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Feature Status

SYCL backend in Kokkos mostly feature-complete. Unimplemented

atomics for big types (device global variables)

WorkGraphPolicy

Tasks

Graphs
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Applications

Current features (seemingly) sufficient for a large number of ECP applications like

ArborX

Cabana

LAMMPS

XGC
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Missing SYCL Features

Features that are missing in Intel’s SYCL implementation, needed, e.g., for Trilinos
and ExaWind:

device global variables

virtual functions on the device/RTTI

querying device memory 1

printf in global namespace 2

better support for generic pointers

1Workaround kokkos-kernels#1225
2Workaround KOKKOS IMPL DO NOT USE PRINTF
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https://github.com/kokkos/kokkos-kernels/pull/1225
https://github.com/kokkos/kokkos/blob/5574130fb333ac1745a52d4a6383ac95c64bdc0f/core/src/setup/Kokkos_Setup_SYCL.hpp#L51-L55


Gotchas - Named kernel calls
https://github.com/kokkos/kokkos/pull/4593

Final workgroup size must be divisible by range.
⇒ sycl::range: wokgroup size 1 for prime number ranges

Implict kernel range rounding only works well for named kernels. Not applicable
for generic launch wrappers like

[= ] ( s y c l : : i tem<1> i t em ) {
const typename Po l i c y : : i n d e x t y p e i d = item . g e t l i n e a r i d ( ) ;
m func to r ( i d ) ;

}

due to non-unique names.

In short, use named kernel calls like

cgh . p a r a l l e l f o r <FunctorWrapper<Functor , Po l i c y >>(range , f ) ;
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Gotchas - Named kernel calls - AXPBY (V100)

Unnamed call

cgh . p a r a l l e l f o r ( range , f ) ;

n = 524287: 8 .868529 e−01s 1 .321383 e+01 GB/ s
n = 524288: 4 .283028 e−02s 2 .736090 e+02 GB/ s
n = 524289: 3 .133845 e−01s 3 .739423 e+01 GB/ s

Named call

cgh . p a r a l l e l f o r <FunctorWrapper<Functor , Po l i c y >>(range , f ) ;

n = 524287: 4 .648326 e−02 s 2 .521064 e+02 GB/ s
n = 524288: 4 .585346 e−02 s 2 .555696 e+02 GB/ s
n = 524289: 4 .766056 e−02 s 2 .458799 e+02 GB/ s
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Gotchas - device-copyable member variables

SYCL doesn’t allow arbitrary member variables, must be trivially copyable.

Kokkos doesn’t control functors passed in by users, even Kokkos::View can’t be
used.

1. Workaround: copy kernel to device explicitly.

2. Workaround: use sycl::is device copyable.
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Copy kernel explicitly

template <typename Functor , typename Storage>
c l a s s SYCLFunctionWrapper<Functor , Storage , f a l s e> {

const Functor& m ke rne lFunc to r ;

pub l i c :
SYCLFunctionWrapper ( const Functor& func to r , S to rage& s t o r a g e )

: m ke rne lFunc to r ( s t o r a g e . copy f rom ( f u n c t o r ) ) {}

s t d : : r e f e r e n c e w r a pp e r<const Functor> g e t f u n c t o r ( ) const {
return {m ke rne lFunc to r } ;

}

s t a t i c void r e g i s t e r e v e n t ( S to rage& s to r age , s y c l : : e v en t even t ) {
s t o r a g e . r e g i s t e r e v e n t ( even t ) ;

}
} ;
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sycl::is device copyable I

union Tr i v i a lWrappe r {
Tr i v i a lWrappe r ( ) {}
Tr i v i a lWrappe r ( const Functor& f ) { s t d : : memcpy(&m f , &f , s i z eo f ( m f ) ) ; }
Tr i v i a lWrappe r ( const Tr i v i a lWrappe r& o th e r ) {

s t d : : memcpy(&m f , &o th e r . m f , s i z eo f ( m f ) ) ;
}
Tr i v i a lWrappe r& operator=(const Tr i v i a lWrappe r& o th e r ) {

s t d : : memcpy(&m f , &o th e r . m f , s i z eo f ( m f ) ) ;
return ∗ t h i s ;

}
∼Tr i v i a lWrappe r ( ) { } ;

Functor m f ;
} ;
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sycl::is device copyable II

template <typename Functor , typename Storage>
c l a s s SYCLFunctionWrapper<Functor , Storage , f a l s e> {
pub l i c :
SYCLFunctionWrapper ( const Functor& func to r , S to rage&) :

m func to r ( f u n c t o r ) {}
const Functor& g e t f u n c t o r ( ) const { return m functo r . m f ; }
s y c l : : e v en t g e t c o p y e v e n t ( ) const { return {} ; }
s t a t i c void r e g i s t e r e v e n t ( s y c l : : e v en t ) {}

} ;
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Gotchas - Non-device copyable member variables

1 Copy kernel to device explicitly.

need union to control special member functions
problems with SYCL+CUDA.
size restrictions

2 Use sycl::is device copyable.

need to manage lifetime of copied functors
no size restrictions
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Gotchas - Workgroup size RangePolicy

Kokkos doesn’t allow to explicitly set workgroup/block sizes in general

Default workgroup sizes in general sufficiently good.

