Performance portable batched sparse linear= & .
solvers in Kokkos Kernels -

Presented by.

K. Liegeois, S. Rajamanickam & L. Berger-Vergiat

—— — @ENERGY AISA

Linear Solver BoF, May 10, 2022 S
Y E\(\g\)l:’ EXREN

2

Outline

Introduction:

» Batched Sparse Linear systems;
» Kokkos and Kokkos Kernels;

Strategies for batched Krylov methods;

Team batched SPMV;

» Implementation;
» Performances;

Team batched GMRES:

» Implementation;
» Performances;

Conclusions and future work.

s] Introduction: Batched Sparse Linear systems

Numerical strategies for solving PDE problems can lead to a large number of small similar
linear systems to solve independently.

Example: a FE2 multiscale method requires a finite element computation for each Gauss

point of the macroscopic scale mesh. Those systems share the same sparsity pattern and can
be solved independently.

|

Need for a performance portable strategy to solve large numbers of relatively small
sparse linear systems.

|

% =, _z Batched size: N >> 1,

Number of rows: 10 < n < 2000.

+| Introduction: Kokkos and Kokkos Kernels

Kokkos:
» C++ performance portability library;
» Enables single source performance portable codes;
» Provides programming models for shared-memory parallelism;
» Provides 3 levels of hierarchical parallelism: team level, thread level, vector level;
» Provides data abstractions for performance portability.

Kokkos Kernels:
» Targets the performance portable implementation of linear algebra kernels;

» Provides computational kernels which rely both on the Kokkos data abstractions and
programming models;

» Provides interface to vendor kernel implementations.

5

Introduction: Kokkos views

An array of zero or more dimensions;

Users can specify left (as in Fortran), (asin C++),
or stride layout;

Views can be defined on the host or the device;

Best layout for performance depends on the used
shared-memory parallelism.

A thread team is a collection of threads which can synchronize
and which share a scratch pad memory;

Instead of mapping a 1-D range of indices to hardware

resources, Kokkos' thread teams map a 2-D index range Team-1 Team-2
(equivalent to 1-D grid of 1-D blocks in CUDA); Thread-1| Thread-2| | Thread-3| Thread-4
vl | v2 | v3 | v \% v6 | v v8

The maximal number of teams is not architecture dependent, . > !
it is only limited by the integer size type;
The maximal team size (# threads per team) is architecture
dependent;
The vector level needs to be vectorizable.

Kokkos GPUs CPUs

Team Thread block Work assigned to group of hyper threads

Kokkos thread | (full, half, quarter...) Warp Work assigned to a single thread
Vector lane Threads within a warp Vectorization units

| Strategies for batched Krylov methods

Parallelize over individual problems:
> A particular team is associated with a unique system at a given time;
» Every system converges independently;

» Vectorization and coalesced memory read in the Sparse Matrix-Vector multiplication
(SPMV) kernel are graph dependent.

Approach used by the Ginkgo team:
H. Anzt, A. Kashi, P. Nayak, et al. https://ginkgo-project.github.io.

s | Strategies for batched Krylov methods

Parallelize over subsets of problems (two existing approaches):
> A particular team is associated with a subset of systems at a given time;
> Reuse of common variables such as the sparsity pattern, more data parallelism,
improved memory access pattern;
» First subset approach: Solving the coupled problems:

» The matrices are gathered into one matrix, the Krylov method is then applied to the
system,;

» The convergence depends on the union of the spectra of all the matrices; this can be
worse than the worst convergence taken one by one.

o | Strategies for batched Krylov methods

Parallelize over subsets of problems (two existing approaches):
> A particular team is associated with a subset of systems at a given time;

> Reuse of common variables such as the sparsity pattern, more data parallelism,
improved memory access pattern;

» Second subset approach: Solving the problems independently:

» The systems are kept independent, they are not coupled, the spectra are not gathered;

» The main drawback is the code divergence: inside a same subset, the Krylov methods
might require different numbers of iterations for different systems to converge; this can lead
to issues such as overflow if not treated carefully;

» Needs an implementation of the used kernels which supports subsets of values instead
of one value.

