

SPEAKERS
§ JaeHyuk Kwack (ANL) - Introduction and moderator of vendors talks
§ Kalyan Kumaran (ANL) - Moderator of panel discussion
§ Johannes Doerfert (ANL) - Representative of LLVM and panelist
§ Carlo Bertolli (AMD) - Representative of AMD and panelist
§ Tobias Burnus (GNU, Siemens) - Representative of GNU and panelist
§ Deepak Eachempati (HPE) - Representative of HPE and panelist
§ Xinmin Tian (Intel) - Representative of Intel and panelist
§ Jeff Hammond (NVIDIA) - Representative of NVIDIA and panelist

CONTRIBUTORS
§ Colleen Bertoni (ANL)

§ Chris Daley (LBL)

§ Reuben Budiardja (ORNL)

§ Joe Zerr (LANL)

§ Bronis De Supinski (LLNL)

§ Tom Scogland (LLNL)

§ Stephen Olivier (SNL)

§ Vivek Kale (BNL)

§ Thomas Applencourt (ANL)

§ Ye Luo (ANL)

§ Michael Kruse (ANL)

§ Wael Elwasif (ORNL)

§ Catherine Moore (GNU, Siemens)

§ Saiyed Islam (AMD)

§ Ron Lieberman (AMD)

§ Greg Rodgers (AMD)

§ Jeff Sandoval (HPE)

§ Barbara Chapman (HPE)

§ Jeff Larkin (NVIDIA)

§ Tim Costa (NVIDIA)

MOTIVATION FOR THIS BOF
§ The current HPC environment is diverse and complex

– Variety of hardware and multiple vendors providing their own programming interfaces

and runtimes

§ Critical for application developers to consider portable (and even better
performance portable) solutions which can target different platforms across
vendors
– OpenMP is an open standard supported by nearly every vendor, and a promising

solution

§ Goals
– Present vendors’ OpenMP roadmap for DoE pre-exascale/exascale systems

– Discuss performance and evaluation, interoperability, feature support and

implementation details, and community support

– Give advice to application developers about what works well in implementations (both

now and in the future)

4

MULTIPLE COMPILERS WILL SUPPORT A COMMON SET
OF OPENMP DIRECTIVES ON GPUS (NON-EXHAUSTIVE LIST) (1/2)

✓ : yes
(✓) : yes with caveats
✘ : no

As of 5/11/2022

LLVM/Clang AMD HPE/Cray Intel NVIDIA GNU (GCC 12)
Levels of parallelism 2 now, 3 under development 2 (teams, parallel)

2 (teams, parallel or

simd)
3 (teams, parallel, simd) 2 (teams, parallel) 3 (teams, parallel, simd)

OpenMP directive
target ✓ ✓ ✓ ✓ ✓ ✓
declare target ✓ ✓ ✓ ✓ ✓ ✓
map ✓ ✓ ✓ ✓ ✓ ✓ (OMP 5.0)

target data ✓ ✓ ✓ ✓ ✓ ✓
target enter/exit data ✓ ✓ ✓ ✓ ✓ ✓
target update ✓ ✓ ✓ ✓ ✓ ✓
teams ✓ ✓ ✓ ✓ ✓ ✓
distribute ✓ ✓ ✓ ✓ ✓ ✓
parallel ✓ ✓ ✓ (may be inactive) ✓ ✓ ✓
for/do ✓ ✓ ✓ ✓ ✓ ✓
reduction ✓ ✓ ✓ ✓ ✓ ✓
simd ✓, GPU under development ✓ (on host) ✓ ✓ ✓ (ignored) ✓
atomic ✓ ✓ ✓ ✓ ✓ ✓ (OMP 5.1 ext)

critical (✓) ✓ ✓ ✓ ✘ ✓
sections ✓ ✓ ✓ ✓ ✘ ✓
master ✓ ✓ ✓ ✓ ✓ ✓
single (✓) ✓ ✓ ✓ ✓ ✓
barrier ✓ ✓ ✓ ✓ ✓ ✓
loop directive eventually ✓(recognize syntax) ✓ (Fortran only) ✓ ✓ ✓
collapse of a perfectly nested loop ✓ ✓ ✓ ✓ ✓ ✓
collapse of an imperfectly nested loop ✓ ✓ (c/c++) ✓ ✘ ✘ ✘ (GCC13/OG12)

collapse of a non-rectangular nested
loop ✓ ✓ (c/c++) ✓ ✘ ✘ C/C++: ✓

/ F90: ✘ (F90: GCC13/OG11)

loop transformation with tile ✓ ✓ ✓ (C/C++ only) ✓ ✘ ✘ (GCC13/OG12)

loop transformation with unroll ✓ ✓ ✓ (C/C++ only) ✓ ✘ ✘ (GCC13/OG12)

array reduction ✓ ✓ ✓ ✓ ✓ ✓/ F90 array sections: ✘
scan eventually ✓(recognize syntax) ✘ ✘ (WIP) ✘ ✓

MULTIPLE COMPILERS WILL SUPPORT A COMMON SET
OF OPENMP DIRECTIVES ON GPUS (NON-EXHAUSTIVE LIST) (2/2)

✓ : yes
(✓) : yes with caveats
✘ : no

As of 5/11/2022

LLVM/Clang AMD HPE/Cray Intel NVIDIA GNU (GCC 12)
requires unified_shared_memory ✓ ✓ ✓ (some platforms) ✓ ✘ (unnecessary) ✘ (WIP for nvptx)

requires dynamic_allocators (✓) ✘ ✘ ✓ ✘ (✘) (GCC13/OG12)

declare reduction ✓ ✓ ✓ (C/C++ only) ✓ ✘ ✓
declare mapper ✓ ✓ ✓ (C/C++ only) ✓ ✘ ✘ (GCC13/OG12)

metadirective ✓ ✓(c/c++) (✓) (limited, OMP 5.0 only) ✘ (WIP) partial ✘ (GCC13/OG11)

declare variant ✓ ✓ (✓) (limited, OMP 5.0 only) ✓ partial ✓
“target nowait” supporting asynchronous execution ✓ ✓ ✓ ✓ ✓ (✓) (sync w/

in_reduction)

