
Welcome to the…
MPI BoF

Organized by the
2.3.1.07 Exascale MPI (Yanfei Guo, ANL, PI) and
2.3.1.17 OMPI-X: Open MPI for Exascale (David Bernholdt, ORNL, PI)
project teams, with presentations by
Matthew Dosanjh (SNL), Ken Raffenetti (ANL), Howard Pritchard (LANL),
Yanfei Guo (ANL), Aurelien Bouteiller (UTK), and
Jim Dinan (NVIDIA) chair MPI Forum HACC WG

3:00-4:30pm ET Thursday 12 May 2022

2

Welcome and Introduction
• Goal: Provide an opportunity for ECP participants to discuss

the MPI standard and key implementations

• Outline
– Major MPI 4 features

• Sessions, Persistent Collectives, Partitioned Communications – Matthew
Dosanjh (SNL)

• MPI_T, Hardware Topologies, Error Management – Ken Raffenetti (ANL)
– MPI Forum next steps – Howard Pritchard (LANL)
– MPI Hybrid & Accelerator Working Group Update– Jim Dinan (NVIDIA)
– Recent highlights in MPICH – Yanfei Guo (ANL)
– Recent highlights in Open MPI – Aurelien Bouteiller (UTK)
– General Q&A and discussion – David Bernholdt (ORNL), moderator

MPI Sessions, Persistent Collectives, and
Partitioned Communication

Matthew Dosanjh
Sandia National Laboratories

Based on slides by
Howard Prichard
Los Alamos LaboratorySAND2022-6299 C

MPI Sessions

2

• In the MPI 4.0 standard
• Sessions API supported in MPICH 4 release stream

and Open MPI 5.0 release stream (not yet released)
• Complete implementation of MPI 4 Sessions API
• Requires PMIx 4 or newer (for Open MPI)
• Set of examples are available at

https://github.com/hppritcha/mpi_sessions_tests

MPI_Session_init

Query runtime for process sets

MPI_Group_from_session_pset

MPI_Comm_create_from_group

https://github.com/hppritcha/mpi_sessions_tests

MPI Persistent Collectives

5

• Released in the MPI 4 standard at Barcelona MPI Forum Meeting (9/18)
• Aims to accelerate applications with repetitive collective operations
• Initialization call for a persistent collective operation is non-local, all members of

the communicator being supplied to the initialization operation must eventually
invoke this initialization call

• The info argument to these initialization calls can be used to specify MPI
implementation specific optimizations.

MPI Persistent Collectives

6

• Starting/completion semantics
• MPI_*_init creates a request and may be used zero or more times to start the

corresponding collective operation using MPI_Start or MPI_Startall.
• This request must be inactive before starting a persistent collective operation

• Starting a persistent collect operation makes it active
• Only one outstanding collective operation on a request

• Loosens ordering constraints
• Ordering matters for MPI_*_init not MPI_Start*.

• MPI_Wait, MPI_Test, etc. completes the operation but does not free the
request

Partitioned Communication

7

• Share “ownership” of a buffer between MPI and user code
• Similar to RMA Windows

• Uses a persistent buffer ‘partitioned’ into smaller chunks
• User informs MPI when data is ‘ready’ to send.

• User code must manage memory epochs
• Once a partition is marked ready, it’s data can not be changed

• Thread agnostic with a minimal synchronization overhead

Early Bird Communication

• New type of overlap

• Data can be transferred before the last compute thread is finished

• Can consolidate some messaging overhead

• Targeted for accelerator use in a future version of the MPI standard

8

Example (send side)

9

Example (receive side)

1
0

Partitioned communication (MPI 4.0) implementation status

• General implementation layered on top of MPI
– https://github.com/tonyskjellum/MPIPCL

• Available in MPICH since v4.0a1 release

• Available in Main branch of OpenMPI

6

https://github.com/tonyskjellum/MPIPCL

12

Hardware Topologies, Error Handling,
and MPI_T Events

Ken Raffenetti
Argonne National Laboratory

13

New Ways to Adapt to Hardware Topologies

• New systems are increasingly hierarchical
– Mapping of MPI processes to hardware resources is critical for

efficiency and performance
– Desire for hardware topology-aware communicators

• New values for MPI_COMM_SPLIT_TYPE
– Guided Mode (MPI_COMM_TYPE_HW_GUIDED)

• User can provide info key-value to specify hardware level
– Unguided Mode (MPI_COMM_TYPE_HW_UNGUIDED)

• Start from input communicator (e.g. MPI_COMM_WORLD)
• Step-wise go to lower/deeper levels
• Iterative until leaf is reached