10

Strategies for batched Krylov methods

Parallelize over subsets of problems (two existing approaches):

4
>

>

A particular team is associated with a subset of systems at a given time;

Reuse of common variables such as the sparsity pattern, more data parallelism,
improved memory access pattern;

[Second subset approach: Solving the problems independently: Rest of this talk |

» The systems are kept independent, they are not coupled, the spectra are not gathered;

» The main drawback is the code divergence: inside a same subset, the Krylov methods
might require different numbers of iterations for different systems to converge; this can lead
to issues such as overflow if not treated carefully;

» Needs an implementation of the used kernels which supports subsets of values instead

of one value.

u] Chosen batched strategy in Kokkos Kernels

First, a team parallel loop is used to loop over subsets of size m of the N matrices.
Then, a team has to solve m systems simultaneously.

1 < m<50.

One team per color.

AALLEEERRRNRANAY

=
=
=
-
&=
=
=
-
=
=
=
]
=
=
=
&=

4

Software requirements:
> Krylov solvers at the team level which deal with possible occurrences of code
divergence (as discussed in the case of the ensemble propagation in Liegeois (2020));
Performance portable batched Level 1 and 2 BLAS functions (AXPY, DOT, COPY,
>[SPMV, and GEMV) at the team level. Rest of this talk]

Liegeois, K. et al. "GMRES with embedded ensemble propagation for the efficient solution of parametric linear systems in uncertainty quantification of
computational models.” Computer Methods in Applied Mechanics and Engineering 369 (2020): 113188.

12

To illustrate the last software requirement, we discuss the case of the batched Sparse
Matrix-Vector multiplication (SPMV):

Yo :OJEA@;; Xz:+ﬁe¥z: for all K:l,_..,m.

Targeted properties:
To achieve maximum hardware occupancy,

To have good memory access patterns such as a high percentage of coalesced memory
read on GPU,

To have good performance independently of views layout,
To have a balanced workload amongst teams and threads,

To avoid unnecessary reduction and memory synchronization.

13

Team batched SPMV

» nm independent products between a;;. and x.,

» TeamVector loop over the nm indices to distribute evenly the work,

» The mapping of the index of the loop to the row fiber depends on the layout to enforce
as much coalesced memory loads as possible

A & A& 4
X

o

m
Layout left

14| Team batched SPMV

[&] (const int& 1) {
int j, k;
getIndices<layout>(i, n, m, j, k);

const int rowLength = row_ptr(j + 1) - row_ptr(j);

ValueType sum = 0;

sum += values(k, row_ptr(j) + 1) =*
X(k , colIndices (row_ptr(j) + 1));

sum x= alpha (k) ;
Y(k, j) = beta(k) * Y(k, j) + sum;

1) 5
where:

template <typename layout> KOKKOS_INLINE_FUNCTION
typename std::enable_if<std::is_same<layout,
Kokkos: :LayoutLeft>::value, void>::type
getIndices (const int i, const int /xnx/,
const int m, int &3j, int &k) {

o

j=1/m k=1 % m;

p—

» At the vector level, every i
(and therefore the pair
(J, k)) is associated with
only one vector lane.

» No reduction nor memory
synchronization are
needed.

15| Base implementation: for comparison purpose

for (int k = 0; k < m; ++k) { k

2

[&] (const int& J) {
const int rowlLength = row_ptr(j + 1) - row_ptr(J); J '

ValueType sum = 0;

[&] (const ordinal_ type& 1, value_type& lsum) { '
lsum += values(k, row_ptr(j) + 1) = |
X(k , colIndices (row_ptr(j) + 1));
}, sum);
» A for loop over the
sum *= alpha (k) ; . .
T R S | | —— matrices within the team.

Y » A thread parallel for over

the rows.

» A vector parallel reduce
over the non-zeros.