“target depend” supporting fine-grained dependencies ✓ ✓ ✓ ✓ ✘ ✓
“target device” supporting multiple non-host devices per process ✓ ✓ ✘ ✓ ✓ ✓
use_device_addr ✓ ✓ ✓ ✓ ✓ ✓ (+ has_…)

detachable tasks: ”detach” clause and “omp_fulfill_event” runtime routine (✓) ✓ ✓ ✘ ✘ ✓
Memory management APIs

allocate directive for allocating variables in managed memory via allocator (✓) ✓ ✓ (extension) ✓ ✘ ✘ (GCC13/OG11)

allocate clause for allocating privatized variables in managed memory via allocator (✓) ✘ ✓ (extension) ✓ ✘ (✓)

APIs for allocating/freeing memory via allocator ✓ ✓ (limited support on

device with predefined

allocators)

✓ ✓ ✘ ✓
APIs for defining new allocators with custom traits (e.g. pinned memory) ✓ ✓ (only pinned) ✓ ✓ ✘ ✓

Interop objects/directive and APIs ✓ ✘ ✘ ✓ ✘ ✘
C++ attribute syntax eventually ✓ ✘ ✘ (WIP) ✘ ✓
Orphaned parallel regions (any limitations? e.g. serialized) No limitations ✓ ✓ ✓ ✓, parallel but slow ✓
Creating C++ objects containing virtual functions inside target regions (GPU) ✓ ✘ ✓ ✘ (WIP) ✘ (✓) (if vtable+ methods emit.)

Mapping C++ objects containing virtual functions from host to the GPU eventually ✘ ✘ ✘ (WIP) ✘ (✓) (no virt. calls)

printf/print support in a target region (GPU) ✓ ✓ ✓ ✓ ✓
✓/

F90 on nvptx: ✘
(GCC13/OG12)

Call CUDA/SYCL/HIP kernels in an OpenMP target region ✓ ✘ ✘ ✓
CUDA works, but it

depends on the

details

(✓) (may work)

OPENMP RESOURCES

OpenMP website

– https://www.openmp.org

OpenMP Validation and Verification

– https://crpl.cis.udel.edu/ompvvsollve/

OpenMP YouTube Channel

– https://www.youtube.com/user/OpenMPARB/

OpenMP Users Monthly Teleconferences

– https://www.openmp.org/events/ecp-sollve-openmp-monthly-teleconference/

At 2022 ECP Annual Meeting:

– Early Experience of Application Developers with OpenMP Offloading

– Wed. May 4, 2022, 4:00 PM - 6:00 PM (ET)

– Recording available at ECP Annual Meeting Page

7

Topics Minutes Presenter or Moderator

Introduction 3 JaeHyuk Kwack/ Colleen Bertoni

Roadmap Presentations
LLVM 7 Johannes Doerfert

AMD 7 Carlo Bertolli

GNU 7 Tobias Burnus

HPE 7 Deepak Eachempati

Intel 7 Xinmin Tian

NVIDIA 7 Jeff Hammond

Panel discussion
- Preselected questions
- Questions/comments from audience (alternating)

45 Kalyan Kumaran and other panelists

Total time 90

8

SCHEDULE AT THIS BOF

ROADMAP PRESENTATIONS

LLVM/OpenMP
in HPC

A Brief Overview

Single command often suffices to configure:
cmake /src/llvm-project/llvm -DLLVM_ENABLE_PROJECTS='clang;lld' -DLLVM_ENABLE_RUNTIMES=’openmp’
make -j

Useful options include: CMAKE_BUILD_TYPE={Release,Asserts,…}
LLVM_ENABLE_ASSERTIONS={ON,OFF}
LLVM_CCACHE_BUILD={ON,OFF}
-G Ninja

Various resources available online! Start here:
https://llvm.org/docs/GettingStarted.html
https://openmp.llvm.org/SupportAndFAQ.html

Building LLVM + OpenMP offloading

Screenshot me :)

- Device-side LTO for OpenMP offload (and CUDA)
- OpenMP offloading to a remote process (or to remote GPUs)
- Host debugging on the OpenMP virtual GPU
- Mix CUDA device code and OpenMP offload code
- JIT compilation (and specialization) for OpenMP offload kernels
- Extraction of OpenMP kernels and isolated replay, tuning, etc. [WIP]
- Portable wrapper for common libraries (Thrust, BLAS, …) [WIP]

LLVM/OpenMP Features

Screenshot me :)

OpenMP-Aware Optimizations

Automatic SPMDzation + shared memory usage (LLVM 13+)
#pragma omp target teams
{

double team_local_memory[M];
team_main_thread_only();
#pragma omp parallel
every_thread(team_local_memory);

} #pragma omp target teams
#pragma omp parallel
{
double team_local_memory[M];
#pragma omp allocate(team_local_memory) \

allocator(omp_cgroup_mem_alloc)
#pragma omp masked
team_main_thread_only();
#pragma omp barrier
every_thread(team_local_memory);

}

SPMDzation - “CUDA”-like execution mode

Shared memory usage for scratchpads

Automatic guarding and synchronization

Screenshot me :)

OpenMP-Optimization

Remarks & Assumptions

1)OpenMP-Opt emits remarks (above)
2)The web provides explanations (right)
3)Users add OpenMP assumptions, e.g.,
#pragma omp assume ext_spmd_amenable

Visit openmp.llvm.org for more!

https://openmp.llvm.org/remarks/OptimizationRemarks.html

Screenshot me :)

OpenMP
CUDA
HIP, SYCL, …

OpenACC

Python (numba)
DSLs MLIR
Chapel, Julia, …

Clang

Flang

LLVM IR +
OpenMP

OpenMP
Runtimes

CPUs

GPUs

Profiler hooks,
Debugger hooks,
Remote target,

virtual GPU,
JIT, FPGA,

.…

OpenMP-aware
optimizations

OpenMP-
IR-Builder

Diverse Inputs/Outputs - One Pipeline

Production Under Development Research Prototype Not Started Proposed

Shared across

languages and

backends.

