
Approved for public release

MPICH for Exascale

Yanfei Guo1, Kenneth Raffenetti1, Rob Latham1, Marc Snir2, Hui Zhou1,
Travis Koehring1, Sudheer Chunduri1, Xiaodong Yu1, Rajeev Thakur1

1. Argonne National Laboratory

2. University of Illinois Urbana-Champaign

2

Agenda

• [5 mins] Welcome - Ken Raffenetti
• [30 mins] MPICH Update - Yanfei Guo & Hui Zhou

– Overview and 4.0, 4.1 release updates
• Partner updates

[12 mins] Intel (Gengbin Zheng)
[12 mins] MVAPICH2 (Hari Subramoni)
[12 mins] HPE (Krishna Kandalla)
[12 mins] Pilgrim (Chen Wang – UIUC)

• Q&A

• Please submit questions via Zoom chat
– Speakers can answer questions live, if time permits
– Chat responses welcome throughout the event

3

Exascale MPI (MPICH)
• Funded by DOE for 29 years

• Has been a key influencer in the adoption of MPI
– First/most comprehensive implementation of every MPI standard
– Allows supercomputing centers to not compromise on what features they

demand from vendors
• DOE R&D100 award in 2005

• MPICH and its derivatives are the world’s most widely used MPI
implementations

– Supports all versions of MPI including the recent MPI-3.1

MPICH

Int
el
M
PI

Sunw
ayMP

I

Cray
MPI

Micros
oft

MPI

MVAPI
CH

Tian
he

MPI

MPE
PETS

c

MathWo
rks

HPCTool
kit

TAU

Totalvie
w

DDT

ADL
B

ANSY
S

ParaStat
ion MPI

FG-
MPI

RIK
EN

MPI

MPICH is not just a software
It’s an Ecosystem

• MPICH Adoption in US Exascale Machines
– Aurora, ANL, USA (MPICH)
– Frontier, ORNL, USA (Cray MPI)
– El Capitan, LLNL, USA (Cray MPI)

4

MPICH ABI Compatibility Initiative
• Binary compatibility for MPI implementations

– Started in 2013

– Explicit goal of maintaining ABI compatibility between multiple MPICH
derivatives

– Collaborators:
• MPICH (since v3.1, 2013)

• Intel MPI Library (since v5.0, 2014)

• Cray MPT (starting v7.0, 2014)

• MVAPICH2 (starting v2.0, 2017)

• Parastation MPI (starting v5.1.7-1, 2017)

• RIKEN MPI (starting v1.0, 2016)

• Open initiative: other MPI implementations are welcome to join
• http://www.mpich.org/abi

http://www.mpich.org/abi

5

MPICH Distribution Model
• Source Code Distribution

– MPICH Website, Github
• Binary Distribution through OS Distros and Package

Managers
– Redhat, CentOS, Debian, Ubuntu, Homebrew (Mac)

• Distribution through HPC Package Managers
– Spack, OpenHPC

• Distribution through Vendor Derivatives

6

MPICH Releases

• MPICH switched to a 12-month cycle for major releases (staring from 4.x), barring some significant
releases
– Minor bug fix releases for the current stable release happen every few months

– Preview releases for the next major release happen every few months

– Branch as soon as beta release to allow vendors pick up early

• Current stable release is in the 4.0 series
– mpich-4.0.2 was released in April 2022

• Current major release is in the 4.1 series
– mpich-4.1a1 was released in last week

7

Spack Package Updates
• Recently added GPU variants

– CUDA (+cuda) supported with MPICH 3.4.x and up
– ROCm (+rocm) supported with MPICH 4.0.x and up
– Intel GPU variant in development

• VCI variant (+vci) for improved MPI+Thread performance
– Supported with MPICH 4.0.x and up

• Argobots variant (+argobots) for supporting the Argobots
user-level thread library

• Cray PMI variant (pmi=cray) supports running MPICH on
Cray systems with aprun

• MPICH is part of the Extreme-scale Scientific Software
Stack (E4S)

8

MPICH Architecture Overview

MPI Layer

Abstract Device Interface (ADI)

