
LLNL-PRES-831941
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Porting Hypre’s BoomerAMG to Hetero-
geneous Computer Architectures: Strate-
gies, Experiences and Optimizations
ECP COMMUNITY BOF: Recent Advances in Selected Sparse Linear Solvers Libraries – Virtual Meeting

Ruipeng LiMay 10, 2022



LLNL-PRES-831941
2/15

HPC transitioning to heterogeneous GPU architectures

Sierra at LLNL, Summit at ORNL. NVIDIA V100
Perlmutter at NERSC. NVIDIA A100
Frontier at ORNL. AMD Instinct 250X
El Capitan at LLNL, AMD Instinct GPUs
Aurora at ANL, Intel GPUs
All have “Fat node” architecture. Most of the FLOPS are on the GPUs



LLNL-PRES-831941
3/15

Complete AMG setup and solve on GPUs

ä AMG setup
Coarsening: PMIS
Interpolation: direct, MM-ext;
Aggressive coarsening; Multipass
interpolation
RAP

ä AMG solve
Matrix-by-vector: save local P T

Smoother: Jacobi; Gauss-Seidel;
Chebyshev and GMRES
polynomials (NEW!)



LLNL-PRES-831941
4/15

A closer look at AMG setup on GPUs



LLNL-PRES-831941
5/15

Results for AMG-PCG on Crusher: 27-pt diffusion

1 node: CPU: 64 MPI, GPU: 8 GPUs, n× n× n grid

: default + Jacobi (0.85)
: 2s: +1 lvl aggr.

coarsening, 2-stage interp.
: mp: +1 lvl aggr.

coarsening, multipass interp.



LLNL-PRES-831941
6/15

Sparse matrix-matrix multiplications in AMG setup

1 Coarse-grid operator: PTAP

2 Aggressive coarsening: 2nd stage coarsening S(A)
CC = (S2 + S)CC

3 MM-ext interpolation
PMIS requires extended interp. (De Sterck 2008) with distance-2 interp. sets
Original formulation is difficult for efficient implementation on GPUs
New formulation in matrix-matrix (MM) multiplications

W = −
[
(DFF +Dγ)−1(AsFF +Dβ)

][
D−1
β AsFC

]
≡ −ÃsFF Ã

s
FC ,

4 Multipass interpolation in MM forms



LLNL-PRES-831941
7/15

Approximating the ideal W ∗ = −A−1
FFAFC

MM-ext: W = −(DFF +Dγ)−1(AsFFD
−1
β + I)AsFC ≡ −Y AsFC

A = D +As +Aw, Dβ = diag(AFC1c), Dγ = diag(AwFF1f +AwFC1c)
Easy to verify −Y AsFC1c = 1f
Assuming Aw = 0 and Dβ = −diag(AFF1f) = −Dα

I + Y AFF = I +D−1
FF ((AFF −DFF )D−1

α − I)AFF
= (I −D−1

FFAFF )(I −D−1
α AFF )

I + Y AFF ≈ 0 if AFF is strongly d.d, i.e., Y ≈ A−1
FF



LLNL-PRES-831941
8/15

Optimizing sparse matrix-matrix kernel

Hash-based sparse accumulators; rows are unsorted
Naive row NNZ bound: number of intermediate products
symbolic multiplication: row NNZ count (or bound)
numeric multiplication with adequate memory allocated
Stochastic estimator (Cohen, 1997): good estimate

standard deviation σ = 1/
√
r − 2. ẑ′ = ẑ

1−3σ
ẑ′ ≥ z and ẑ′ ≤ 1+3σ

1−3σ z with high probabilities

0.5 1 1.5 2

0

1

2

3

4

5

r=32

r=64

r=128

0.1 0.2 0.3 0.4 0.5 0.6

0.4

0.5

0.6

0.7

0.8

0.9

1

r=32

r=64

r=128

333

symMultnaiveUpper

Cohen

rowBound

rowEstimate

Start

symMult

numMult

rowCount

End EndEnd

numMult

compress

numMult

numMult

exact
YesNo

Yes

No
OOMmalloc

malloc

malloc

malloc

compress

A1
A2
A3

0 1 2 3 4 5

A1-def

A1-opt

A3

cuSPARSE

Time (s)