Screenshot me :)

- Use a recent (e.g., nightly) compiler version.
- Enable compilation remarks https://openmp.llvm.org/remarks/OptimizationRemarks.html
- Use LIBOMPTARGET_INFO(=16) to learn about the GPU execution

https://openmp.llvm.org/design/Runtimes.html#libomptarget-info
- Use LIBOMPTARGET_PROFILE for built in profiling support.
- Use LIBOMPTARGET_DEBUG (and -fopenmp-target-debug) for runtime assertions and

other opt-in debug features https://openmp.llvm.org/design/Runtimes.html#debugging
- Consider assumptions for better performance:

LIBOMPTARGET_MAP_FORCE_ATOMIC=false and -fopenmp-assume-no-thread-state
- Use device-side LTO -foffload-lto

OpenMP offload Recommendations

Screenshot me :)

OpenMP® Support of ROCm™ v5.0
@ OpenMP RoadMap BoF

@2022 ECP Community BoF Day, 11th May 2022

- Carlo Bertolli & Saiyedul Islam

2 |

[Public]

OffloadArch Library & offload-arch Tool

• Tool (and LLVM™ library) to query capabilities of the
target runtime
• Like, (arch name: gfx90a, or features like shared memory ECC

turned on/off)

• Capabilities
• Pre-decided characteristics of the target which require a

dedicated image in a fat binary.

• libomptarget uses LLVM library interface to query the
target system and extract a compatible image, if any.

• Works with multi-GPU systems as well

• Query a binary for list of image requirements

Option Description

h Print the help message.

a Print values for all devices. Don't stop at first
device found.

m Print device code name (often found in pci.ids
file).

n Print numeric pci-id.

t Print clang offload triple to use for the offload arch.

v
Verbose = -a -m -n -t
For all devices, print codename, numeric value
and triple

f
<filenam

e>

Print offload requirements including offload-arch
for each compiled offload image built into an
application binary file.

c

Print offload capabilities of the underlying system.
This option is used by the language runtime to
select an image when multiple images are
available. A capability must exist for each
requirement of the selected image.

3 |

[Public]

Multi-architecture Compilation
• Generate a multi-image binary such that:

• Each image is tagged and compiled for a specific target
• create a ToolChain for each target in clang driver

• Tags should be sufficient to uniquely describe its target
• define “Requirements” of image

• Images are packed in a (fat) binary
• use clang-offload-wrapper

• Load the right image from the binary at the runtime,
using mechanisms:
• to identify characteristics of the current target (H/W +

S/W configuration)
• use OffloadArch library to identify “Capabilities” of current

target
• to test compatibility of current target with each image in

the binary
• modify libomptarget

• Possible target configs:
1. gfx906 and gfx906
2. gfx908:xnack- and gfx908:xnack+

3. (gfx906 and gfx908) or (sm_70 and sm_85)
4. gfx906 and sm_70

• Build a common binary which can run on one
GPU at a time for any of the above
configuration

• Build once, run anywhere!

clang -O2 -fopenmp-fopenmp-targets=amdgcn-amd-amdhsa,amdgcn-amd-amdhsa \
-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx906:xnack- \
-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908:xnack+ \
helloworld.c -o helloworld

4 |

[Public]

Unified Shared Memory

• Modes:
• Default Mode
• USM Mode (maps are optional)

• Default mode à USM Mode (always portable)
• USM Mode à Default Mode (not necessarily)

• ROCm™ AMDGPU Implementation USM Mode à maps give better performance
• Maps à Coarse grain memory
• Coarse grain faster than fine grain

• Programs written for default mode will give best USM mode performance

• Maps are the way to incrementally improve performance of critical/hotspot kernels in USM mode

5 |

[Public]

Unified Shared Memory on ROCm™ AMDGPU
#pragma omp requires unified_shared_memory

int main() {

double *a = new double[n];

double *b = new double[n];

#pragma omp target teams distribute parallel for map(tofrom: a[:n]) map(to: b[:n])

for(int i = 0; i < n; i++)

a[i] += b[i];

}

• If maps are used, pages used by a and b switch to coarse grain
• Still, no device memory allocation, nor memory copies

clang –fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa
-march=gfx90a helloworld.c -o helloworld

HSA_XNACK=1 ./helloworld

6 |

[Public]

Disclaimer and Attribution
DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and
typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but
not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has
risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct
or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content
hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

©2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Radeon is the registered trademark of Advance Micro Devices, Inc. LLVM is a trademark of LLVM Foundation. The
OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board. Other product names used in
this publication are for identification purposes only and may be trademarks of their respective companies.

OpenMP in GCC
Status & Tips

Tobias Burnus

© Siemens 2022 | 2022-05-11 | Tobias Burnus | OpenMP in GCC | Siemens Digital Industries Software | Where today meets tomorrow.

GNU Compiler Collection (GCC) & OpenMP

© Siemens 2022 | 2022-05-11 | Tobias Burnus | OpenMP in GCC | Siemens Digital Industries Software | Where today meets tomorrow.Page 2

• Widely used & supported open-source software
• contributing is simple & welcoming community
• paid/unpaid contributors
• Linux distros also pack offloading support (via optional packages)

• C17 (most of C2x), C++20 (most of C++23)
Fortran: 2008 + coarray/interop TS (mostly), initial F2018

• OpenMP/OpenACC support in C, C++, Fortran
• Full OpenMP 4.5, much of 5.0, some of 5.1
• OpenACC 2.6

• Offloading to nvptx (Nvidia) + AMD GCN (Radeon)
• Annual major releases around late spring (~ end of April)

• GCC 12: Released on May 6, 2022
• GCC 11: Released April 2021, last 11.3 (April 2022)
→ Linux distros use git branch directly, mainline also quite stable
→ Also avail: OG12 (= devel/omp/gcc-12) SIEMENS' public branch

GCC
78%

D. Bernholdt (ORNL) + T. Burnus, GCC,
https://openmpcon.org/conf2021/program-archive/

On Summit (OLCF/ORNL) [by compute time]

https://gcc.gnu.org

OpenMP Now Supported & Implementation Status

© Siemens 2022 | 2022-05-11 | Tobias Burnus | OpenMP in GCC | Siemens Digital Industries Software | Where today meets tomorrow.Page 3

GCC 11
• Non-rect loop nests, allocator routines, declare variant ext. (C/C++)
• Fortran: full OpenMP 4.5, order(concurrent), device_type, memorder-

clauses for flush, lastprivate with conditional modifier, atomic
construct and reduction clause 5.0 ext.

