computing, 2020.

Using Kokkos view and optimizing for

shared memory, a new kernel which was

fused of multiple kernels was created

Compute Fused_Dei_Drj

GPU backend

Argonne Leadership Computing Facility6

TestSNAP Kernels with Kokkos

GPU Compute

FusedDeiD

rj

Compute

Ui

Compute

Yi

Intel

Gen9

9.31 21.6 168

NVIDIA

A100

0.097 0.0518 0.938

AMD

MI100

0.298 0.409 2.08

Evaluation of Performance Portability of Applications and Mini-Apps across AMD, Intel and NVIDIA GPUs
J. Kwack, J. Tramm, C. Bertoni, Y. Ghadar, B. Homerding, E. Rangel, C. Knight, and S. Parker, P3HPC Workshop @SC21

Compute_Yi still is the most expensive kernel

across arch.

Intel: Kokkos/SYCL

NVIDIA: Kokkos/CUDA

AMD: Kokkos/HIP

Argonne Leadership Computing Facility7

Roofline Analysis of TestSNAP at Intel Gen9

Kokkos/SYCL
Pure OpenMP

Memory bound Compute bound Memory bound Compute bound

Gen9

Gen9

Argonne Leadership Computing Facility8

Roofline Analysis of TestSNAP with Kokkos/SYCL

Memory bound Compute bound Memory bound Compute bound

Gen9

MI100

Argonne Leadership Computing Facility9

Roofline Analysis of TestSNAP with Kokkos/SYCL

Using light weight profiling tools such as iprof indicated that the kernels are taking different path based on

backend selected

Memory bound Compute bound Memory bound Compute bound

Gen9

A100

Argonne Leadership Computing Facility10

TestSNAP has different code paths for each backend

Code path

Argonne Leadership Computing Facility11

Early Experience of Porting EXAALT (2022)

Started with

pure OpenMP

Offload

Identified bottleneck

kernels on Intel,

NVIDIA and Gen9

Using profilers we identify

places for improvements and

pushed the new code to the

main branch

Starting from most recent

improvement of pure

openmp, kokkos version was

implemented

Using profilers we

again identified

bottleneck kernels

and Kokkos version

was modified

All the modifications

to original code is

ported to LAMMPS

• Up until Oct. 2021 Aurora Kokkos hackathon, focus

was on TestSNAP mini-app.

• Now able to compile and run the full LAMMPS
EXAALT workload correctly on Intel’s recent GPU’s

This was done, through continuous open communication with EXAALT developers,

Kokkos developers, Intel COE and so many more.
• EXAALT Team: Danny Perez, Rahul Gayatri, Stan Moore

• Intel CEO: Patrick Steinbrecher

• Kokkos Developer: Daniel Arndt

• Argonne: Chris Knight

• ….

Argonne Leadership Computing Facility12

Current EXAALT Status

• Today, we are focused on investigating performance of
the EXAALT workloads in LAMMPS on Intel GPU’s and
also have been doing scaling studies as well.

• There are multiple Kokkos backends enabling LAMMPS to
work across DOE pre-exascale and exascale architectures.

• Many updates to enable the OpenMP Target and SYCL
Kokkos backends in LAMMPS are being pushed into the
public LAMMPS repo.

NVIDIA: Kokkos/CUDA

AMD: Kokkos/HIP

Work done by Stan Moore from Sandia NL

Argonne Leadership Computing Facility13

Lesson Learned and Future Plans

Mini-app with

plain OpenMP

Using

performance tools,

identify bottleneck

kernels

Every change in the

code was measured

on different arch. to

understand the

impact

Staring from most

performant OpenMP

code, Kokkos

implementation started

Changes were

pushed to

main stream

LAMMPS

Today

LAMMPS

compiles and

runs on recent

Intel GPU’s

Focus is on

performance of

Kokkos/SYCL

And resolving issues with

Kokkos/OpenMP Target

Offload backend

Routinely running the

code with new HW and

SW and reporting issues

Open communication

with developers and

point of contact

Key to success

Team Work

Argonne Leadership Computing Facility14

Acknowledgements

qArgonne Leadership Computing Facility and Computational Science Division Staff

qThis research was supported by the Exascale Computing Project (17-SC-20-SC),
a joint project of the U.S. Department of Energy’s Office of Science and National
Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support
the nation’s exascale computing imperative.

qThis research used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-
AC02-06CH11357.