LaunchBounds can be used to set

maximum number of threads in a block
minimum number of blocks in a subslice/streaming multiprocessor as
optimization hints.

kokkos#4875 allows specifying the workgroup size for a functor through
chunk size explicitly.
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https://github.com/kokkos/kokkos/pull/4875
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RAJA

RAJA is a software library of C++ abstractions to support architecture and programming model 

portable parallel loop execution. It provides portable abstractions for simple and complex loops. 

Through the execution policy RAJA kernels are mapped to execution backends.
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RAJA-SYCL Status

• RAJA – v2022.03.0

⏤ Most recent release SYCL features include 

§ RAJA::forall

§ RAJA::kernel

§ Reductions

§ Tiling

⏤ Recent updates to the SYCL execution policies 

§ Removed seperate non-trivial kernel launch interface

§ Tiling support

o Supported in RAJA with mapping to groups and 
items

§ ForI and TileT policy support

Device Execution
sycl_exec<block_size, async>

SyclKernel<...>

Execution Policies

sycl_global_0<block_size> 

sycl_global_1<block_size> 

sycl_global_2<block_size>

sycl_group_0_direct

sycl_group_1_direct 

sycl_group_2_direct 

sycl_group_0_loop 

sycl_group_1_loop 

sycl_group_2_loop 

sycl_local_0_direct 

sycl_local_1_direct 

sycl_local_2_direct 

sycl_local_0_loop 

sycl_local_1_loop

sycl_local_2_loop

Reduction Object

sycl_reduce
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Porting RAJA kernels to new platform

sycl_policies.h

typedef RAJA::sycl_exec<1024> PREDFORT_LOOP_POL;

using RHS4_EXEC_POL_ASYNC =
RAJA::KernelPolicy<
RAJA::statement::SyclKernel<
RAJA::statement::For<0, RAJA::sycl_global_0,
RAJA::statement::For<1, RAJA::sycl_global_1, 
RAJA::statement::For<2, RAJA::sycl_global_2
RAJA::statement::Lambda<0>

>
>

>
>

>;

using ODDIODDJ_EXEC_POL2_ASYNC = RHS4_EXEC_POL_ASYNC;

{...}

omp_policies.h
typedef RAJA::omp_parallel_for_exec PREDFORT_LOOP_POL;

hip_policies.h
typedef RAJA::hip_exec<1024> PREDFORT_LOOP_POL;

cuda_policies.h

typedef RAJA::cuda_exec<1024> PREDFORT_LOOP_POL;

using RHS4_EXEC_POL_ASYNC =
RAJA::KernelPolicy<RAJA::statement::CudaKernelFixedAsync<256,
RAJA::statement::Tile<
0, RAJA::statement::tile_fixed<4>, RAJA::cuda_block_z_loop,
RAJA::statement::Tile<
1, RAJA::statement::tile_fixed<4>, RAJA::cuda_block_y_loop,
RAJA::statement::Tile<
2, RAJA::statement::tile_fixed<16>, RAJA::cuda_block_x_loop,
RAJA::statement::For<
0, RAJA::cuda_thread_z_direct,
RAJA::statement::For<
1, RAJA::cuda_thread_y_direct,
RAJA::statement::For<
2, RAJA::cuda_thread_x_direct,
RAJA::statement::Lambda<0>>>>>>>>>;

>;

using ODDIODDJ_EXEC_POL2_ASYNC = RHS4_EXEC_POL_ASYNC;
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SYCL Kernel to RAJA-SYCL Kernel Mapping

•
using EXEC_POL =

RAJA::KernelPolicy<

RAJA::statement::SyclKernelAsync<

RAJA::statement::For<2, RAJA::sycl_global_0<1>,

RAJA::statement::For<1, RAJA::sycl_global_1<1>,

RAJA::statement::For<0, RAJA::sycl_global_2<256>, 

RAJA::statement::Lambda<0>

>

>

>

>

>;

RAJA::kernel<EXEC_POL>( RAJA::make_tuple(RAJA::RangeSegment(0, ni),

RAJA::RangeSegment(0, nj),

RAJA::RangeSegment(0, nk)),

[=] (Index_type i, Index_type j, Index_type k) {

0             1             2

qu->submit([&] (sycl::handler& h) {

h.parallel_for(sycl::nd_range<3> (

sycl::range<3> (nk, nj, ni),

sycl::range<3> (1, 1, 256)),

[=] (sycl::nd_item<3> item) {

Index_type i = item.get_global_id(2);

Index_type j = item.get_global_id(1);

Index_type k = item.get_global_id(0);

});

});



Early Experience
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Useful Features - Flexibility