• GCN: gfx908 (MI100) support

GCC 12
• OpenMP 5.1: C++ 11 attributes, masked/scope/error/nothing, atomic

extensions, memory-allocation routines, strictly structured blocks
• OpenMP 5.0: affinity clause. Fortran: declare variant, depobj,

mutexinoutset, iterator, defaultmap 5.0 ext., loop
• GCN: Debugging (ROCGDB), wavefronts per compute unit

restrictions lifted, wavefront-workgroup tunings
• NVPTX: Updates related to sm_xx target and PTX ISA

Mainline (GCC 13): Several OpenMP patches already pending

GCC → 12 Changes → OpenMP or
https://gcc.gnu.org/onlinedocs/libgomp/
Following OpenMP Spec, Appendix B

Compiling

© Siemens 2022 | 2022-05-11 | Tobias Burnus | OpenMP in GCC | Siemens Digital Industries Software | Where today meets tomorrow.Page 4

Enabling offloading
• -fopenmp – automatically enables offloading for omp target regions
• -fopenmp-simd – only SIMD, no parallelization/lib dependency
• -foffload=[disable|default|nvptx-none,amdgcn-amdhsa,...]

Disable offloading, use default (all avail), or only specified types (list)

Argument passing to offload compiler
• -foffload-options=-lm -foffload-options=nvptx-none=-latomic

GCC <12: Use -foffload= instead (undocumented, has corner case)

Optimization
• -O0 (default), -O1/-O2/-O3, -Og, -Ofast (→ -ffast-math)
• -mveclibabi=[svml,acml,mass] vector math libs by Intel/AMD/IBM

Diagnostic
• -fopt-info-... (-fopt-info-loops, -fopt-info-omp, -fopt-info-vec-missed, …):

Checking/debugging optimizations

(Since GCC 12) Manpage or
https://gcc.gnu.org/onlinedocs/gcc/

Offload Targets

© Siemens 2022 | 2022-05-11 | Tobias Burnus | OpenMP in GCC | Siemens Digital Industries Software | Where today meets tomorrow.Page 5

Nvidia GPUs (nvptx)
• GCC generates nvptx (generic code)
• JIT compiled by CUDA run-time library at startup (→ CUDA_CACHE docu)
• -march=sm_xx (GCC 12) / -misa=sm_xx (alias + GCC < 12)

sm_30, sm_35, (GCC 12:) sm_53, sm_70, sm_75, sm_80
• -march-map=sm_xx: (GCC 12) maps sm_xx to a supported sm_xx (↑)
• https://github.com/MentorEmbedded/fortran-cuda-interfaces – cublas, cublas_v2, cublasxt, openacc_cublas, cufft

AMD GCN
• GCN generates code for: fiji (GCN3, gfx803), gfx900/gfx906 (GCN5, VEGA 10/20), gfx908 (MI100)

• Example: -fopenmp-options=-march=gfx908
• Offload debugging with GCC 12 and ROCGDB: https://linuxplumbersconf.org/event/11/contributions/997/

Acknowledgement

This research used resources of the Oak Ridge Leadership Computing Facility, which is
a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725

Disclaimer

© Siemens 2022

Subject to changes and errors. The information given in this document only contains
general descriptions and/or performance features which may not always specifically
reflect those described, or which may undergo modification in the course of further
development of the products. The requested performance features are binding only when
they are expressly agreed upon in the concluded contract.

All product designations may be trademarks or other rights of
Siemens AG, its affiliated companies or other companies whose use by third parties for
their own purposes could violate the rights of the respective owner.

© Siemens 2022 | 2022-05-11 | Tobias Burnus | OpenMP in GCC | Siemens Digital Industries Software | Where today meets tomorrow.Page 6

HPE OPENMP COMPILER UPDATE

Deepak Eachempati
CCE OpenMP Compiler Group
May 11, 2022

• Fortran compiler
• Proprietary front end and optimizer; HPE-modified LLVM backend
• Fortran 2018 support (including coarray teams)

• C and C++ compiler
• HPE-modified closed-source build of Clang+LLVM complier
• C11 and C++17 support
• UPC support

• OpenMP Offloading support for NVIDIA/AMD GPUs
• OpenMP 4.5 and partial 5.0/5.1
• some differences between Fortran and C/C++ compilers in support
• Other models available: OpenACC 2.0 (Fortran only), HIP (C++, AMD GPUs only)

HPE CRAY COMPILING ENVIRONMENT (CCE)

OPENMP WITH CCE 2

• Uses proprietary OpenMP runtime libraries

• Supports cross-language and cross-vendor OpenMP interoperability
• CCE’s libcraymp behaves as drop-in replacement for Clang’s libomp and GNU’s libgomp
• GNU OpenMP interface support is limited to OpenMP 3.1 constructs – update planned for future release

• Implements HPE-optimized code generation for OpenMP offload regions

• OpenMP 5.0 and 5.1 – in progress, implemented over several CCE releases
• See release notes and intro_openmp man page for full list of supported features
• OpenMP 5.0 is near complete as of CCE 13.0 (Nov 2021)
• OpenMP 5.1/5.2 support in progress for 2022-2023

OPENMP WITH CCE

CCE OPENMP SUPPORT

3

CCE OPENMP 5.0 STATUS

4

CCE 10.0 (May 2020) CCE 11.0 (Nov 2020) CCE 12.0 (Jun 2021) CCE 14.0 (May 2022)
• OMP_TARGET_OFFLOAD
• reverse offload
• implicit declare target
• omp_get_device_num
• OMP_DISPLAY_AFFINITY
• OMP_AFFINITY_FORMAT
• set/get affinity display
• display/capture affinity
• requires
• unified_address
• unified_shared_memory
• atomic_default_mem_order
• dynamic_allocators
• reverse_offload
• combined master constructs
• acq/rel memory ordering (Fortran)
• deprecate nested-var
• taskwait depend
• simd nontemporal (Fortran)
• lvalue map/motion list items
• allow != in canonical loop
• close modifier (C/C++)
• extend defaultmap (C/C++)