14

Improved Error Handling
• Goal: allow applications to limit impact of failures to avoid termination

– Specify that MPI_SUCCESS indicates only the result of the operation, not the state of the MPI library
– Localize error impact of some MPI operations. (e.g. MPI_ALLOC_MEM will now raise an error on

MPI_COMM_SELF, not MPI_COMM_WORLD)
– Specify that MPI should avoid fatal errors when the user does not use MPI_ERRORS_ARE_FATAL
– New MPI Error Handler - MPI_ERRORS_ABORT
– Allow the user to specify the default error handler at mpiexec time

• What can you do with this?
– Point-to-point communication with sockets-like error handling.
– Enables manager/worker and other non-traditional types of applications.
– Enterprise applications that want to move from sockets to MPI can do so.

15

MPI_T Events: Callback-driven event information
• Motivation

• PMPI does not provide access to MPI internal state
information

• MPI_T performance variables only show aggregated
information

• New interface to query available runtime event types
• Follows the MPI_T variable approach
• No specific event types mandated by standard
• Event structure can be inferred at runtime
• Need community input!

• Register callback functions to be called by the MPI
runtime

• Runtime may defer callback invocation (tool can
query event time)

• Runtime may reduce restrictions on callback
functions per invocation

• Callback can query event information individually or
copy data en bloc

MPI Forum next steps

Howard Pritchard
Los Alamos National Laboratory

What’s happening in MPI Forum

•MPI Standard document related activities
– MPI 4.0 standard was released June, 2021
– Preparing a 4.1 release
– Improving maintainability of the Latex source code
– Improving readability of the document, e.g. bettering highlighting of

examples
– Semantics terms supplementary document

https://www.mpi-forum.org/docs/mpi-4.0/addendum-Semantics.pdf

https://www.mpi-forum.org/docs/mpi-4.0/addendum-Semantics.pdf

MPI Forum Working group highlights

• Sessions WG
– MPI 4.1 clarifications/corrections
– Using sessions model in dynamic resource environments

• Versioning of process sets (maybe opaque to application)
• Considering various options for application notification of process set changes

• RMA WG
– Corrections/clarifications for the MPI 4.1 standard
– Conformance to the semantic terms document
– Upcoming workshop(June) - https://mpiwg-rma.github.io/forma22/

• Tools WG
– QMPI / MPI function pointer interception -- Next-generation of MPI Profiling (PMPI) interface

• Hardware Topologies
– Deprecate MPI_COMM_TYPE_HW_GUIDED, to be replaced by MPI_COMM_TYPE_RESOURCE_GUIDED
– New methods based on process sets

https://mpiwg-rma.github.io/forma22/

MPI Forum Working Group Highlights (cont.)

• Hybrid / Accelerators WG
– Accelerator bindings for partitioned communication https://github.com/mpiwg-hybrid/hybrid-issues/issues/4
– Accelerator info keys https://github.com/mpiwg-hybrid/hybrid-issues/issues/3
– Stream/Graph Based MPI Operations https://github.com/mpiwg-hybrid/hybrid-issues/issues/5
– Continuations https://github.com/mpiwg-hybrid/hybrid-issues/issues/6

• Fault Tolerance WG
– MPI-5: Broad directions

• POSIX-like error handling gives fallback for errors (crude fault tolerance) but no MPI fault recovery
• Fine-grained recovery: “Mini-ULFM” – Led by Aurelien Bouteiller
• Course-grained recovery: “Reinit” – Led by Ignacio Laguna

– Convergence Ideas to support all models
• Interrupting Error Handlers (trigger outside MPI calls)
• Implicit Propagation of Errors (avoid need to call MPI_COMM_REVOKE in common use cases)
• Resilient Sessions - Sessions used to restore MPI objects after errors (alternative to MPI_COMM_SHRINK)
• Online switching of models (use ULFM, then use Reinit, then use ULFM again)

https://github.com/mpiwg-hybrid/hybrid-issues/issues/4
https://github.com/mpiwg-hybrid/hybrid-issues/issues/3
https://github.com/mpiwg-hybrid/hybrid-issues/issues/5
https://github.com/mpiwg-hybrid/hybrid-issues/issues/6

Items brewing in working groups (cont.)

