
Performance portable batched sparse linear
solvers in Kokkos Kernels

Presented by:

K. Liegeois, S. Rajamanickam & L. Berger-Vergiat

Linear Solver BoF, May 10, 2022

CCR
Center for Computing Research



2 Outline

I Introduction:

I Batched Sparse Linear systems;
I Kokkos and Kokkos Kernels;

I Strategies for batched Krylov methods;

I Team batched SPMV;

I Implementation;
I Performances;

I Team batched GMRES;

I Implementation;
I Performances;

I Conclusions and future work.



3 Introduction: Batched Sparse Linear systems

Numerical strategies for solving PDE problems can lead to a large number of small similar
linear systems to solve independently.

Example: a FE2 multiscale method requires a finite element computation for each Gauss
point of the macroscopic scale mesh. Those systems share the same sparsity pattern and can
be solved independently.

Need for a performance portable strategy to solve large numbers of relatively small
sparse linear systems.

A (X )= B

N

n

Batched size: N >> 1,
Number of rows: 10 ≤ n ≤ 2000.



4 Introduction: Kokkos and Kokkos Kernels

Kokkos:

I C++ performance portability library;

I Enables single source performance portable codes;

I Provides programming models for shared-memory parallelism;

I Provides 3 levels of hierarchical parallelism: team level, thread level, vector level;

I Provides data abstractions for performance portability.

Kokkos Kernels:

I Targets the performance portable implementation of linear algebra kernels;

I Provides computational kernels which rely both on the Kokkos data abstractions and
programming models;

I Provides interface to vendor kernel implementations.



5 Introduction: Kokkos views

I An array of zero or more dimensions;

I Users can specify left (as in Fortran), right (as in C++),
or stride layout;

I Views can be defined on the host or the device;

I Best layout for performance depends on the used
shared-memory parallelism.



6 Introduction: Kokkos hierarchical parallelism

I A thread team is a collection of threads which can synchronize
and which share a scratch pad memory;

I Instead of mapping a 1-D range of indices to hardware
resources, Kokkos’ thread teams map a 2-D index range
(equivalent to 1-D grid of 1-D blocks in CUDA);

I The maximal number of teams is not architecture dependent,
it is only limited by the integer size type;

I The maximal team size (# threads per team) is architecture
dependent;

I The vector level needs to be vectorizable.

Team-1 Team-2

Thread-1 Thread-2 Thread-3 Thread-4

v1 v2 v3 v4 v5 v6 v7 v8

Kokkos GPUs CPUs
Team Thread block Work assigned to group of hyper threads

Kokkos thread (full, half, quarter...) Warp Work assigned to a single thread
Vector lane Threads within a warp Vectorization units



7 Strategies for batched Krylov methods

Parallelize over individual problems:

I A particular team is associated with a unique system at a given time;

I Every system converges independently;

I Vectorization and coalesced memory read in the Sparse Matrix-Vector multiplication
(SPMV) kernel are graph dependent.

Approach used by the Ginkgo team:
H. Anzt, A. Kashi, P. Nayak, et al. https://ginkgo-project.github.io.



8 Strategies for batched Krylov methods

Parallelize over subsets of problems (two existing approaches):

I A particular team is associated with a subset of systems at a given time;

I Reuse of common variables such as the sparsity pattern, more data parallelism,
improved memory access pattern;

I First subset approach: Solving the coupled problems:

I The matrices are gathered into one matrix, the Krylov method is then applied to the
system;

I The convergence depends on the union of the spectra of all the matrices; this can be
worse than the worst convergence taken one by one.



9 Strategies for batched Krylov methods

Parallelize over subsets of problems (two existing approaches):

I A particular team is associated with a subset of systems at a given time;

I Reuse of common variables such as the sparsity pattern, more data parallelism,
improved memory access pattern;

I Second subset approach: Solving the problems independently:

I The systems are kept independent, they are not coupled, the spectra are not gathered;
I The main drawback is the code divergence: inside a same subset, the Krylov methods

might require different numbers of iterations for different systems to converge; this can lead
to issues such as overflow if not treated carefully;

I Needs an implementation of the used kernels which supports subsets of values instead
of one value.