• noncontig update
• map Fortran DVs
• host teams
• use_device_addr
• nested declare target
• allocator routines
• OMP_ALLOCATOR
• allocate directive
• allocate clause
• order(concurrent)
• atomic hints
• default nonmonotonic
• imperfect loop collapse
• pause resources
• atomics in simd
• simd in simd
• detachable tasks
• omp_control_tool
• OMPT
• OMPD
• declare variant (Fortran)
• loop construct
• metadirectives (Fortran)
• pointer attach
• array shaping
• acq/rel memory ordering (C/C++)
• device_type (C/C++)
• non-rectangular loop collapse (C/C++)

• device_type (Fortran)
• affinity clause
• conditional lastprivate (C/C++)
• simd if (C/C++)
• iterator in depend (C/C++)
• depobj for depend (C/C++)
• task reduction (C/C++)
• task modifier (C/C++)
• simd nontemporal (C/C++)
• scan (C/C++)
• lvalue list items for depend
• mutexinoutset (C/C++)
• taskloop cancellation (C/C++)

• task reduction (Fortran)
• task modifier (Fortran)
• target task reduction (Fortran)
• simd if (Fortran)

Future CCE Release
• loop construct (C/C++)
• mapper (Fortran)
• iterator in depend (Fortran)
• non-rectangular loop collapse (Fortran)
• depobj for depend (Fortran)
• uses_allocators
• concurrent maps
• taskloop cancellation (Fortran)
• scan (Fortran)
• target task reduction (C/C++)

CCE 13.0 (Nov 2021)

• declare variant (C/C++)
• metadirectives (C/C++)
• mapper (C/C++)
• extend defaultmap (Fortran)
• close modifier (Fortran)
• mutexinoutset (Fortran)

Refer to CCE release
notes or intro_openmp
man page for current

implementation status

OPENMP WITH CCE

OPENMP CONSTRUCT MAPPING TO GPU

NVIDIA AMD CCE Fortran
OpenACC

CCE Fortran
OpenMP

CCE C/C++
OpenMP

Clang C/C++
OpenMP

Threadblock Work group acc gang omp teams omp teams omp teams

Warp Wavefront acc worker

omp simd
omp parallel or
omp simd

omp parallel

Thread Work item acc vector

• Current best practice:
• Use teams to express GPU threadblock/work group parallelism
• Use parallel for simd to express GPU thread/work item parallelism

• Future direction:
• Improve CCE support for parallel and simd in accelerator regions
• Upstream Clang is expanding support for simd in accelerator regions

Long-term goal: let users express parallelism with any construct they think
makes sense, and CCE will map to available hardware parallelism

5

• OpenMP offload nowait constructs map to independent GPU streams
• depend clauses are handled with necessary stream synchronization

• Task “detach” support introduced in CCE 11.0 (Nov 2020)

• Cross-device dependences are not yet optimized well (overly conservative synchronization)

• Multi-threaded use of GPU is optimized as of CCE 13.0 (Nov 2021) – relaxed locking strategy

OPENMP WITH CCE

ASYNC OFFLOAD CAPABILITIES

6

THANK YOU
Deepak Eachempati
deepak.eachempati@hpe.com

7

Intel® Compilers Update
Xinmin Tian
Intel Corporation
ECP OpenMP Community RoadMap BoF’2022

2

Notices & Disclaimers
DISTRIBUTION STATEMENT: None Required

Disclosure Notice: This presentation is bound by Non-Disclosure Agreements between Intel Corporation and the Department of Energy, and Argonne National Lab, and is therefore for
Internal Use Only and not for distribution outside these organizations or publication outside the above referenced Subcontracts.
Intel Corp Proprietary Information: This document contains trade secrets and/or proprietary information of Intel Corporation and Intel Federal LLC (“Intel”) and is exempt from
disclosure under the Freedom of Information Act. The information contained herein shall not be duplicated, used or disclosed outside the U.S. Department of Energy, UChicago
Argonne LLC except as permitted by the contract previously referenced. The data subject to this restriction are contained in all sheets of this document.
USG Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency
thereof.
Export Control: This document contains information that is subject to export control under the Export Administration Regulations. However the contents remain within the applicable
ECCN’s provided in the most recent Multi Party for Intel Restricted Secret Information that is applicable to the CORAL Aurora Program.
Intel Disclaimer: Intel makes available this document and the information contained herein in furtherance of the CORAL Aurora Program. None of the information contained herein is,
or should be construed, as advice. While Intel makes every effort to present accurate and reliable information, Intel does not guarantee the accuracy, completeness, efficacy, or
timeliness of such information. Use of such information is voluntary, and reliance on it should only be undertaken after an independent review by qualified experts.
Access to this document is with the understanding that Intel is not engaged in rendering advice or other professional services. Information in this document may be changed or updated
without notice by Intel.
This document contains copyright information, the terms of which must be observed and followed.
Reference herein to any specific commercial product, process or service does not constitute or imply endorsement, recommendation, or favoring by Intel or the US Government.
Intel makes no representations whatsoever about this document or the information contained herein. IN NO EVENT SHALL INTEL BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT,
SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS INTERRUPTION, OR OTHERWISE,
EVEN IF INTEL IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Copyright © 2020, Intel Corporation. All rights reserved – unpublished work.

3

§ OpenMP Standards Support in Intel® Compilers
§ Unified Shared Memory (USM) allocators
§ OpenMP and SYCL/DPC++ Composability
§ Async Offloading
§ OpenMP SIMD
§ Fortran (IFX) Status Update

Agenda

4

OpenMP Standards Support in Intel compilers
§ OpenMP 4.0/4.5 offloading will not supported in ICC and IFORT for GPUs and will not

be conformant to OpenMP 5.0/5.1.