• Fault Tolerance WG
– ULFM for execution of fault tolerant applications

• Use error handlers to react and repair effects of failures
• Now directly available in Open MPI 5.0 (as well as MPICH)

– Reinit for global-restart fault tolerance
• Automatic recovery of process and node failures
• Minimum changes to MPI applications
• Focused on bulk synchronous codes with checkpoint/restart
• Draft specification released (v0.1.3) & under discussion

ULFM Example use cases: continue without repair, repair in
domains, respawn missing processes

Reinit Example: showing the rollback upon failure to reduce
overheads on recovery of codes with C/R support.

Joining Working Groups

• Fault Tolerance WG
– Mondays @ 12pm ET (bi-weekly)
– https://github.com/mpiwg-ft/ft-issues/wiki

• Sessions WG
– Mondays @ 1pm ET
– https://github.com/mpiwg-sessions/sessions-issues/wiki

• Tools WG
– Thursdays @ 11am ET
– https://github.com/mpiwg-tools/tools-issues/wiki/Meetings

• Persistent/Partitioned/… WG & Hybrid / Accelerators WG (share timeslot)
– Wednesdays @ 10am ET
– https://github.com/mpiwg-hybrid/hybrid-issues/wiki

https://www.mpi-forum.org/mpi-40/#active-working-groups
Active Working Groups

https://github.com/mpiwg-ft/ft-issues/wiki
https://github.com/mpiwg-sessions/sessions-issues/wiki
https://github.com/mpiwg-tools/tools-issues/wiki/Meetings
https://github.com/mpiwg-hybrid/hybrid-issues/wiki
https://www.mpi-forum.org/mpi-40/#active-working-groups

22

MPI HYBRID & ACCELERATOR
WORKING GROUP UPDATE

James Dinan, NVIDIA
HACC WG Chair
ECP MPI BoF ‘22

23

Mission: Improve interoperability of MPI with other programming models

Active topics:
1. Continuations proposal [Joseph Schuchart, UTK] #6
2. Clarification of thread ordering rules [Daniel Holmes, Intel] #117
3. Integration with accelerator programming models:

1. Accelerator info keys [Jim Dinan, NVIDIA] #3
2. Stream/Graph Based MPI Operations [Jim Dinan, NVIDIA] #5
3. Accelerator bindings for partitioned communication [Jim D., NVIDIA + Maria Garzaran, Intel] #4
4. Partitioned communication buffer preparation [Ryan Grant, Queen’s U.] #264

More information: https://github.com/mpiwg-hybrid/hybrid-issues/wiki

HYBRID & ACCELERATOR WORKING GROUP

https://github.com/mpiwg-hybrid/hybrid-issues/issues/6
https://github.com/mpi-forum/mpi-issues/issues/117
https://github.com/mpiwg-hybrid/hybrid-issues/issues/3
https://github.com/mpiwg-hybrid/hybrid-issues/issues/5
https://github.com/mpiwg-hybrid/hybrid-issues/issues/4
https://github.com/mpi-forum/mpi-standard/pull/264
https://github.com/mpiwg-hybrid/hybrid-issues/wiki

24

COMPLETION CONTINUATIONS

• Interoperability with asynchronous and multithreaded programming models
• Register callbacks that continue the activity upon completion of an MPI operation

Treat the completion of an MPI operation as continuation of some activity

“Callback-based completion notification using MPI Continuations,”
Joseph Schuchart, Christoph Niethammer, José Gracia, George Bosilca, Parallel Computing, 2021.

“MPI Detach - Asynchronous Local Completion,”
Joachim Protze, Marc-André Hermanns, Ali Demiralp, Matthias S. Müller, Torsten Kuhlen. EuroMPI ‘20.

25

CLARIFICATION OF THREAD ORDERING

• Pro: Can enable MPI libraries to optimize performance for multithreaded applications
• Con: Hard to get ordering, and MPI doesn’t know what the user considers to be a thread

• E.g., A user-level thread can be migrated to a different shepherd thread. Does MPI see it?

Option 1: Operations from different threads are unordered, even if app. enforces
ordering

• Pro: Probably what users expect, can relax ordering with info assertions and per-thread comms
• Con: Removes a (questionable) performance optimization opportunity

Option 2: MPI must respect an order across threads if the user enforces one

MPI-3.1 Section 3.5: If a process has a single thread of execution, then any two communications executed by this
process are ordered. On the other hand, if the process is multithreaded, then the semantics of thread execution may
not define a relative order between two send operations executed by two distinct threads. The operations are logically
concurrent, even if one physically precedes the other. In such a case, the two messages sent can be received in any
order. Similarly, if two receive operations that are logically concurrent receive two successively sent messages, then
the two messages can match the two receives in either order.