MPI Interface
Application

Machine-independent
Collectives

Derived Datatype Management
(Yaksa) Group Management

CH4
CH4 Core

Netmods
OFI UCX

Shmmods
POSIX XPMEM

Architecture-specific
Collectives

Active Message
Fallback

GPU Support
Fallback

GPU IPC

Legacy
CH3

9

MPICH-4.0 – CH4 device

• Replacement for CH3 as default option, CH3 still maintained, but
new features are implemented only in CH4

• Low-instruction count communication
– Ability to support high-level network APIs (OFI, UCX)
– E.g., tag-matching in hardware, direct PUT/GET communication

• VCI feature to support high thread concurrency
– Improvements to message rates in highly threaded environments

(MPI_THREAD_MULTIPLE)
– Support for multiple network endpoints (THREAD_MULTIPLE or not)

• GPU-aware
– CUDA, HIP, ZE
– IPC, GPU Direct RDMA

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

200

400

600

800

1000

1200

1400

512 (36 8) 1024 (1 84) 2048 (9 0) 4096 (4 5) 8192 (2 3)

Pe
rc

en
ta

ge
 S

pe
ed

up

Ti
m

es
te

ps
 p

er
 S

ec
on

d

Number of nodes (atoms per core)

MPICH/CH4 Efficiency
MPICH/Original Efficiency
MPICH/CH4 Speedup

-5
0
5

10
15
20
25
30
35
40
45
50
55

4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

M
es

sa
ge

s/
s

(x
 1

06
)

Message size (B)

MPI_THREAD_SINGLE

MPI_THREAD_MULTIPLE with MPI_COMM_WORLD

MPI_THREAD_MULTIPLE with separate COMMs
The CH4 in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

10

MPICH-4.0 – Full support for MPI-4 standard

• MPI Forum released MPI 4.0 standard on June 9, 2021

• Major additions in MPI 4.0
– Solution for “Big Count” operations

• Use, e.g. MPI_Send_c with MPI_Count argument.

– Persistent Collectives
• For example, MPI_Bcast_init

– Partitioned Communication
• Splitting either send buffers or receive buffers into partions
• Allow partial data transfers

– MPI Sessions
• A mother of all possibilities

– New tool interface for events
• Callback-driven event information

– More: improved error handling, better MPI_Comm_split_type,
standardized info hint assertions, improved info usages

The development is done in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

11

MPI+THREAD

• Previously, dismal performance with
MPI_THREAD_MULTIPLE

• Implicit VCI mapping in MPICH-4.0
with potential performance

• Advice to users
– Use different communicators
– Same communicator, use different tags

and set hints

• Explicit VCI coming in next release

12

MPI+GPU

The GPU support in MPICH is developed in close collaboration with vendor
partners including Including AMD, Cray, Intel, Mellanox and NVIDIA

• Native GPU Data Movement
– Multiple forms of “native” data movement
– GPU Direct RDMA is generally achieved through Libfabrics

or UCX (we work with these libraries to enable it)
– GPU Direct IPC is integrated into MPICH

• GPU Fallback Path
– GPU Direct RDMA may not be available due to system

setup (e.g. library, kernel driver, etc.)
– GPU Direct IPC might not be possible for some system

configurations
– GPU Direct (both forms) might not work for noncontiguous

data
– Datatype and Active Message Support
– New GPU-aware datatype engine

0

1

2

3

4

5

6

7

8

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

La
te
nc
y
(u
s)

Message Size (B)

OSU_LATENCY internode fastpath (w/
gdrcopy)

H2H D2D D2H H2D

On Summit with MPICH 4.0, UCX 1.11.0, CUDA 11.4.2, GDRCOPY 2.3

13

GPU-Stream-Aware MPI

• Mismatch between MPI communication and GPU computation

• MPI routines do not take a stream argument and do not know
– Which stream the send data is produced on
– Which stream the receive data will be consumed on

• Syncing with stream to do MPI can be inefficient
– Launching/Sync cost
– Missed opportunity for computation/communication overlapping