There are many features which provide flexibility which are useful 
for libraries

• sycl::nd_range
⏤RAJA by design exposes control over how to execute a kernel to the 

application.  Utilizing nd_ranges allows us to expose fine grained control to 
the kernel execution policies

• unnamed lambda
⏤Libraries which launch kernels user defined kernels cannot provide useful 

and unique kernel names



Argonne Leadership Computing Facility8

Useful Features - Compatibility

There are several features which help the SYCL backend provide 
similiar functionality to the existing backends

• extended atomics 
⏤Providing consistent support for atomics across backends requires support 

for additional types and memory scopes

• unified shared memory
⏤RAJA is all about kernel execution.  In order to seperate the memory 

management from the kernel execution, USM is needed
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Challenges Related to Integrating SYCL

• Providing a consistent context across the application, RAJA and 
the memory management software 

• Getting access to local and group id in components which have a 
complicated call path with existing interfaces.

• Allocating shared local memory outside of the kernel launch



Thank you
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Background

▪ Fluid Is a continuum solved on a grid, whereas particles 
are individually tracked (one-to-one)

▪ Fluid and particles are coupled through volume fraction 
and interphase interactions (e.g., drag force)

▪ Advantages

• Use first principles to account for particle-particle and particle-
boundary interactions

• Fewer complex closures therefore less overall model uncertainty

▪ Limitations

• Computationally expensive

• Fluid-particular interactions are modeled

Computational Fluid Dynamics-Discrete Element Methods (CFD-DEM)
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MFIX

▪ Written in C++

▪ Built on AMReX software framework

• using AMReX data structures and performance portability 
constructs

▪ Fully ported to GPUs using amrex::Parallelfor

• Normal for loop when running on CPUS

• GPU Kernel launch with DPC++

▪ Users AMReX’s Embedded Boundaries (EB) for 
specifying complex geometries

▪ AMReX native Multi-level Multi-Grid (MLMG) for 
linear solvers

▪ Supports in situ (i.e. real-time) visualization
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AMReX - DPC++ for Intel GPUs

#include <AMReX_PlotFileUtil.H>
#include <AMReX_ParmParse.H>
using namespace amrex;
int main (int argc, char* argv[])
{

amrex::Initialize(argc,argv);

main_main();

amrex::Finalize();
return 0;

}

for (int step = 1; step <= nsteps; ++step) {
phi_old.FillBoundary(geom.periodicity());

// loop over boxes
for ( MFIter mfi(phi_old); mfi.isValid(); ++mfi ){

const Box& bx = mfi.validbox();
const Array4<Real>& phiOld = phi_old.array(mfi);
const Array4<Real>& phiNew = phi_new.array(mfi);

// advance the data by dt
amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) {

phiNew(i,j,k) = phiOld(i,j,k) + dt *
( (phiOld(i+1,j,k) - 2.*phiOld(i,j,k) + phiOld(i-1,j,k)) / (dx[0]*dx[0])
+(phiOld(i,j+1,k) - 2.*phiOld(i,j,k) + phiOld(i,j-1,k)) / (dx[1]*dx[1])

#if (AMREX_SPACEDIM == 3)
+(phiOld(i,j,k+1) - 2.*phiOld(i,j,k) + phiOld(i,j,k-1)) / (dx[2]*dx[2])

#endif
);

});
}

time = time + dt;
MultiFab::Copy(phi_old, phi_new, 0, 0, 1, 0);
amrex::Print() << "Advanced step " << step << "\n";
if (plot_int > 0 && step%plot_int == 0){

const std::string& pltfile = amrex::Concatenate("plt",step,5);
WriteSingleLevelPlotfile(pltfile, phi_new, {"phi"}, geom, time, step);

}
}

#elif defined(AMREX_USE_DPCPP)

amrex::launch(nblocks, MT, Gpu::gpuStream(),
[=] AMREX_GPU_DEVICE (sycl::nd_item<1> const& item) noexcept
{

int ibox, icell;
int blockIdxx = item.get_group_linear_id();
int threadIdxx = item.get_local_linear_id();
if (dp_nblocks) {

ibox = amrex::bisect(dp_nblocks, 0, nboxes, 
static_cast<int>(blockIdxx));

icell = (blockIdxx-dp_nblocks[ibox])*MT + threadIdxx;
} else {

ibox = blockIdxx / block_0_size;
icell = (blockIdxx-ibox*block_0_size)*MT + threadIdxx;

}
#endif

Box const& b = dp_boxes[ibox];
int ncells = b.numPts();
if (icell < ncells) {

const auto len = amrex::length(b);
int k =  icell /   (len.x*len.y);
int j = (icell - k*(len.x*len.y)) /   len.x;
int i = (icell - k*(len.x*len.y)) - j*len.x;
AMREX_D_TERM(i += b.smallEnd(0);,

j += b.smallEnd(1);,
k += b.smallEnd(2);)

for (int n = 0; n < ncomp; ++n) {
parfor_mf_detail::call_f(f, ibox, i, j, k, n);