26

STREAM TRIGGERED NEIGHBOR EXCHANGE
Simple Ring Exchange Using a CUDA Stream

MPI_Request send_req, recv_req;
MPI_Status sstatus, rstatus;

for (i = 0; i < NITER; i++) {
if (i > 0) {
MPI_Wait_enqueue(recv_req, &rstatus, MPI_CUDA_STREAM, stream);
MPI_Wait_enqueue(send_req, &sstatus, MPI_CUDA_STREAM, stream);

}

kernel<<<..., stream>>>(send_buf, recv_buf, …);

if (i < NITER – 1) {
MPI_Irecv_enqueue(&recv_buf, …, &recv_req, MPI_CUDA_STREAM, stream);
MPI_Isend_enqueue(&send_buf, …, &send_req, MPI_CUDA_STREAM, stream);

}
}
cudaStreamSynchronize(stream);

kernel

Isend

Irecv

Wait

Wait

kernel

Isend

Irecv
…

stream

27

ACCELERATOR BINDINGS FOR MPI PARTITIONED APIS
CUDA and SYCL Language Bindings Under Exploration

int MPI_Psend_init(const void *buf, int partitions, MPI_Count count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPI_Precv_init(void *buf, int partitions, MPI_Count count,
MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPI_[start,wait][_all](...)

__device__ int MPI_Pready(int partition, MPI_Request request)

__device__ int MPI_Pready_range(int partition_low, int partition_high, MPI_Request request)

__device__ int MPI_Pready_list(int length, const int array_of_partitions[], MPI_Request request)

__device__ int MPI_Parrived(MPI_Request request, int partition, int *flag)

Keep host only
Add device bindings

28

KERNEL TRIGGERED COMMUNICATION USAGE

Device Code

__device__
void MPI_Pready(int idx, MPI_Request req);

__global__ kernel(..., MPI_Request *req) {
int i = my_partition(...);
// Compute and fill partition i
// then mark i as ready
MPI_Pready(i, req[0]);

}

Partitioned Neighbor Exchange

Host Code
MPI_Request req[2];
MPI_Psend_init(..., &req[0]);
MPI_Precv_init(..., &req[1]);
while (...) {
MPI_Startall(2, req);
MPI_Pbuf_prepare_all(2, req);
kernel<<<..., s>>>(..., req);
cudaStreamSynchronize(s);
MPI_Waitall(2, req);

}
MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]);

29

KERNEL & STREAM TRIGGERED COMMUNICATION USAGE

Device Code

__device__
void MPI_Pready(int idx, MPI_Request req);

__global__ kernel(..., MPI_Request *req) {
int i = my_partition(...);
// Compute and fill partition i
// then mark i as ready
MPI_Pready(i, req[0]);

}

Partitioned Neighbor Exchange

Host Code
MPI_Request req[2];
MPI_Psend_init(..., &req[0]);
MPI_Precv_init(..., &req[1]);
while (...) {
MPI_Startall_enqueue(2, req, …);
MPI_Pbuf_prepare_all_enqueue(2, req, …);
kernel<<<..., s>>>(..., req);
cudaStreamSynchronize(s);
MPI_Waitall_enqueue(2, req, …);

}
MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]); Moving control ops to stream eliminates

stream synchronization overhead

30

KERNEL & STREAM TRIGGERED COMMUNICATION USAGE

Device Code

__device__
void MPI_Pready(int idx, MPI_Request req);

__global__ kernel(..., MPI_Request *req) {
int i = my_partition(...);
// Compute and fill partition i
// then mark i as ready
MPI_Pready(i, req[0]);

}

Partitioned Neighbor Exchange

Host Code
MPI_Request req[2];
MPI_Psend_init(..., &req[0]);
MPI_Precv_init(..., &req[1]);
while (...) {
MPI_Startall_enqueue(2, req, …);
MPI_Pbuf_prepare_all_enqueue(2, req, …);
kernel<<<..., s>>>(..., req);
cudaStreamSynchronize(s);
MPI_Waitall_enqueue(2, req, …);

}
MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]); Allows the sender to wait until receiver

is ready, so Pready becomes RDMA write

31

Thank you!