MPI

stream1
stream2

stream3

Produce Consume

User has to sync the
device to make sure data
is ready for MPI to send

MPI has to sync the device to
make sure receive data is ready to
be consumed on any stream

([HFXWLRQ

.HUQHO
/DXQFKHV

�$

��������������������������W��XV�

% & $ % &6\QF

�����������������������������������W��XV�

�/� �5�

14

Triggering MPI Operation from GPU Streams

• Allowing point-to-point MPI to be “prepared and enqueued”

• GPU stream triggers transmission

• GPU-stream-aware interface
MPI Application User GPU

Stream

ISEND

GPU
Stream
Sync

kernel 1

kernel 2

GPU
Idle

MPI Application
CPU Helper

Thread

ISEND_STR
EAM

ISEND in Stream-aware MPI today
User GPU

Stream
Launch
Kernel 1

Launch
Kernel 2

Launch
Kernel 1

Launch
Kernel 2

kernel 1

kernel 2

ISEND
Xfer

ISEND in MPI today

Trigger

15

Different Ways of Triggering

• Triggering Process is Essentially a Lightweight CPU-GPU
Synchronization
– SET: GPU stream triggers ops on CPU
– WAIT: GPU stream waits ops on CPU
– Can also do a CPU-GPU BARRIER(-like) operation on theory

• 3 Ways for Implementation
– Launch Host Function / Stream Callback Function – NVIDIA,

AMD
– GPU Kernels – NVIDIA, AMD, Intel
– Stream Mem OP (CUDA Driver API, Kernel Driver Option

Required) - NVIDIA

GPU
Stream

CUDA
Thread

MPI Helper
Thread

HostFn
Op.Flag=1

If op.Flag=1
do_isend()

GPU
Stream

MPI Helper
Thread

Op.Flag=1

If op.Flag=1
do_isend()

16

GPU-Stream-Aware MPI is Multi-Threaded MPI

• GPU-Stream-aware MPI is multi-threaded MPI
– Generally MPI_THREAD_MULTIPLE
– Can optimize to work with MPI_THREAD_SERIALIZE

• Performance Consideration
– Contention between host thread and helper thread, or between multiple helper threads
– Can utilize multiple VCIs for optimization

Host
Thread

GPU Helper
Thread

MPICH

OFI Context 0

OFI Context 1

Host
Thread

GPU Helper
Thread

MPICH

OFI Context 0

OFI Context 1

GPU Stream GPU Stream

Sender Receiver

MPICH 4.1 Release Series

18

MPICH 4.1 Release Series

• MPICH Testsuite
– Comprehensive testsuite for MPI implementations in general
– Now available as separate release target

• Accelerate CI builds
– CI is key for productivity, we do hundreds of CI builds daily
– Projects are getting more complex, and slower to build
– Option to prebuild submodules, ./autogen.sh -quick to avoid repeated rebuild

• MPIX Stream prototype

• Standardize PMI interface

19

MPIX Stream – the missing link in MPI+X

• MPI+Thread
– MPI is a process execution model
– “When a thread is executing one of these routines, if another concurrently running thread also makes an MPI call, the outcome will be

as if the calls executed in some order”

– If application expresses parallelism "correctly", implementations can reserve concurrency
– How do you do so when MPI does not have thread concept? That is a good question!

• MPI+GPU
– Accelerator runtime introduces yet another execution context, e.g. CUDA stream
– It is an always async, serial execution context
– It is critical for minimizing the CPU/GPU launching and synchronization cost
– How do we pass the GPU stream into MPI?
– What happens when we mix conventional MPI calls with MPI operations enqueued to a GPU stream?

20

MPIX Stream -- proposal

• int MPIX_Stream_create(MPI_Info info, MPIX_Stream *stream)

– MPI_INFO_NULL is OK
– For CUDA stream – MPI_Info_set(info, “type”, “cudaStream_t”);

MPIX_Info_set_hex(info, “value”, &stream, sizeof(stream));

• int MPIX_Stream_comm_create(MPI_Comm oldcomm, MPIX_Stream stream,
MPI_Comm *stream_comm)

• Use stream_comm normally for MPI operations, and a local serial context applies
– A two-way promise!