}
}

});
}
AMREX_GPU_ERROR_CHECK();

}

From amrex-tutorials:

https://github.com/AM
ReX-Codes/amrex-
tutorials/blob/main/Ex
ampleCodes/Basic/Hea
tEquation_EX0_C/Sour
ce/main.cpp

https://github.com/AMReX-
Codes/amrex/blob/development/Src/Base/AMReX_MFParallelForG.H
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MFIX - Algorithm Structure within AMReX

Eulerian Gas 
Phase (Fluid)

Lagrangian
Particle Phase

Phasic Coupling

Mesh Data

MultiFab

BoxArray

FBoxArray

array of boxes/grids at 
single level of refinement

single grid

FBoxArray

…
Linear Solvers 

MaxProjector
access linear solves and 
MLMG solvers for Fluid 

Convective Update

NodalProjector

access linear solves and 
MLMG solvers for fluid - node 
pressures and cell velocities

fluid mass and momentum conservation

discrete position, linear and angular velocities

Transferring Lagrangian
(Particle) Data on the 

Eulerian Grid

ParallelFor

Grid

Coarser 

Mesh

Efficient stencil iteration with AMReX optimized 
communication to fill ghost cells

A
M
R
eX

M
F
IX
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Thank You
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• Your HPC applications is written in C++ / OpenMP
• But you may want to be interfaced with SYCL:

- Some SYCL API are more flexible than the OpenMP counterpart
- OneMKL provide both an OpenMP and SYCL API, 

but SYCL API give access to more function (batched DGEMM for example)

- Some API only exist in SYCL
- For example, oneDPL (Intel oneAPI thrust)

- You want to use SYCL to allocate memory (host, device, shared) 

• Interoperability to the rescue!

#pragma omp target enter data map(to: data[0:N])
T* data_gpu;
#pragma omp target data use_device_ptr(data)  { data_gpu = data }
sycl::queue q = get_interopt_queue(); //Magic Function, more about it later

//SYCL parallel stl using an OpenMP device pointer
std::sort(oneapi::dpl::execution::make_device_policy(q), data_gpu, data_gpu + N);

OpenMP ⬌ SYCL: An HPC Story
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• Use #pragma omp interop to get Native Handler (OpenMP 5.1)
• Use those handlers to create SYCL Object (SYCL 2020)
• POC: Implementation using L0 API and ICPX:

- https://github.com/argonne-lcf/HPC-Patterns/blob/main/sycl_omp_ze_interopt/interop_omp_ze_sy
cl.cpp

• Code example:

omp_interop_t o;
#pragma omp interop init(targetsync: o)
auto hDevice = static_cast<ze_device_handle_t>(
                 omp_get_interop_ptr(o, omp_ipr_device, &err));
#pragma omp interop destroy(o)

const sycl::device sycl_device = 
          sycl::make_device<sycl::backend::ext_oneapi_level_zero>(hDevice);

OpenMP ➡ Backend ➡ SYCL

https://github.com/argonne-lcf/HPC-Patterns/blob/main/sycl_omp_ze_interopt/interop_omp_ze_sycl.cpp
https://github.com/argonne-lcf/HPC-Patterns/blob/main/sycl_omp_ze_interopt/interop_omp_ze_sycl.cpp
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• Pro: It work!   (something similar used by QMCPACK)
sycl::queue Q = get_intereopt_queue(); // Where the magic happens
      T *ompMem = (T*) malloc(N*sizeof(T));
T *syclMem = sycl::malloc_device<T>(N,Q);

• OpenMP Target using “SYCL memory”
#pragma omp target is_device_ptr(syclMem) map(from:ompMem[0:N])

for (size_t i=0 ; i < N; i++)

ompMem[i] = syclMem[i];

• SYCL using “OpenMP memory”
      T* ompMem_gpu;

#pragma omp target enter data map(to:ompMem[0:N])

#pragma omp target data use_device_ptr(ompMem) { ompMem_gpu = ompMem }

Q.copy<T>(cpuMem, ompMem_gpu, N).wait();

• Con:

- Backend specific (need to cast pointer | specialize the templated API) 

- Only tested on ICPX & need to use non-standard interoperability API to workaround some bugs

Collaboration are welcome to tests/implements support for more compiler / backend!