10 Strategies for batched Krylov methods

Parallelize over subsets of problems (two existing approaches):

I A particular team is associated with a subset of systems at a given time;

I Reuse of common variables such as the sparsity pattern, more data parallelism,
improved memory access pattern;

I Second subset approach: Solving the problems independently: Rest of this talk

I The systems are kept independent, they are not coupled, the spectra are not gathered;
I The main drawback is the code divergence: inside a same subset, the Krylov methods

might require different numbers of iterations for different systems to converge; this can lead
to issues such as overflow if not treated carefully;

I Needs an implementation of the used kernels which supports subsets of values instead
of one value.



11 Chosen batched strategy in Kokkos Kernels

First, a team parallel loop is used to loop over subsets of size m of the N matrices.
Then, a team has to solve m systems simultaneously.

m
1 ≤ m ≤ 50.

One team per color.

Software requirements:

I Krylov solvers at the team level which deal with possible occurrences of code
divergence (as discussed in the case of the ensemble propagation in Liegeois (2020));

I Performance portable batched Level 1 and 2 BLAS functions (AXPY, DOT, COPY,
SPMV, and GEMV) at the team level. Rest of this talk

Liegeois, K. et al. ”GMRES with embedded ensemble propagation for the efficient solution of parametric linear systems in uncertainty quantification of
computational models.” Computer Methods in Applied Mechanics and Engineering 369 (2020): 113188.



12 Performance portable batched SPMV at the team level

To illustrate the last software requirement, we discuss the case of the batched Sparse
Matrix-Vector multiplication (SPMV):

y`: = α` A`:: x`: + β` y`: for all ` = 1, . . . ,m.

Targeted properties:

I To achieve maximum hardware occupancy,

I To have good memory access patterns such as a high percentage of coalesced memory
read on GPU,

I To have good performance independently of views layout,

I To have a balanced workload amongst teams and threads,

I To avoid unnecessary reduction and memory synchronization.



13 Team batched SPMV

I nm independent products between a`j : and x`:,

I TeamVector loop over the nm indices to distribute evenly the work,

I The mapping of the index of the loop to the row fiber depends on the layout to enforce
as much coalesced memory loads as possible

A X

m

n

m

n

Layout left
Layout right



14 Team batched SPMV
Kokkos::parallel_for(
Kokkos::TeamVectorRange(member, 0, m * n),

[&](const int& i) {
int j, k;
getIndices<layout>(i, n, m, j, k);
const int rowLength = row_ptr(j + 1) - row_ptr(j);
ValueType sum = 0;
for (int l = 0; l < rowLength; ++l)

sum += values(k, row_ptr(j) + l) *
X(k , colIndices(row_ptr(j) + l));

sum *= alpha(k);
Y(k, j) = beta(k) * Y(k, j) + sum;

});

where:

template <typename layout> KOKKOS_INLINE_FUNCTION
typename std::enable_if<std::is_same<layout,

Kokkos::LayoutLeft>::value, void>::type
getIndices(const int i, const int /*n*/,

const int m, int &j, int &k) {
j = i / m; k = i % m;

}

k

j

I At the vector level, every i
(and therefore the pair
(j , k) ) is associated with
only one vector lane.

I No reduction nor memory
synchronization are
needed.



15 Base implementation: for comparison purpose
for (int k = 0; k < m; ++k) {
Kokkos::parallel_for(

Kokkos::TeamThreadRange(member, 0, n),
[&](const int& j) {
const int rowLength = row_ptr(j + 1) - row_ptr(j);

ValueType sum = 0;
Kokkos::parallel_reduce(
Kokkos::ThreadVectorRange(member, row_length),
[&](const ordinal_type& l, value_type& lsum) {
lsum += values(k, row_ptr(j) + l) *

X(k , colIndices(row_ptr(j) + l));
}, sum);

sum *= alpha(k);
Y(k, j) = beta(k) * Y(k, j) + sum;

});
}

k

j

I A for loop over the
matrices within the team.

I A thread parallel for over
the rows.

I A vector parallel reduce
over the non-zeros.



16 Team batched SPMV: performance

0 50 100 150 200 250 300
0

50

100

150

Number of rows

T
h

ro
u

gh
p

u
t

[G
F

L
O

P
S

]

Base implementation
Team approach

I On V100,

I N = 51200,

I 7 non-zero values per
row.