§ OpenMP 5.0/5.1/5.2 features are planned to be implemented in ICX and IFX by
continuously leveraging Clang/LLVM community work.

Intel Compiler Driver Target* OpenMP
Support

OpenMP
Offload
Support

Included in
oneAPI
Toolkit

Intel® C++ Compiler Classic (ICC) icc CPU Yes No HPC, IoT

Intel® oneAPI DPC++/C++ Compiler (ICX)
dpcpp CPU, GPU,

FPGA Yes Yes Base

icx CPU
GPU Yes Yes Base

Intel® Fortran Compiler Classic (IFORT) ifort CPU Yes No HPC

Intel® Fortran Compiler (Beta) (IFX) ifx CPU, GPU Yes Yes HPC

5

Use OpenMP Memory Allocator for USM
program reduction_example
use omp_lib
integer :: n = 32768
integer :: m = 2048
integer :: i, j
double precision :: val = 0.0
double precision :: val_ver = 0.0
double precision, allocatable :: a_h(:), b_h(:), c_h(:)
real*8 a_x(32768), b_x(32768), c_x(32768)

!$omp allocate allocator(omp_target_shared_mem_alloc)
allocate(a_h(n))

!$omp allocate allocator(omp_target_shared_mem_alloc)
allocate(b_h(n))

!$omp allocate allocator(omp_target_shared_mem_alloc)
allocate(c_h(n))

do i = 1, n
a_h(i) = dble(i);
b_h(i) = 0.2;
c_h(i) = 0.3;
a_x(i) = dble(i);
b_x(i) = 0.2;
c_x(i) = 0.3;

end do

! Reduction on val is done in C implementation below
call red_02(a_h, b_h, c_h, n, m, val)

val_ver = 0.0
!$omp target data map(tofrom: val_ver) map(to: a_x, b_x, c_x)
!$omp target teams distribute parallel do reduction(+: val_ver)

& collapse(2)
do i = 1, n
do j = 1, m
val_ver = val_ver + a_x(i) * b_x(i) * c_x(i);

end do
end do

!$omp end target teams distribute parallel do
!$omp end target data

if(abs(int(val*1.0d+15) - int(val_ver*1.0d+15)) .lt. 1.0) then
write(*,*) "Congratulations!! Correct Results"
write(*,*) " val[",

& val, "]; val_ver[", val_ver, "]"
else

write(*,*) "Incorrect Result", " val[",
& val, "]; val_ver[", val_ver, "]"
endif

deallocate(a_h)
deallocate(b_h)
deallocate(c_h)
end program

6

OpenMP and SYCL/DPC++ Composability

§ Several codes might need a smooth transition to/from OMP offload and
DPC++

§ Question coming from many customers
§ A very simple test just to understand how compilation and execution

works

7

#pragma omp parallel sections shared(size)
{

//OMP target section
#pragma omp section
{

run_omp(Aomp, Bomp, Comp, size);
}
//DPCPP section
#pragma omp section
{

run_dpcpp(Adpcpp, Bdpcpp, Cdpcpp, size);
}

}
}

Offloading 2 Different Kernels
§ Simple main.cpp
§ We are creating 2 OMP tasks

each one sending a kernel
§ The first kernel is OMP
§ The second kernel is DPC++

8

Asynchronous Offloading

xtian@scsel-cfl-12:$ icpx -fiopenmp -fopenmp-targets=spir64 target_nowait.cpp -o run.x
xtian@scsel-cfl-12:$./run.x

Before explicit offload sync: ret = 0
Device ret = 1
After explicit offload sync: ret = 1

#include <stdio.h>
#include <omp.h>

int main() {
int ret = 0;

#pragma omp target map(ret) nowait
{
for (int i = 0; i < 1000; i++)
for (int j = 0; j < 1000; j++)
ret--;

if (ret <= 0)
ret = 1;

printf("Device ret = %d\n", ret);
}
printf("Before explicit offload sync: ret = %d\n", ret);

#pragma omp taskwait
printf("After explicit offload sync: ret = %d\n", ret);

return 0;
}

Added compiler support of enabling free agent helper
thread running concurrently with the initial thread

Leveraged community free agent helper thread
support

9

OpenMP SIMD for GPUs
#pragma omp target enter data map(alloc:a[0:TOTAL_SIZE])
#pragma omp target enter data map(alloc:b[0:TOTAL_SIZE])
#pragma omp target enter data map(alloc:c[0:TOTAL_SIZE])
#pragma omp target update to(a[0:TOTAL_SIZE])
#pragma omp target update to(b[0:TOTAL_SIZE])

const int no_max_rep = 400;
double time = omp_get_wtime();
for (int irep = 0; irep < no_max_rep; ++irep) {

#pragma omp target teams distribute parallel for
for (int isimd = 0; isimd < TOTAL_SIZE; isimd += SIMD_SIZE<<2) {

#pragma omp simd simdlen(32)
for (int ilane = 0; ilane < SIMD_SIZE<<2; ++ilane) {

const int index = isimd + ilane;
c[index] = a[index] + b[index];

}
}

}
time = omp_get_wtime() – time;
time = time/no_max_rep;
… … … …

#pragma omp target exit data map(release:a[0:TOTAL_SIZE])
#pragma omp target exit data map(release:b[0:TOTAL_SIZE])
#pragma omp target exit data map(release:c[0:TOTAL_SIZE])

10

•F2003 complete (PDT’s now implemented)
•F2008 complete except coarrays (F2008 in Q3, F2018 in Q4)
•F2018 development (IEEE compares, DIM opt arg in intrinsics)
•Fortran extension VAX structs/unions implemented
•Complete IFX OpenMP DECLARE MAPPER and TILE
•Continue coarrays work for F08 feature complete
•Fortran quality and hardening, continuous perf improvements
•Auto-offload of Fortran DO CONCURRENT
•Fortran development: F18 C-interop, DLLIMPORT/EXPORT, /Qinit,

/check:bounds

Fortran (IFX) Compiler Status Update

11

Call to Action & Resources
Call to Action – Get the Intel oneAPI Base, HPC & IoT Toolkit today!
• Current Customers - Log into Intel Registration Center - registrationcenter.intel.com