• For CUDA stream, additional “enqueue” APIs
– int MPIX_{Send,Isend,Recv,Irecv,Wait,Waitall}_enqueue(…)

• int MPIX_Stream_comm_create_multiplex(oldcomm, n, streams[],
&multiplex_comm)

– MPIX_Stream_{Send,Isend,Recv,Irecv}(…, src_stream_idx, dst_stream_idx)

21

Code Example
MPI_Info_create(&info);
MPI_Info_set(info, “type”, “cudaStream_t”);
MPIX_Info_set_hex(info, “value”, &cuda_stream, sizeof(cuda_stream));
MPIX_Stream_create(info, &mpi_stream);

MPIX_Stream_comm_create(MPI_COMM_WORLD, mpi_stream, &stream_comm);

if (rank == sender_rank) {
/* … */
MPIX_Send_enqueue(…, stream_comm);
/* … */

} else if (rank == receiver_rank) {
/* … */
MPIX_Irecv_enqueue(…, stream_comm, &req);
/* … */
MPIX_Wait_enqueue(&req, &status);
/* … */

}
cudaStreamSynchronize(cuda_stream);

22

Updating PMI -- issues

• PMI remain an internal component in MPICH

• Supporting both PMI-1 and PMI-2 is confusing
– PMI-1 is still the default in MPICH/Hydra, well tested
– PMI-2 remain experimental, not feature-complete, less stable
– Slurm documents PMI-2, but supports PMI-1
– Cray supports PMI-2

• Interest in using PMI/Hydra independently from MPICH
– PMI interface is a universal interface works everywhere MPI works
– Hydra is a robust and versatile launcher
– PMI/Hydra works well for multi-process runtimes, e.g. OpenSHMEM, NVSHMEM

• Need to extend PMI/Hydra to support modern PMI features
– To (partially) support PMIx

23

Updating PMI -- available in MPICH-4.1a1

• Better configure options
– --with-pmi={pmi1,pmi2,pmix}

– --with-pmilib={mpich,slurm,cray,pmix}

– --with-pm={no,hydra,gforker,remshell}

– --with-pmi={slurm,cray} also works

• Separate release targets
– pmi-4.1a1.tar.gz and hydra-4.1a1.tar.gz

• Standard PMI interfaces
– Third party PMI implementation should support the same pmi.h and pmi2.h

• Internal refactoring
– PMI-1 and PMI-2 are internally unified
– Wire protocol layer and semantic layer are separated

24

Updating PMI – future plans

• Extend PMI-1 and PMI-2 to a superset
– PMI-1 backward compatible
– PMI-2 feature compatible, backward compatible with function aliases or thin wrappers
– Independent wire protocols

• Deprecating PMI-2
– Just PMI_ prefix and #include <pmi.h> and libpmi.so

– Always backward compatible
– New API extensions tracked by PMI_VERSION and PMI_SUBVERSION

• Extend PMI toward PMIx
– KVS scopes
– KVS value types, in particular, binary values
– Predefined/reserved KVS keys with PMI_ prefix

25

MPICH 4.1 Release Plan

• MPICH-4.1 alpha
– Released last week – 4.1a1

• MPICH 4.1 beta
– Planed 11/2022
– Development for MPICH 4.2 start

• MPICH 4.1 GA
– End of 2022 or early 2023

26

Keep In Touch With Us

• MPICH Development Update Meeting
– Every Thursday 9am central
– Microsoft Teams

• Mailing list: discuss@mpich.org

• GitHub: https://github.com/pmodels/mpich
– Report issues
– Contribute pull requests
– Join discussions

mailto:discuss@mpich.org
https://github.com/pmodels/mpich

27

Current MPICH Team

Marc
Snir

Kenneth
Raffenetti

Yanfei Guo
Project Lead

Robert
Latham

Hui
Zhou

Travis
Koehring

Rajeev
Thakur

Sudheer
Chunduri

Xiaodong
Yu

