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HPC transitioning to heterogeneous GPU architectures

Sierra at LLNL, Summit at ORNL. NVIDIA V100
Perlmutter at NERSC. NVIDIA A100
Frontier at ORNL. AMD Instinct 250X
El Capitan at LLNL, AMD Instinct GPUs
Aurora at ANL, Intel GPUs
All have “Fat node” architecture. Most of the FLOPS are on the GPUs
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Complete AMG setup and solve on GPUs

ä AMG setup
Coarsening: PMIS
Interpolation: direct, MM-ext;
Aggressive coarsening; Multipass
interpolation
RAP

ä AMG solve
Matrix-by-vector: save local P T

Smoother: Jacobi; Gauss-Seidel;
Chebyshev and GMRES
polynomials (NEW!)
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A closer look at AMG setup on GPUs
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Results for AMG-PCG on Crusher: 27-pt diffusion

1 node: CPU: 64 MPI, GPU: 8 GPUs, n× n× n grid

: default + Jacobi (0.85)
: 2s: +1 lvl aggr.

coarsening, 2-stage interp.
: mp: +1 lvl aggr.

coarsening, multipass interp.
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Sparse matrix-matrix multiplications in AMG setup

1 Coarse-grid operator: PTAP

2 Aggressive coarsening: 2nd stage coarsening S(A)
CC = (S2 + S)CC

3 MM-ext interpolation
PMIS requires extended interp. (De Sterck 2008) with distance-2 interp. sets
Original formulation is difficult for efficient implementation on GPUs
New formulation in matrix-matrix (MM) multiplications

W = −
[
(DFF +Dγ)−1(AsFF +Dβ)

][
D−1
β AsFC

]
≡ −ÃsFF Ã

s
FC ,

4 Multipass interpolation in MM forms
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Approximating the ideal W ∗ = −A−1
FFAFC

MM-ext: W = −(DFF +Dγ)−1(AsFFD
−1
β + I)AsFC ≡ −Y AsFC

A = D +As +Aw, Dβ = diag(AFC1c), Dγ = diag(AwFF1f +AwFC1c)
Easy to verify −Y AsFC1c = 1f
Assuming Aw = 0 and Dβ = −diag(AFF1f) = −Dα

I + Y AFF = I +D−1
FF ((AFF −DFF )D−1

α − I)AFF
= (I −D−1

FFAFF )(I −D−1
α AFF )

I + Y AFF ≈ 0 if AFF is strongly d.d, i.e., Y ≈ A−1
FF
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Optimizing sparse matrix-matrix kernel

Hash-based sparse accumulators; rows are unsorted
Naive row NNZ bound: number of intermediate products
symbolic multiplication: row NNZ count (or bound)
numeric multiplication with adequate memory allocated
Stochastic estimator (Cohen, 1997): good estimate

standard deviation σ = 1/
√
r − 2. ẑ′ = ẑ

1−3σ
ẑ′ ≥ z and ẑ′ ≤ 1+3σ

1−3σ z with high probabilities
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Optimizing sparse matrix-matrix kernel (cont’d)

Robust hash probings
1 linear: (h′(k) + i) mod s
2 quadratic: (h′(k) + c1i+ c2i

2) mod s;
3 double: (h′(k) + ih2(k)) mod s

Load balancing: binning with row NNZ
〈SHMEM_HASH_SIZE, GROUP_SIZE〉 =
〈32, 2〉 . . . 〈16384, 1024〉 , 〈16, 2〉 . . . 〈8192, 1024〉

Load balancing: thread-group partition
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GPU utilization deteriorates with smaller problems and
coarser levels

Known issues that lower GPU
utilization

1 Synchronizations: Thrust
syncs stream after calls

(temporarily) replaced
with custom kernels

2 D2H and H2D copies
3 Small kernels
4 MPI

GPU utilization (single GPU)
“CPU overhead” = kernel launch overhead +
CPU computation

ä For the “really small” 1003 problem,
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Overlapping GPU execution with CUDA-aware MPI

Pack halo data
StreamSync
MPI-Isend/Irecv
local matvec
MPI-waitall

Pack halo data
StreamSync
local matvec
MPI-Isend/Irecv
MPI-waitall
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Overlapped MPI helps less at coarser levels

ä Again, kernels are too small
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Putting them together: more optimized AMG on GPUs

AMG + PCG, 1 node, 4
A100 GPUs for 2003

7-pt Laplacian. Time (s)
Setup Solve

old 0.877 0.225
MallocAsync 0.190 0.223
Umpire 0.177 0.217
opt 0.156 0.137

The work of optimized SpGEMM was not included in “opt”
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Conclusion

ä hypre’s structured solvers, AMG solvers, and more have been ported to
heterogeneous GPUs

* CUDA/HIP/oneAPI libraries⇒ Thrust/rocPRIM/oneDPL⇒ kernels
ä AMG algorithms on GPUs have been “stabilized”, and are under optimizations
- Port BoomerAMG to Intel GPUs
- More coarsening algorithms on GPUs other than PMIS
- GPU-appropriate smoothers: FSAI
- New Semi-structured solvers on GPUs

� R. Falgout, R. Li, B. Sjogreen, U.M. Yang, and L. Wang, “Porting hypre to Heterogeneous Computer Architectures:
Strategies and Experiences”, Parallel Computing, 2021
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