Argonne Leadership Computing Facility15

Thanks!

Constant memory

Varsha Madananth

 2 Intel Confidential

Constant memory

• Intel GPU does not have a dedicated memory space for constant

• Subset of device global memory address space

• accessor class specialized with target target::constant_buffer
is deprecated

• Instead use device memory with read only access mode –

• auto inputimageacc = inputimagebuffer.get_access<access::mode::read,

access::target::device_buffer>(cgh);

 3 Intel Confidential

Compile time constants

Use constexpr and it will be passed to the device functions.

constexpr int Arows = 512;

constexpr int Acols = 512;

constexpr int Brows = 512;

constexpr int Bcols = 512

 q.submit([&](auto &h){

 h.parallel_for(range(Arows, Bcols), [=](auto index){

 int row = index[0];

 int col = index[1];

 float sum = 0.0f;

 for(int i=0; i < Acols; i++){

 sum += A[row][i] * B[i][col];

 }

 C[row][col] = sum;

 });

 }).wait();

 4 Intel Confidential

Setting runtime kernel constants –
Specialization constants
 specialization constants are constants values can be set dynamically

during execution of the application

 The values of these constants are fixed when a kernel is invoked, and
they do not change during the execution of the kernel.

 Specialization constants must be declared using the specialization_id class

 Restrictions declaring specialization_id
• the template parameter T must be a device copyable type;

• the specialization_id variable must be declared as constexpr;

• the specialization_id variable must be declared in either namespace scope or in class scope;

• if the specialization_id variable is declared in class scope, it must have public accessibility when referenced from namespace scope;

• the specialization_id variable may not be shadowed by another identifier X which has the same name and is declared in
an inline namespace, such that the specialization_id variable is no longer accessible after the declaration of X;

• if the specialization_id variable is declared in a namespace, none of the enclosing namespace names N may be shadowed by another
identifier X which has the same name as N and is declared in an inline namespace, such that N is no longer accessible after the declaration of X.

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#specialization-constant
https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#device-copyable

 5 Intel Confidential

 Setting and getting the value of a
specialization constant
 Functions of class kernel handler –

• set_specialization_constant

• get_specialization_constant

template<auto& SpecName>

void
set_specialization_constant(typename
std::remove_reference_t<decltype(Spec
Name)>::value_type value);

 template<auto& SpecName>
typename std::remove_reference_t
<decltype(SpecName)> ::value_type
 get_specialization_constant();

 6 Intel Confidential

Example usage

#include <sycl/sycl.hpp>
using namespace sycl; // (optional) avoids need for
"sycl::" before SYCL names

using coeff_t = std::array<std::array<float, 3>, 3>;

// Read coefficients from somewhere.
coeff_t get_coefficients();

// Identify the specialization constant.
constexpr specialization_id<coeff_t> coeff_id;

void do_conv(buffer<float, 2> in, buffer<float, 2>
out) {
 queue myQueue;

 myQueue.submit([&](handler &cgh) {
 accessor in_acc { in, cgh, read_only };
 accessor out_acc { out, cgh, write_only };

 // Set the coefficient of the convolution as
constant.
 // This will build a specific kernel the coefficient
available as literals.