Sorting
Estimate
Symbolic
Numerical

Squaring 125-point matrix



LLNL-PRES-831941
9/15

Optimizing sparse matrix-matrix kernel (cont’d)

Robust hash probings
1 linear: (h′(k) + i) mod s
2 quadratic: (h′(k) + c1i+ c2i

2) mod s;
3 double: (h′(k) + ih2(k)) mod s

Load balancing: binning with row NNZ
〈SHMEM_HASH_SIZE, GROUP_SIZE〉 =
〈32, 2〉 . . . 〈16384, 1024〉 , 〈16, 2〉 . . . 〈8192, 1024〉

Load balancing: thread-group partition
d
i
m
x

dimy

ia(i) ia(i+1)

ip(j) ip(j+1)

dimx

ip(j) ip(j+1)

dimx

ip(j) ip(j+1)

dimx

warp

Triple matrix product kernel

64
3

81
3

64
2 ×25

6
11

63
12

83
14

73

12
82

×25
6

18
83

20
33

Grid Size

10 2

10 1

2 × 10 2
3 × 10 2
4 × 10 2
6 × 10 2

2 × 10 1
3 × 10 1
4 × 10 1
6 × 10 1

A^
2 

Ti
m

e 
(s

)

Alg. 1, Double
Alg. 1, Linear
Alg. 1, Quadratic
Alg. 2, Double
Alg. 2, Linear
Alg. 2, Quadratic
Alg. 3, Double
Alg. 3, Linear
Alg. 3, Quadratic

64
3

81
3

10
23

11
63

12
83

14
73

16
13

18
83

Grid Size

10 1

2 × 10 2

3 × 10 2
4 × 10 2

6 × 10 2

2 × 10 1

A^
2 

Ti
m

e 
(s

)

CuSPARSE 11
Alg. 1
Alg. 2
Alg. 3

10
24

2

12
18

2

14
48

2

17
22

2

20
48

2

24
35

2

28
96

2

34
44

2

40
96

2

48
71

2

Grid Size

10 1

3 × 10 2
4 × 10 2

6 × 10 2

2 × 10 1

3 × 10 1
4 × 10 1

6 × 10 1

RA
P 

Ti
m

e 
(s

)

RAP, 9pt
RAP, 5pt
(RA)P, 9pt
(RA)P, 5pt



LLNL-PRES-831941
10/15

GPU utilization deteriorates with smaller problems and
coarser levels

Known issues that lower GPU
utilization

1 Synchronizations: Thrust
syncs stream after calls

(temporarily) replaced
with custom kernels

2 D2H and H2D copies
3 Small kernels
4 MPI

GPU utilization (single GPU)
“CPU overhead” = kernel launch overhead +
CPU computation

ä For the “really small” 1003 problem,



LLNL-PRES-831941
11/15

Overlapping GPU execution with CUDA-aware MPI

Pack halo data
StreamSync
MPI-Isend/Irecv
local matvec
MPI-waitall

Pack halo data
StreamSync
local matvec
MPI-Isend/Irecv
MPI-waitall



LLNL-PRES-831941
12/15

Overlapped MPI helps less at coarser levels

ä Again, kernels are too small



LLNL-PRES-831941
13/15

Putting them together: more optimized AMG on GPUs

AMG + PCG, 1 node, 4
A100 GPUs for 2003

7-pt Laplacian. Time (s)
Setup Solve

old 0.877 0.225
MallocAsync 0.190 0.223
Umpire 0.177 0.217
opt 0.156 0.137

The work of optimized SpGEMM was not included in “opt”



LLNL-PRES-831941
14/15

Conclusion

ä hypre’s structured solvers, AMG solvers, and more have been ported to
heterogeneous GPUs

* CUDA/HIP/oneAPI libraries⇒ Thrust/rocPRIM/oneDPL⇒ kernels
ä AMG algorithms on GPUs have been “stabilized”, and are under optimizations
- Port BoomerAMG to Intel GPUs
- More coarsening algorithms on GPUs other than PMIS
- GPU-appropriate smoothers: FSAI
- New Semi-structured solvers on GPUs

� R. Falgout, R. Li, B. Sjogreen, U.M. Yang, and L. Wang, “Porting hypre to Heterogeneous Computer Architectures:
Strategies and Experiences”, Parallel Computing, 2021



Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

THANK YOU!

Questions & Comments

li50@llnl.gov