OpenMP ⬌ SYCL Work
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HACC’s Codebase (overview)

full simulation step (625x)

Half Kick LR Half Kick SR

hydro step (adaptive)

Poisson solver (distributed FFT) : 

C/C++and MPI 

Architecture specific 

programming model or 

language: CUDA, HIP, DPC++

Half Kick SRCRK-SPH Kick Stream Half Kick LRCRK-SPH Kick

sub-cycle (4x)



HACC’s Codebase (overview)

full simulation step (625x)

Half Kick LR Half Kick SR

hydro step (adaptive)

Poisson solver (distributed FFT) : 

C/C++and MPI 

Architecture specific 

programming model or 

language: CUDA, HIP, DPC++

Half Kick SRCRK-SPH Kick Stream Half Kick LRCRK-SPH Kick

sub-cycle

Execute 

short-range 

gravity, hydro, 

sub-grid 

models

20+ kernels

Setup

• device 

malloc/

memset

• host->dev 

memcpy

• create 

stream/

queue

Teardown

• dev->host 

memcpy

• device free

• …



Supporting Multiple APIs

• HACC GPU kernels are implemented in the vendor preferred programming model 
(namely CUDA, HIP, SYCL/DPC++), with the goal to achieve maximum performance 
over portability.

• Primary development using CUDA.

• Porting to HIP requires minimal code changes.

• Porting to SYCL is semi-automated, done with the help of the Intel DPC++ 
Compatibility Tool (DPCT) for device kernels, file by file, and manually for host-side 
code. 

• Calls to specific APIs are “wrapped” so build targets can reuse the same host-side 
source files. 
• Most functionality has a direct one-to-one mapping:

https://developer.codeplay.com/products/computecpp/ce/1.1.4/guides/sycl-for-cuda-develo
pers/migration

https://developer.codeplay.com/products/computecpp/ce/1.1.4/guides/sycl-for-cuda-developers/migration
https://developer.codeplay.com/products/computecpp/ce/1.1.4/guides/sycl-for-cuda-developers/migration


Wrapping Kernel Invocation

InvokeGPUKernel (CUDA) InvokeGPUKernel (SYCL)

• Note the above requires the functor implementation of a SYCL kernel, 
which is currently not supported by DPCT. We wrote an additional 
Clang-based tool to automate the transformation. 

• Variadic arguments are used to generalize the invocation 
wrapper. 



Wrapping Common API Calls

• In general, we take the union of function arguments used by the 
supported APIs to provide a common interface to the host. 

• Notice how the stream argument in the CUDA wrapper for GPUMalloc 
is not used, but is necessary for SYCL. 



Summery

• HACC is supporting CUDA, HIP, and SYCL for the upcoming exascale 
systems. 

• The SYCL implementation uses the same explicit memory 
management model as the CUDA implementation. 

• SYCL requires more effort for porting but is significantly helped by 
using the Intel DPC++ Compatibility Tool.

• The specific API calls are wrapped to promote code reuse and ease 
maintainability.
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Introduction to hypre

§ hypre is a library of scalable linear solvers produced by 

Lawrence Livermore National Lab (LLNL)

— Geometric multigrid preconditioners for structured problems

— BoomerAMG (algebraic multigrid) for unstructured problems
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GPU support

§ Most of hypre is written in plain C and was originally developed 

for large parallel CPU machines

§ GPU support originally focused on CUDA

§ Expanding support for HIP and SYCL

§ hypre is designed to have minimal dependencies

— Options for use of Kokkos or RAJA (with limited use cases) but we do not 

rely on these or other portability frameworks

— Native use of CUDA/HIP and now SYCL
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Current SYCL support in hypre

§ Target Intel GPUs on upcoming Aurora system at Argonne

— Use Intel’s Data Parallel C++ (DPC++) implementation of SYCL

— Currently testing on early access systems for Aurora

§ hypre functionality running on Intel GPUs:

— Structured interface solvers (full support)

— Basic CSR infrastructure and linear algebra

— BoomerAMG solve phase (with Jacobi relaxation)

— In progress: BoomerAMG setup phase

• Matrix-matrix multiplication

• Interpolation routines

• Coarsening routines
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Usage of oneMKL in hypre

§ The unstructured interface is based on a parallel CSR format for 

storing matrices

§ Basic sparse linear algebra may be supplied by vendor libraries: 

cuSPARSE, rocSPARSE, oneMKL

§ Solve phase for BoomerAMG is mostly matrix-vector products

— No custom matrix-vector product

— Rely on oneMKL sparse gemv()

§ Setup phase for BoomerAMG utilizes matrix-matrix product 

— Custom matrix-matrix product is faster than cuSPARSE

— Currently use oneMKL sparse matmat()
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Porting BoomerAMG setup 

§ The setup phase of BoomerAMG involves

— Generating a strength of connection matrix

— Choosing a coarse grid (partition dofs into C/F points)

— Build interpolation and restriction operators

— Form a coarse-grid operator Ac = RAP

§ Requires a lot of specialized kernels and use of Thrust algorithms!

i m 

n k 

l 

0 1 
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Translating kernels 

§ Use macros to unify kernel launch syntax between CUDA/HIP/SYCL

#define HYPRE_GPU_LAUNCH(kernel_name, gridsize, blocksize, ...)