16

Throughput [GFLOPS]

Team batched SPMV: performance

150 -

100 -

(€]
o
|

0 1 | | | |
50 100 150 200
Number of rows

|
250

—— Base implementation
—— Team approach

» On V100,
» N = 51200,

> 7 non-zero values per
row.

Depending on the number of

rows per matrix, the team ap-

proach can double the achieved

| throughput of the batched
300 (SPMV.

17

Team batched GMRES

Uses batched BLAS
kernels: SPMV, AXPY,
DOT, COPY, and GEMV,

Continues the GMRES
while the m systems have
not converged,

Stops the update of
converged system to avoid
underflow,

Evaluated on devices
without communication
with the host.

for (size_t j = 0; j < maximum_iteration; ++3) {

member.team_barrier () ;

for (size_t i = 0; 1 < j + 1; ++i) {
member.team_barrier () ;

auto V_i = subview(V, ALL, i, ALL);

member.team_barrier () ;

member.team_barrier () ;
parallel_ for(
TeamVectorRange (member, 0, m),
[&] (const OrdinalTypeé& ii) {
tmp (ii) = —-tmp (ii);
1)

member.team_barrier () ;

b/l ooo

5] Batched GMRES performance: Impact of the grouping

» The grouping of the systems into subsets influences the measured performance,

> Best to group systems that need the same number of iterations to converge; but those
numbers are unknown a priori,

» Two tested ordering for the systems: the unsorted and the sorted orders.

20 -

—— Unsorted

el =

10 20 30 40 50 60 70
Batch index

Number of
iterations
o1
|

o
_

] Batched GMRES performance: Pele gri30 matrices

102 V100 , 1072 MI50 |
—©— Left unsorted
—©— Right unsorted
—&— Left sorted
—— Right sorted
=== Ginkgo

Gri30 matrices:

» 87.79% dense,

» the GMRES
converges in up

I
to 7 iterations. l
Number of matrices Number of matrices |

» n = b4, |

Time [sec]

0 10,000 20,000 0 10,000 20,000

((Good performance achieved on GPUs. Ordering has a limited impact.

x| Batched GMRES performance: Pele isooctane matrices

—2

10 V100 s MI50 |
—_ —©— Left unsorted

8 —©— Right unsorted

o —k— Left sorted

£ —k— Right sorted

= === Ginkgo

Isooctane matrices:

- » n =144,

3 » 29.50% dense, |

E » the GMRES
converges In up

to 17

&R DR I
0 5,000 10,000 15,000 20,000 O 5,000 10,000 15,000 20,000) |
Iterations. |

Number of matrices Number of matrices

((Good performance achieved on GPUs. Ordering has a larger impact.

21

We discussed main strategies for a performance portable batched sparse linear solver;
We discussed the implementation of a batched SPMV and its performance;

We briefly illustrate how kernels can be combined at the team level to write an efficient
solver;

We briefly illustrate the performance of the batched GMRES on four different
architectures and the impact of the grouping.

Investigate the performance on CPU architectures (especially the left layout);

Evaluate the performance of the batched GMRES compared to the performance of
batched dense solvers;

Evaluate the performance of the discussed kernels and solvers on other architectures;
Evaluate the performance on larger application matrices;
Develop other batched linear solvers.

22

Ginkgo team: H. Anzt, A. Kashi, P. Nayak, et al.
Provided access to the Ginkgo source code for performance comparison of the batched
GMRES,

SUNDIALS team: C. Balos, David G. , C. Woodward,

Provided batched matrices associated with chemical species in reacting Navier-Stokes
equations,

M. Adams, Lawrence Berkeley Laboratory,

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint
project of the U.S. Department of Energy’s Office of Science and National Nuclear
Security Administration, responsible for delivering a capable exascale ecosystem,
including software, applications, and hardware technology, to support the nation's
exascale computing imperative.

S, \
\ EXASCALE
COMPUTING
\) PROJECT

