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Two libraries: SuperLU and STRUMPACK
factorization based solvers and preconditioners
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STRUMPACK: multifrontal
Designed for symmetric pattern
Tree

S(j) ß A(j) - (..(D(k1) +D(k2) ) + …)
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SuperLU: supernodal
Designed for nonsymmetric pattern 
DAG (directed acyclic graph)

S(j) ß (( A(j) - D(k1) ) - D(k2) ) - …)
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• For matrices from planar graph, provably asymptotic 
lower communication complexity:
– Comm. volume reduced by a factor of sqrt(log(n))
– Latency reduced by a factor of log(n)

• Strong scale to 24,000 cores

Compared to 2D algorithm:
– Planar graph: up to 27x faster, 30% more memory @ Pz

= 16
– Non-planar graph: up to 3.3x faster, 2x more memory @ 

Pz = 16

Communication-avoid 3D algorithm  (‘pddrive3d’)
Sao, Li, Vuduc, JPDC 2019

hpcgarage.org/hookem
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0.036 0.044 0.055 0.065 0.064 0.073
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Teraflop/s 
(32x procs → 2x speedup)

2D to 3D: 
→ 23x speedup

MPI processes (2D process grid; 4 cores / process)

3D process grid: 
{PXY, PZ}
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Offload Schur-complement update to GPU

• Both CPU and GPU perform GEMM and Scatter
Sao, Liu, Vuduc, Li, IPDPS 2015
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Results on NVIDIA and AMD GPUs

• ”Frank” system at Univ. of Oregon
– Saturn: Xeon Platinum, NVIDIA  A100
– Instinct Xeon E5, 2 AMD MI100

• 3D algorithm: 1x1x2
– Offload partial Schur-complement update 
– panel factor still on CPU

• export SUPERLU_ACC_OFFLOAD
=0   CPU-only
=1   +GPU

NVIDIA 
A100
(up to 5X)

2 AMD
MI100
(up to 7X)

torso3     CPU
+GPU

8.08
11.2

16.3
17.7

Li4244    CPU
+GPU

83.7
15.9

156.7
30.2

Geo_1438  CPU
+GPU

496.7
92.0

181.6
25.0
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• Created a single-GPU SpTRSV solvers for NVIDIA (CUDA) and AMD (HIP) GPUs
• Works best if entire L & U can fit on one GPU

• Extended with one-sided GPU libraries (NVSHMEM, ROCSHMEM*)
Ø Enables scalable, distributed memory, GPU-accelerated solvers
Ø With 18 GPUs, up to 6x speedup over Nvidia cusparse_csrsv2() 
Ø Performance and scalability are highly dependent on matrix sparsity and inter-node communication performance

• Modeled alternative process mappings for GPUs
Ø Potential 2x speedup over default 1D block cyclic mapping 

using 6 GPUs

*AMD evaluation delayed due to waiting for AMD software updates

Sparse triangular solve: multi-GPUs

Nan Ding, Yang Liu, Samuel Williams, Xiaoye S. Li, "A Message-Driven, Multi-GPU Parallel Sparse 
Triangular Solver", SIAM Conference on Applied and Computational Discrete Algorithms (ACDA21), 
2021.
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SuperLU for multiple types of GPUs

• Programming environments 
– Use macros as unified wrappers to CUDA (NVIDIA) and HIP (AMD)
– CMake options: TPL_ENABLE_HIPLIB or TPL_ENABLE_CUDALIB
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STRUMPACK is further enhanced with low-rank (LR) compression

• Globally sparse, locally dense

• Embed LR data-sparse in sparse multifrontal algorithm

• In addition to structural sparsity, further apply LR data-sparsity to dense 
frontal matrices

• Randomized sketching + Nested bases to achieve linear scaling in 
sparse case

• O(N logN) flops, O(N) memory for 3D elliptic PDEs

(as opposed to O(N2) flops with exact factorization)

• Support multiple LR formats:

• HSS, HODLR, BLR, Butterfly, HODBF

Multifrontal
Separator tree
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STRUMPACK GPU implementation

• Level by level traversal of the multifrontal tree

• Batch all nodes on the same level, apply batched dense linear 
algebra
– Small matrix variable sized batched dense LU CUDA/HIP kernels
– cuBLAS/cuSOLVER loop with multiple streams for larger matrices
– Working with MAGMA to add variable sized batched LU

Multifrontal
Separator tree
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STRUMPACK GPU results – Summit V100

• Up to 41% of peak on single V100

• NERSC Hackathon Dec 2021: various improvements 
benefitting both small and large problems

P. Ghysels, R. Synk. "High performance sparse multifrontal solvers on 
modern GPUs”, Parallel Computing, 2022

High frequency Helmholtz20x
10x
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STRUMPACK for multiple types of GPUs
• Accelerator programming environments

– CUDA, HIP/ROCm, SYCL
– strumpack::gpu::Stream wraps cudaStream_t / hipStream_t,

strumpack::gpu::DeviceMemory wraps cudaMalloc / hipMalloc
and cudaFree/hipFree, ...

– SYCL implementation is functional
• OneAPI for BLAS/LAPACK (vbatch)
• Can target CUDA, ROCm, OpenMP

• Single node speedup 
– V100 ~1.9x faster than MI100 (ROCm 4.2)
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• Summary
– On small scale machine, GPU can speed up more than 10x
– On large scale machine, GPU benefit diminishes due to communication bottleneck

• Ongoing work
– GPU-resident direct solvers, including batched