§ SYCL kernels need an additional sycl::nd_item argument

__global__ void

hypre_ExampleKernel(

#if defined(HYPRE_USING_SYCL)

sycl::nd_item<1> item,

#endif
…

§ Obtaining thread/subgroup IDs and subgroup collective 

operations (shuffle, etc.) also require translation
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Translating Thrust algorithms 

§ Many Thrust algorithms have std or oneapi equivalents

§ Notable exceptions:

— gather() and scatter()

— Conditional operations with an extra arguments for the stencil

thrust::copy_if(first, last, stencil, result, pred);

§ These can be easily implemented using permutation/zip iterators

§ Helpful to write wrapper functions that translate missing Thrust 

function calls
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Conclusions and outlook

§ hypre support for Intel GPUs with SYCL is well underway

— Structured interface is completely supported

— BoomerAMG solve phase is supported

— BoomerAMG setup phase is coming soon

— Additional specialized solvers will be continually added

§ Additional focus going forward on achieving good performance 

on early access hardware for Aurora

§ Special thanks to the Intel COE team!
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Structured solvers in SYCL

§ Structured interface is based on 

boxes and stencils

§ Computational kernels are 

defined as “BoxLoops”

§ Porting to different backends 

involves rewriting the BoxLoops

§ Loops that involve a reduction 

require special treatment
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Early Experiences with SYCL in TestSNAP

Yasaman Ghadar
Argonne Leadership Computing Facility

ECP Community BoF, May 2022
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Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.
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Overview of EXAALT Project 

• ECP EXAALT project seeks to extend accuracy, length and time scales of material science simulations 
for fission/fusion reactors using LAMMPS 

⏤ Task management layer to create MD tasks, manage task queues, and store results in databases

⏤ Long-time, high-accuracy MD simulations with DFTB method

⏤ Long-time, large-scale MD simulations with machine learned SNAP (Spectral Neighbor Analysis Potential) potential

• Programming models:
⏤ ParSplice: C++

⏤ LAMMPS: C/C++, OpenMP, GPU-enabled (Kokkos, CUDA, OpenCL, ROCm)

⏤ LATTE: F90, OpenMP, GPU-enabled (CUDA)

• Performance directly depends on single-node performance for SNAP

⏤Energy is a function of geometric descriptor of atomic environments
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TestSNAP

• TestSNAP is a stand-alone proxy app for the 
SNAP potential that can be run independently of 
LAMMPS and is written in C++ using OpenMP 
Target, CUDA, Kokkos and other programming 
models. 

• Each of the compute routines iterate over the bi-
spectrum components (id_max) and store their 
individual contributions in a 1D array.

⏤For 2J14, idx_max is 15

⏤For 2J8, idx_max is 9

⏤For 2J2, idx_max is 3

for ( int natom = 0; natom < num_atoms ; ++ natom )

{

// build neighbor - list for all atoms

build_neighborlist ();

// compute atom specific coefficients

compute_U (); // Ulist [ idx_max ] and Ulisttot [ idx_max ]

compute_Y (); // Ylist [ idx_max ]

// for each (atom , neighbor ) pair

for ( int nbor = 0; nbor < num_nbor ; ++ nbor )

{

compute_dU (); // dUlist [ idx_max ][3]

compute_dE (); // dElist [3]

update_forces ()

}

Pseudo-code for TestSNAP
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TestSNAP Main Kernels

loops 

over all 
the atoms 

in the 
simulatio

n to 

compute 
the forces 
per time 

step.

The compute_U routine 

calculates the 
expansion coefficients 
for each (atom, 
neighbor) pair and 
stores the information 

in Ulist.

The Clebsch-Gordan 

products for each atom 
are calculated in the 

routine compute_Y and 
stored in Ylist.

The expansion 

coefficients for each 
atom are summed over 
all its neighbors and 
stored in Ulisttot.

As a precursor to force 

calculations, derivatives of 
expansion coefficients 

which are stored in Ulist are 
computed by the 

compute_dU in all 3 

dimensions using spherical 
coordinates and stored in 

dUlist.

Using dUlist and 

Ylist, the force 
vector for each 

(atom, neighbor) 
pair is computed by 
compute_dE and 

stored in dElist

Finally, the force on 

each atom is 
computed from 
dElist in update 

forces. A 
correctness check 

is built-in which 
compares the 
output against 
reference data

Start Compute_U Compute_Y

Compute_du

Compute_dE Final 
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Kokkos Implementation of TestSNAP

Kokkos is the main 

programming model for 

EXAALT workload in LAMMPS 

CUDA
OpenMP 

Offload 

Target

SYCL

HIP

Rapid Exploration of Optimization Strategies on Advanced Architectures using TestSNAP and LAMMPS
R. Gayatri, S. Moore, E. Weinberg, N. Lubbers, S. Anderson, J. Deslippe, D. Perez, and A. P. Thompson,  Computer Science, Distributed, Parallel and Cluster Computing, 2020.

