

Multi-GPU capabilities in SuperLU and STRUMPACK sparse direct solvers

Sherry Li, xsli@lbl.gov

Wajih Boukaram, Lisa Claus, Pieter Ghysels, Yang Liu (LBNL) Piyush Sao (ORNL)

ECP Community BOF Days, May 10-12, 2022

Recent Advances in Selected Sparse Linear Solvers Libraries

Two libraries: SuperLU and STRUMPACK

factorization based solvers and preconditioners

SuperLU: supernodal Designed for nonsymmetric pattern DAG (directed acyclic graph)

STRUMPACK: multifrontal

 $S^{(j)} \leftarrow ((A^{(j)} - D^{(k1)}) - D^{(k2)}) - ...) \qquad S^{(j)} \leftarrow A^{(j)} - (..(D^{(k1)} + D^{(k2)}) + ...)$

SuperLU_DIST

exascaleproject.org

Communication-avoid 3D algorithm ('pddrive3d')

Sao, Li, Vuduc, JPDC 2019

- For matrices from planar graph, provably asymptotic lower communication complexity:
 - Comm. volume reduced by a factor of sqrt(log(n))
 - Latency reduced by a factor of log(n)
- Strong scale to 24,000 cores

Compared to 2D algorithm:

- Planar graph: up to 27x faster, 30% more memory @ P_z = 16
- Non-planar graph: up to 3.3x faster, 2x more memory @ $P_z = 16$

Offload Schur-complement update to GPU

• Both CPU and GPU perform GEMM and Scatter

Sao, Liu, Vuduc, Li, IPDPS 2015

Results on NVIDIA and AMD GPUs

- "Frank" system at Univ. of Oregon
 - Saturn: Xeon Platinum, NVIDIA A100
 - Instinct Xeon E5, 2 AMD MI100
- 3D algorithm: 1x1x2
 - Offload partial Schur-complement update
 - panel factor still on CPU
- export SUPERLU_ACC_OFFLOAD
 - =0 CPU-only
 - =1 +GPU

		NVIDIA A100 (up to 5X)	2 AMD MI100 (up to 7X)
torso3	CPU	8.08	16.3
	+GPU	11.2	17.7
Li4244	CPU	83.7	156.7
	+GPU	15.9	30.2
Geo_1438 CPU		496.7	181.6
+GPU		92.0	25.0

Sparse triangular solve: multi-GPUs

- Created a single-GPU SpTRSV solvers for NVIDIA (CUDA) and AMD (HIP) GPUs
 - Works best if entire L & U can fit on one GPU
- Extended with one-sided GPU libraries (NVSHMEM, ROCSHMEM*)
 - > Enables scalable, distributed memory, GPU-accelerated solvers
 - > With 18 GPUs, up to 6x speedup over Nvidia cusparse_csrsv2()
 - > Performance and scalability are highly dependent on matrix sparsity and inter-node communication performance
- Modeled alternative process mappings for GPUs
 - Potential 2x speedup over default 1D block cyclic mapping using 6 GPUs

Nan Ding, Yang Liu, Samuel Williams, Xiaoye S. Li, "A Message-Driven, Multi-GPU Parallel Sparse Triangular Solver", SIAM Conference on Applied and Computational Discrete Algorithms (ACDA21), 2021.

SuperLU for multiple types of GPUs

SuperLU

- Programming environments
 - Use macros as unified wrappers to CUDA (NVIDIA) and HIP (AMD)
 - CMake options: TPL_ENABLE_HIPLIB or TPL_ENABLE_CUDALIB

- 1 #ifdef HAVE_CUDA
- 2 #include "cuda_runtime_api.h"
- 3 #include "cuda_runtime.h"
- 4 #include <cublas_v2.h>
- 5 #define gpuError_t cudaError_t
- 6 #define gpuSuccess cudaSuccess
- 7 #define gpuMalloc cudaMalloc
- 8 #define gpuMemcpyAsync cudaMemcpyAsync
- 9 #define threadIdx_x threadIdx.x
- 10 #define blockIdx_x blockIdx.x
- 11 ...

- 1 #elif defined(HAVE_HIP)
- 2 #include "hip/hip_runtime_api.h"
- 3 #include "hip/hip_runtime.h"
- 4 #include "hipblas.h"
- 5 #define gpuError_t hipError_t
- 6 #define gpuSuccess hipSuccess
- 7 #define gpuMalloc hipMalloc
- 8 #define gpuMemcpyAsync hipMemcpyAsync
- 9 #define threadIdx_x hipThreadIdx_x
- 10 #define blockIdx_x hipBlockIdx_x
- 11 ...

STRUMPACK

exascaleproject.org

STRUMPACK is further enhanced with low-rank (LR) compression

- Globally sparse, locally dense
 - Embed LR data-sparse in sparse multifrontal algorithm
- In addition to structural sparsity, further apply LR data-sparsity to dense frontal matrices
- Randomized sketching + Nested bases to achieve linear scaling in sparse case
 - O(N logN) flops, O(N) memory for 3D elliptic PDEs

(as opposed to $O(N^2)$ flops with exact factorization)

- Support multiple LR formats:
 - HSS, HODLR, BLR, Butterfly, HODBF

Nested dissection ordering

Multifrontal Separator tree

STRUMPACK GPU implementation

- Level by level traversal of the multifrontal tree
- Batch all nodes on the same level, apply batched dense linear algebra
 - Small matrix variable sized batched dense LU CUDA/HIP kernels
 - cuBLAS/cuSOLVER loop with multiple streams for larger matrices
 - Working with MAGMA to add variable sized batched LU

STRUMPACK GPU results – Summit V100

StrumPAC

1, 2, 4 nodes

- Up to 41% of peak on single V100
- NERSC Hackathon Dec 2021: various improvements benefitting both small and large problems

P. Ghysels, R. Synk. "High performance sparse multifrontal solvers on modern GPUs", Parallel Computing, 2022

STRUMPACK for multiple types of GPUs

- Accelerator programming environments
 - CUDA, HIP/ROCm, SYCL
 - strumpack::gpu::Stream wraps cudaStream_t / hipStream_t, strumpack::gpu::DeviceMemory wraps cudaMalloc / hipMalloc and cudaFree/hipFree, ...
 - SYCL implementation is functional
 - OneAPI for BLAS/LAPACK (vbatch)
 - Can target CUDA, ROCm, OpenMP
- Single node speedup
 - V100 ~1.9x faster than MI100 (ROCm 4.2)

- Summary
 - On small scale machine, GPU can speed up more than 10x
 - On large scale machine, GPU benefit diminishes due to communication bottleneck
- Ongoing work
 - GPU-resident direct solvers, including batched