cgh.set_specialization_constant<coeff_id>(get_coe
fficients());

 cgh.parallel_for<class Convolution>(
 in.get_range(), [=](item<2> item_id,
kernel_handler h) {
 float acc = 0;
 coeff_t coeff =
h.get_specialization_constant<coeff_id>();
 for (int i = -1; i <= 1; i++) {
 if (item_id[0] + i < 0 || item_id[0] + i >=
in_acc.get_range()[0])
 continue;
 for (int j = -1; j <= 1; j++) {
 if (item_id[1] + j < 0 || item_id[1] + j >=
in_acc.get_range()[1])
 continue;
 // The underlying JIT can see all the values
of the array returned
 // by coeff.get().
 acc += coeff[i + 1][j + 1] *
 in_acc[item_id[0] + i][item_id[1] + j];
 }
 }
 out_acc[item_id] = acc;

 7 Intel Confidential

References

 https://www.khronos.org/registry/SYCL/specs/sycl-2020/html
/sycl-2020.html#_specialization_constants

 https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/p
roposed/sycl_ext_oneapi_device_global.asciidoc

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#_specialization_constants
https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#_specialization_constants
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/proposed/sycl_ext_oneapi_device_global.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/proposed/sycl_ext_oneapi_device_global.asciidoc

Tips and tricks for
debugging your
application with SYCL
compiler

Varsha Madananth

 2

compiler information options

 sycl compiler from oneAPI is based out of open-source clang.

 Preprocessor definitions defined by the compiler

• icpx -fyscl test.cpp -dM -E

• dpcpp test.cpp –dM –E

 To check the clang version the compiler is based out of –

• icx -x c /dev/null -dM -E|grep clang

 Internal options passed by clang to the driver

• dpcpp test.cpp -#

• icpx test.cpp -#

 3

JIT vs AOT compilation workflow

 4

 Use –### or –v options to see the underlying steps being done by
compiler for JIT and AOT.

 --save-temps to store temporary files

 ocloc is a tool for managing Intel Compute GPU device binary format.
It can be used for generation (as part of 'compile' command) as well
as manipulation (decoding/modifying - as part of 'disasm'/'asm'
commands) of such binary files.

• To see all options supported by ocloc –

• ocloc -compile –help

• ocloc –internal_options – to add the Intel IGC specific options.

Identifying which phase the compilation is
failing

 5

Triaging host / device optimizations

 Check optimization phases enabled by the compiler and
control the optimization phases passed to the compiler.

• Host and device side optimizations : icpx –mllvm –opt-bisect-limit=-
1 test.cpp

• Controlling Device side FE optimizations : feature request in process.

 Controlling IGC optimizations

• SYCL_PROGRAM_COMPILE_OPTIONS="-cl-opt-disable"
SYCL_LINK_LINK_OPTIONS="-cl-opt-disable“

 6

Debugging calls at runtime
 To trace level zero calls and get basic profiling information.

• https://github.com/intel/pti-gpu/tree/master/tools/onetrace

--call-logging [-c] Trace host API calls

--host-timing [-h] Report host API execution time

--device-timing [-d] Report kernels execution time

 https://github.com/intel/llvm/blob/sycl/sycl/doc/
EnvironmentVariables.md

https://github.com/intel/pti-gpu/tree/master/tools/onetrace

 7

Questions

	Updates and Roadmap for the SYCL Community
	Interoperability of SYCL & OpenMP
	Slide 2
	Slide 3
	Slide 4
	Supporting CUDA, HIP, and SYCL in HACC
	HACC’s Codebase (overview)
	HACC’s Codebase (overview) (2)
	Supporting Multiple APIs
	Wrapping Kernel Invocation
	Wrapping Common API Calls
	Summery
	Constant memory
	Constant memory
	Compile time constants
	Setting runtime kernel constants – Specialization constants
	 Setting and getting the value of a specialization constant
	Example usage
	References
	Tips and tricks for debugging your application with SYCL compil
	compiler information options
	JIT vs AOT compilation workflow
	
	Triaging host / device optimizations
	Debugging calls at runtime
	Questions