Using Kokkos view and optimizing for 

shared memory, a new kernel which was 

fused of multiple kernels was created 

Compute Fused_Dei_Drj

GPU backend
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TestSNAP Kernels with Kokkos

GPU Compute 

FusedDeiD

rj

Compute 

Ui

Compute

Yi

Intel 

Gen9

9.31 21.6 168

NVIDIA 

A100

0.097 0.0518 0.938

AMD 

MI100

0.298 0.409 2.08

Evaluation of Performance Portability of Applications and Mini-Apps across AMD, Intel and NVIDIA GPUs
J. Kwack, J. Tramm, C. Bertoni, Y. Ghadar, B. Homerding, E. Rangel, C. Knight, and S. Parker, P3HPC Workshop @SC21

Compute_Yi still is the most expensive kernel 

across arch. 

Intel: Kokkos/SYCL

NVIDIA: Kokkos/CUDA

AMD: Kokkos/HIP
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Roofline Analysis of TestSNAP at Intel Gen9

Kokkos/SYCL
Pure OpenMP

Memory bound Compute bound Memory bound Compute bound

Gen9

Gen9
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Roofline Analysis of TestSNAP with Kokkos/SYCL

Memory bound Compute bound Memory bound Compute bound

Gen9

MI100
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Roofline Analysis of TestSNAP with Kokkos/SYCL

Using light weight profiling tools such as iprof indicated that the kernels are taking different path based on 

backend selected 

Memory bound Compute bound Memory bound Compute bound

Gen9

A100
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TestSNAP has different code paths for each backend 

Code path 
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Early Experience of Porting EXAALT (2022)

Started with 

pure OpenMP 

Offload

Identified bottleneck 

kernels on Intel, 

NVIDIA and Gen9 

Using profilers we identify 

places for improvements and 

pushed the new code to the 

main branch 

Starting from most recent 

improvement of pure 

openmp, kokkos version was 

implemented 

Using profilers we 

again identified 

bottleneck kernels 

and Kokkos version 

was modified  

All the modifications 

to original code is 

ported to LAMMPS

• Up until Oct. 2021 Aurora Kokkos hackathon, focus 

was on TestSNAP mini-app.

• Now able to compile and run the full LAMMPS 
EXAALT workload correctly on Intel’s recent GPU’s

This was done, through continuous open communication with EXAALT developers,

Kokkos developers, Intel COE and so many more. 
• EXAALT Team: Danny Perez, Rahul Gayatri, Stan Moore 

• Intel CEO: Patrick Steinbrecher

• Kokkos Developer: Daniel Arndt 

• Argonne: Chris Knight 

• …. 
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Current EXAALT Status 

• Today, we are focused on investigating performance of 
the EXAALT workloads in LAMMPS on Intel GPU’s and 
also have been doing scaling studies as well. 

• There are multiple Kokkos backends enabling LAMMPS to 
work across DOE pre-exascale and exascale architectures.

• Many updates to enable the OpenMP Target and SYCL 
Kokkos backends in LAMMPS are being pushed into the 
public LAMMPS repo.

NVIDIA: Kokkos/CUDA

AMD: Kokkos/HIP

Work done by Stan Moore from Sandia NL
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Lesson Learned and Future Plans 

Mini-app with 

plain OpenMP  

Using 

performance tools, 

identify bottleneck 

kernels 

Every change in the 

code was measured 

on different arch. to 

understand the 

impact 

Staring from most 

performant OpenMP 

code, Kokkos

implementation started 

Changes were 

pushed to 

main stream 

LAMMPS 

Today 

LAMMPS 

compiles and 

runs on recent 

Intel GPU’s

Focus is on 

performance of 

Kokkos/SYCL 

And resolving issues with 

Kokkos/OpenMP Target 

Offload backend

Routinely running the 

code with new HW and 

SW and reporting issues

Open communication 

with developers and 

point of contact

Key to success 

Team Work 
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Thanks!



Constant memory
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Constant memory

• Intel GPU does not have a dedicated memory space for constant

• Subset  of device global memory address space

• accessor class specialized with target target::constant_buffer 
is deprecated

• Instead use device memory with read only access mode – 

•  auto inputimageacc = inputimagebuffer.get_access<access::mode::read, 

access::target::device_buffer>(cgh);
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Compile time constants

Use constexpr and it will be passed to the device functions. 

constexpr int Arows = 512;

constexpr int Acols = 512;

constexpr int Brows = 512;

constexpr int Bcols = 512

 q.submit([&](auto &h){

                        h.parallel_for(range(Arows, Bcols), [=](auto index){

                                 int row = index[0];

                                 int col = index[1];

                                 float sum = 0.0f;

                                 for(int i=0; i < Acols; i++){

                                   sum += A[row][i] * B[i][col];

                                 }

                                 C[row][col] = sum;

                        });

                }).wait();
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Setting runtime kernel constants – 
Specialization constants
  specialization constants are constants values can be set dynamically 

during execution of the application

 The values of these constants are fixed when a kernel is invoked, and 
they do not change during the execution of the kernel. 