Depending on the number of

rows per matrix, the team ap-

proach can double the achieved

throughput of the batched

SPMV.



17 Team batched GMRES

I Uses batched BLAS
kernels: SPMV, AXPY,
DOT, COPY, and GEMV,

I Continues the GMRES
while the m systems have
not converged,

I Stops the update of
converged system to avoid
underflow,

I Evaluated on devices
without communication
with the host.

for (size_t j = 0; j < maximum_iteration; ++j) {
A.apply(member, subview(V, ALL, j, ALL), W);
member.team_barrier();
P.apply(member, W, W);

for (size_t i = 0; i < j + 1; ++i) {
member.team_barrier();
auto V_i = subview(V, ALL, i, ALL);
TeamVectorDot<MemberType>::invoke
(member, W, V_i, tmp);

member.team_barrier();
TeamVectorCopy1D::invoke
(member, tmp, subview(H, ALL, i, j));

member.team_barrier();
parallel_for(

TeamVectorRange(member, 0, m),
[&](const OrdinalType& ii) {

tmp(ii) = -tmp(ii);
});

member.team_barrier();
TeamVectorAxpy<MemberType>::invoke
(member, tmp, V_i, W);

} //...



18 Batched GMRES performance: Impact of the grouping

I The grouping of the systems into subsets influences the measured performance,

I Best to group systems that need the same number of iterations to converge; but those
numbers are unknown a priori,

I Two tested ordering for the systems: the unsorted and the sorted orders.

0 10 20 30 40 50 60 70
0

5

10

15

20

Batch index

N
u

m
b

er
of

it
er

at
io

n
s

Unsorted
Sorted



19 Batched GMRES performance: Pele gri30 matrices

0

0.5

1

·10−2

T
im

e
[s

ec
]

V100

0

1

2

3

4
·10−2 MI50

0 10,000 20,000

0

2

4

6

8

·10−2

Number of matrices

T
im

e
[s

ec
]

Skylake

0 10,000 20,000

0

0.2

0.4

0.6

0.8

Number of matrices

A64FX

Left unsorted
Right unsorted
Left sorted
Right sorted
Ginkgo

Gri30 matrices:

I n = 54,

I 87.79% dense,

I the GMRES
converges in up
to 7 iterations.

Good performance achieved on GPUs. Ordering has a limited impact.



20 Batched GMRES performance: Pele isooctane matrices

0

2

4

6

8

·10−2
T

im
e

[s
ec

]
V100

0

0.1

0.2

0.3
MI50

0 5,000 10,000 15,000 20,000

0

0.2

0.4

0.6

Number of matrices

T
im

e
[s

ec
]

Skylake

0 5,000 10,000 15,000 20,000

0

2

4

6

Number of matrices

A64FX

Left unsorted
Right unsorted
Left sorted
Right sorted
Ginkgo

Isooctane matrices:

I n = 144,

I 29.59% dense,

I the GMRES
converges in up
to 17
iterations.

Good performance achieved on GPUs. Ordering has a larger impact.



21 Conclusions and future work

Conclusions:

I We discussed main strategies for a performance portable batched sparse linear solver;

I We discussed the implementation of a batched SPMV and its performance;

I We briefly illustrate how kernels can be combined at the team level to write an efficient
solver;

I We briefly illustrate the performance of the batched GMRES on four different
architectures and the impact of the grouping.

Future work:

I Investigate the performance on CPU architectures (especially the left layout);

I Evaluate the performance of the batched GMRES compared to the performance of
batched dense solvers;

I Evaluate the performance of the discussed kernels and solvers on other architectures;

I Evaluate the performance on larger application matrices;

I Develop other batched linear solvers.



22 Acknowledgment

I Ginkgo team: H. Anzt, A. Kashi, P. Nayak, et al.
Provided access to the Ginkgo source code for performance comparison of the batched
GMRES,

I SUNDIALS team: C. Balos, David G. , C. Woodward,
Provided batched matrices associated with chemical species in reacting Navier-Stokes
equations,

I M. Adams, Lawrence Berkeley Laboratory,

I This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint
project of the U.S. Department of Energy’s Office of Science and National Nuclear
Security Administration, responsible for delivering a capable exascale ecosystem,
including software, applications, and hardware technology, to support the nation’s
exascale computing imperative.