Resources
• oneAPI Initiative – oneAPI.com

• Intel® oneAPI Base Toolkit and HPC toolkit-
https://software.intel.com/content/www/us/en/develop/tools/oneapi/commercial-base-hpc.html

• Intel® oneAPI Base and IoT toolkit

https://www.intel.com/content/www/us/en/developer/tools/oneapi/commercial-base- iot.html

• Porting Guide - https://software.intel.com/content/www/us/en/develop/articles/porting-guide-for-icc-users-to-dpcpp-or-
icx.html

• ICX OpenMP features support

https://www.intel.com/content/www/us/en/developer/articles/technical/openmp-features-and- extensions-supported-in-
icx.html

• IFX OpenMP features support

https://www.intel.com/content/www/us/en/developer/articles/technical/fortran-language-and-openmp-features-in-
ifx.html

12

OPENMP IN NVIDIA’S HPC COMPILERS
JEFF HAMMOND AND JEFF LARKIN
9 MAY 2022

NVIDIA Compiler and Language Support

std::transform(par, x, x+n, y, y,
[=](float x, float y){ return y + a*x;

}
);

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

import legate.numpy as np
…
def saxpy(a, x, y):

y[:] += a*x

__global__
void saxpy(int n, float a,

float *x, float *y) {
int i = blockIdx.x*blockDim.x +

threadIdx.x;
if (i < n) y[i] += a*x[i];

}

int main(void) {
...
cudaMemcpy(d_x, x, ...);
cudaMemcpy(d_y, y, ...);

saxpy<<<(N+255)/256,256>>>(...);

cudaMemcpy(y, d_y, ...);

Platform SpecializationAccelerated Standard Languages

Acceleration Libraries

Core Math Communication Data Analytics AI

#pragma acc data copy(x,y) {
...
#pragma acc parallel loop
for (i=0; i<n; i++) {
y[i] += a * x[i];

}
...
}

#pragma omp target data map(x,y) {
...
#pragma omp target teams loop
for (i=0; i<n; i++) {
y[i] += a * x[i];

}
...
}

Incremental Portable Optimization

Quantum

https://developer.nvidia.com/nvidia-hpc-sdk-downloads

3

NVIDIA HPC COMPILER

• OpenMP

• -mp à Enable OpenMP targeting Multicore

• -mp=gpu à Enable OpenMP targeting GPU and Multicore

• GPU Options

• -gpu=ccXX à Set GPU target, specialize for one generation, or many

• Compiler Diagnostics

• -Minfo=mp à Compiler diagnostics for OpenMP

• Environment variable for NOTIFY

• export NVCOMPILER_ACC_NOTIFY = 1|2|3

Using OpenMP

4

OPENMP MODEL

omp target à Starts Offload

omp teams à [GPU] CUDA Thread Blocks in grid
à [CPU] num_teams(1)

omp parallel à [GPU] CUDA threads within thread block
à [CPU] CPU threads

omp simd à [GPU] simdlen(1) i.e. ignored
à [CPU] Hint for vector instructions

OpenMP Execution Mapping to NVIDIA GPUs and Multicore

5

WHY THE SUBSET?

https://developer.nvidia.com/gtc/2020/video/s21387.

6

START OFFLOADING ‘OMP LOOP’

1. omp target teams loop
• Recommended way
• You can use num_teams and thread_limit clauses

2. omp target loop
• Fully automatic
• You cannot use num_teams / thread_limit

3. omp target parallel loop
• Uses only threads, and doesn’t use teams
• Might be useful for light kernels

Three Ways

7

CASE STUDY: MATRIX TRANSPOSE

!$omp target teams distribute parallel do simd collapse(2)
do j=1,order
do i=1,order
B(i,j) = B(i,j) + A(j,i) ! Contiguous RW of B

enddo
enddo

!$omp target teams distribute parallel do simd collapse(2)
do j=1,order
do i=1,order
B(j,i) = B(j,i) + A(i,j) ! Contiguous R of A

enddo
enddo

OpenMP prescriptive parallelism

51% peak

12% peak

8

CASE STUDY: MATRIX TRANSPOSE

!$omp target teams loop collapse(2)
do j=1,order
do i=1,order
B(i,j) = B(i,j) + A(j,i) ! Contiguous RW of B

enddo
enddo

!$omp target teams loop collapse(2)
do j=1,order
do i=1,order
B(j,i) = B(j,i) + A(i,j) ! Contiguous R of A

enddo
enddo

OpenMP descriptive parallelism

57% peak

13% peak

“teams loop” = more performance, less typing

9

CASE STUDY: MATRIX TRANSPOSE

!$omp target teams loop collapse(2)
do jt=1,order,tile_size
do it=1,order,tile_size
!$omp loop collapse(2)
do j=jt,min(order,jt+32-1)
do i=it,min(order,it+32-1)
B(i,j) = B(i,j) + A(j,i) ! Contiguous RW of B

enddo
enddo

enddo
enddo

!$acc parallel loop tile(32,32)
do j=1,order
do i=1,order
B(i,j) = B(i,j) + A(j,i) ! Contiguous RW of B

enddo
enddo

Descriptive parallelism plus tiling

72% peak

76% peak

10

CASE STUDY: AXPY
Memory management options

allocate(X,Y,Z)

X = 0
Y = 0
Z = 0

#if MAP_ALLOC
!$omp target data map(alloc:X,Y,Z)
#else
!$omp target data map(tofrom: Z) &
!$omp& map(to: X,Y)
#endif

! init
do i=1,length

X(i) = i-1
Y(i) = i-1
Z(i) = 0

enddo

MAP_ALLOC MANAGED allocate data in init
0 0 0.000015 2.367367 0.014560
1 1 0.348643 0.017112 3.049976
0 1 0.361456 0.018193 3.055903
1 0 0.000013 0.388539 0.020914

11

BEST PRACTICES FOR OPENMP ON GPUS

Use the teams and distribute directive to expose all available parallelism

Use the loop directive when the mapping to hardware isn’t obvious

Aggressively collapse loops to increase available parallelism

Use the target data directive and map clauses to reduce data movement between CPU and GPU

…or just skip the target data directive and use managed memory

Use OpenMP tasks to go asynchronous and better utilize the whole system

Use host fallback (if clause) to generate host and device code

Use accelerated libraries whenever possible

Less is more with the NVIDIA compiler. Being pedantic can reduce performance.