 Specialization constants must be declared using the specialization_id class

 Restrictions declaring specialization_id
• the template parameter T must be a device copyable type;

• the specialization_id variable must be declared as constexpr;

• the specialization_id variable must be declared in either namespace scope or in class scope;

• if the specialization_id variable is declared in class scope, it must have public accessibility when referenced from namespace scope;

• the specialization_id variable may not be shadowed by another identifier X which has the same name and is declared in 
an inline namespace, such that the specialization_id variable is no longer accessible after the declaration of X;

• if the specialization_id variable is declared in a namespace, none of the enclosing namespace names N may be shadowed by another 
identifier X which has the same name as N and is declared in an inline namespace, such that N is no longer accessible after the declaration of X.

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#specialization-constant
https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#device-copyable
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 Setting and getting the value of a 
specialization constant
 Functions of class kernel handler –

• set_specialization_constant

• get_specialization_constant

template<auto& SpecName>

void 
set_specialization_constant(typename 
std::remove_reference_t<decltype(Spec
Name)>::value_type value);

 template<auto& SpecName>
typename std::remove_reference_t 
<decltype(SpecName)> ::value_type
  get_specialization_constant();
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Example usage

#include <sycl/sycl.hpp>
using namespace sycl; // (optional) avoids need for 
"sycl::" before SYCL names

using coeff_t = std::array<std::array<float, 3>, 3>;

// Read coefficients from somewhere.
coeff_t get_coefficients();

// Identify the specialization constant.
constexpr specialization_id<coeff_t> coeff_id;

void do_conv(buffer<float, 2> in, buffer<float, 2> 
out) {
  queue myQueue;

  myQueue.submit([&](handler &cgh) {
    accessor in_acc { in, cgh, read_only };
    accessor out_acc { out, cgh, write_only };

    

    // Set the coefficient of the convolution as 
constant.
    // This will build a specific kernel the coefficient 
available as literals.
    
cgh.set_specialization_constant<coeff_id>(get_coe
fficients());

    cgh.parallel_for<class Convolution>(
        in.get_range(), [=](item<2> item_id, 
kernel_handler h) {
          float acc = 0;
          coeff_t coeff = 
h.get_specialization_constant<coeff_id>();
          for (int i = -1; i <= 1; i++) {
            if (item_id[0] + i < 0 || item_id[0] + i >= 
in_acc.get_range()[0])
              continue;
            for (int j = -1; j <= 1; j++) {
              if (item_id[1] + j < 0 || item_id[1] + j >= 
in_acc.get_range()[1])
                continue;
              // The underlying JIT can see all the values 
of the array returned
              // by coeff.get().
              acc += coeff[i + 1][j + 1] *
                     in_acc[item_id[0] + i][item_id[1] + j];
            }
          }
          out_acc[item_id] = acc;
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References

 https://www.khronos.org/registry/SYCL/specs/sycl-2020/html
/sycl-2020.html#_specialization_constants
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roposed/sycl_ext_oneapi_device_global.asciidoc
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https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/proposed/sycl_ext_oneapi_device_global.asciidoc
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compiler information options

 sycl compiler from oneAPI is based out of open-source clang.

 Preprocessor definitions defined by the compiler 

• icpx -fyscl test.cpp -dM -E 

• dpcpp test.cpp –dM –E

 To check the clang version the compiler is based out of – 

• icx -x c /dev/null -dM -E|grep clang

 Internal options passed by clang to the driver

• dpcpp test.cpp -#

• icpx test.cpp -#
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JIT vs AOT compilation workflow
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 Use –### or –v options to see the underlying steps being done by 
compiler for JIT and AOT. 

 --save-temps  to store temporary files

 ocloc is a tool for managing Intel Compute GPU device binary format. 
It can be used for generation (as part of 'compile' command) as well 
as manipulation (decoding/modifying - as part of 'disasm'/'asm' 
commands) of such binary files.

• To see all options supported by ocloc  –

• ocloc -compile –help

• ocloc –internal_options – to add the Intel IGC specific options. 

Identifying which phase the compilation is 
failing
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Triaging host / device optimizations

 Check optimization phases enabled by the compiler and 
control the optimization phases passed to the compiler.

• Host and device side optimizations : icpx –mllvm –opt-bisect-limit=-
1 test.cpp

• Controlling Device side FE optimizations : feature request in process.

 Controlling IGC optimizations 

• SYCL_PROGRAM_COMPILE_OPTIONS="-cl-opt-disable" 
SYCL_LINK_LINK_OPTIONS="-cl-opt-disable“
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Debugging calls at runtime
 To trace level zero calls and get basic profiling information.

• https://github.com/intel/pti-gpu/tree/master/tools/onetrace

--call-logging [-c]            Trace host API calls

--host-timing  [-h]            Report host API execution time

--device-timing [-d]           Report kernels execution time

 https://github.com/intel/llvm/blob/sycl/sycl/doc/
EnvironmentVariables.md

https://github.com/intel/pti-gpu/tree/master/tools/onetrace
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Questions
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