PANEL DISCUSSION
Moderator: Kalyan Kumaran (ANL)

Panelists:

• Johannes Doerfert (LLVM, ANL)

• Carlo Bertolli (AMD)

• Tobias Burnus (GNU, Siemens)

• Deepak Eachempati (HPE)

• Xinmin Tian (Intel)

• Jeff Hammond (NVIDIA)

ACKNOWLEDGEMENT FOR ECP-FUNDED RESEARCH

This research was supported by the Exascale Computing Project (17-SC-20-SC),
a joint project of the U.S. Department of Energy’s Office of Science and National
Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support
the nation’s exascale computing imperative.

THANKS!

BACK-UP SLIDES
(FEATURE SUPPORT TABLE IN 2021)

MULTIPLE COMPILERS WILL SUPPORT A COMMON SET
OF OPENMP DIRECTIVES ON GPUS (NON-EXHAUSTIVE LIST) (1/2)

LLVM/Clang AMD HPE/Cray IBM Intel NVIDIA GNU

Levels of parallelism 2 (teams + parallel),
eventually SIMD 2 (teams, parallel) 2 (teams,

parallel or simd) 2 (teams, parallel) 3 (teams, parallel,
simd) 2 (teams, parallel) 3 (teams, parallel, simd)

OpenMP directive
target ✓ ✓ ✓ ✓ ✓ ✓ ✓

declare target ✓ ✓ ✓ ✓ ✓ ✓ ✓
map ✓ ✓ ✓ ✓ ✓ ✓ ✓

target data ✓ ✓ ✓ ✓ ✓ ✓ ✓
target enter/exit data ✓ ✓ ✓ ✓ ✓ ✓ ✓

target update ✓ ✓ ✓ ✓ ✓ ✓ ✓
teams ✓ ✓ ✓ ✓ ✓ ✓ ✓

distribute ✓ ✓ ✓ ✓ ✓ ✓ ✓
parallel ✓ ✓ ✓ (may be inactive) ✓ ✓ ✓ ✓
for/do ✓ ✓ ✓ ✓ ✓ ✓ ✓

reduction ✓ ✓ ✓ ✓ ✓ ✓ ✓
simd ✓ (used for optimization, not

for mapping) ✓ (on host) ✓ ✓ (ignored) ✓ ✓ (ignored) ✓
atomic ✓ ✓ ✓ ✓ ✓ ✓ ✓
critical ✓ ✓ ✓ ✓ ✓ ✘ ✓

sections ✓ ✓ ✓ ✓ ✓ ✘ ✓
master ✓ ✓ ✓ ✓ ✓ ✓ ✓
single ✓ ✓ ✓ ✓ ✓ ✓ ✓
barrier ✓ ✓ ✓ ✓ ✓ ✓ ✓

declare variant ✓ ✓ ✓ (C/C++ partial) ✘ ✓ ✘ (planned)
✓ (C/C++)
✘ (OG11)

As of 4/15/2021

LLVM/Clang AMD HPE/Cray IBM Intel NVIDIA GNU

loop directive eventually ✘ ✓ (Fortran only) ✘ ✓ ✓ ✘ (OG12)

collapse of a perfectly nested loop ✓ ✓ ✓ ✓ ✓ ✓ ✓
collapse of an imperfectly nested loop ✓ ✓ (c/c++) ✓ ✘ ✘ ✘ ✘ (OG12)

collapse of a non-rectangular nested loop ✓ ✓ (c/c++) ✓ ✘ ✓ ✘ ✓
array reduction ✓ ✘ ✓ ✓ ✓ ✓ ✘ (OG12)
requires unified_shared_memory ✓ ✘ ✘ (WIP CCE 13) ✓ ✓ ✘ (planned) ✘ (OG11)
requires dynamic_allocators eventually ✘ ✘ ✘ ✓ ✘ ✘ (OG11)

declare reduction eventually ✓ ✓ (C/C++ only) ✓ ✓ (for C++)
✘ (for Fortran)

✘ ✓
declare mapper ✓ ✘ ✘ (WIP CCE 13) ✘ ✘ (WIP) ✘ ✘ (OG12)
metadirective LLVM 13 ✘ ✓ (Fortran only) ✘ ✘ (WIP) ✘ (planned) ✘ (OG12)

“target nowait” supporting asynchronous execution ✓ ✘ ✓ ✓ ✓ ✓ ✓
“target depend” supporting fine-grained dependencies ✓ ✘ ✓ ✓ ✓ ✘ (planned) ✓
“target device” supporting multiple non-host devices per
process

✓ ✘ ✘ (WIP CCE 13) ✓ ✓ ✓ ✓
use_device_addr ✓ ✓ ✓ ✘ ✓ ✓ ✓
detachable tasks: ”detach” clause and “omp_fulfill_event” runtime
routine

✓ ✓ ✓ ✘ ✘ ✘ ✓
Memory management APIs

allocate directive for allocating variables in managed memory via allocator ✓ ✘ ✓ (extension) ✘ ✓ ✘ ✘ (OG11)
allocate clause for allocating privatized variables in managed memory via

allocator ✓ ✘ ✓ (extension) ✘ ✓ ✘ ✘ (OG11)

APIs for allocating/freeing memory via allocator ✓ ✘ ✓ ✘ ✓ ✘ ✓
APIs for defining new allocators with custom traits (e.g. pinned

memory)
✓ (not fully

implemented)
✘ ✓ ✘ ✓ ✘ ✘ (OG11)

Interop objects and APIs ✓ ✘ ✘ (planned CCE
13)

✘ ✘ (WIP) ✘ ✘ (OG12)

MULTIPLE COMPILERS WILL SUPPORT A COMMON SET
OF OPENMP DIRECTIVES ON GPUS (NON-EXHAUSTIVE LIST) (2/2)

As of 4/15/2021