Wednesdays 10-11am US Eastern Time

https://github.com/mpiwg-hybrid/hybrid-issues/wiki

MPICH Updates

Yanfei Guo (ANL)

33

Exascale MPI (MPICH)
• Funded by DOE for 29 years
• Has been a key influencer in the adoption of MPI

– First/most comprehensive implementation of every MPI standard
– Allows supercomputing centers to not compromise on what features they

demand from vendors
• DOE R&D100 award in 2005
• MPICH and its derivatives are the world’s most widely used MPI

implementations
– Supports all versions of MPI including the recent MPI-3.1

MPICH

Int
el
M
PI

Sunw
ayMP

I

Cray
MPI

Micros
oft

MPI

MVAPI
CH

Tian
he

MPI

MPE
PETS

c

MathWo
rks

HPCTool
kit

TAU

Totalvie
w

DDT

ADL
B

ANSY
S

ParaStat
ion MPI

FG-
MPI

RIK
EN

MPI

MPICH is not just a software
It’s an Ecosystem

• MPICH Adoption in US Exascale Machines
– Aurora, ANL, USA (MPICH)
– Frontier, ORNL, USA (Cray MPI)
– El Capitan, LLNL, USA (Cray MPI)

34

MPICH Releases

• MPICH switched to a 12-month cycle for major releases (staring from 4.x), barring some significant
releases

– Minor bug fix releases for the current stable release happen every few months

– Preview releases for the next major release happen every few months

– Branch as soon as beta release to allow vendors pick up early

• Current stable release is in the 4.0 series
– mpich-4.0.2 was released in April 2022

• Current major release is in the 4.1 series
– mpich-4.1a1 was released in last week

35

MPICH-4.0 – Full support for MPI-4 standard

• MPI Forum released MPI 4.0 standard on June 9, 2021

• Major additions in MPI 4.0
– Solution for “Big Count” operations

• Use, e.g. MPI_Send_c with MPI_Count argument.

– Persistent Collectives
• For example, MPI_Bcast_init

– Partitioned Communication
• Splitting either send buffers or receive buffers into partions
• Allow partial data transfers

– MPI Sessions
• A mother of all possibilities

– New tool interface for events
• Callback-driven event information

– More: improved error handling, better MPI_Comm_split_type,
standardized info hint assertions, improved info usages

The development is done in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

36

MPI+THREAD

• Previously, dismal performance with
MPI_THREAD_MULTIPLE

• Implicit VCI mapping in MPICH-4.0
with potential performance

• Advice to users
– Use different communicators
– Same communicator, use different tags

and set hints

• Explicit VCI coming in next release

37

MPI+GPU

The GPU support in MPICH is developed in close collaboration with vendor
partners including Including AMD, Cray, Intel, Mellanox and NVIDIA

• Native GPU Data Movement
– Multiple forms of “native” data movement
– GPU Direct RDMA is generally achieved through Libfabrics

or UCX (we work with these libraries to enable it)
– GPU Direct IPC is integrated into MPICH

• GPU Fallback Path
– GPU Direct RDMA may not be available due to system

setup (e.g. library, kernel driver, etc.)
– GPU Direct IPC might not be possible for some system

configurations
– GPU Direct (both forms) might not work for noncontiguous

data
– Datatype and Active Message Support
– New GPU-aware datatype engine

CH4

MPI Layer

CH4 Core

Netmods

OFI UCX

Shmmods

POSIX XPMEM

Architecture-specific
Collectives

Active Message
Fallback

Abstract Device Interface (ADI)

MPI Interface
Application

Machine-
independent
Collectives

Derived Datatype
Management (Yaksa)

Group
Management

GPU Support
Fallback

GPU IPC

NVIDIA
CUDA

AMD
HIP

Intel
OneAPI

38

MPICH 4.1 Release Plan

• MPICH-4.1a1
– Released last week

• MPICH 4.1 beta
– Planed 11/2022
– Development for MPICH 4.2 start

• MPICH 4.1 GA
– End of 2022 or early 2023

Open MPI Update

Aurelien Bouteiller (UTK)

40

Recent updates in Open MPI stable (4.x)

• OMPI 4.1.x (4.1.3, March 22) stable has a lot of updates
– Full support for MPI 3.1
– New documentation website (readthedoc, manpages) https://docs.open-mpi.org/en/main/index.html
– PMIx update with better compatibility with external PMIx (including PMIx 4.x)
– Bug fixes with large datatypes (and counts)
– MPI I/O updates (OMPIO and ROMIO 3.4)
– Lots of bug fixes for the CUDA components

• Performance related updates
– Added new MPI collectives implementations (HAN, ADAPT) providing support for architecture aware

collectives.
– Many multi-threaded improvements, including UCX support for one- and two- sided communications,

WAITALL
– MPI_Op support for vectorial ISA (x86 with AVX2, AVX512)
– MPI Software Performance Counters available via MPI_T or PAPI (message rate, instant bandwidth, pending

messages, expected and unexpected queues and many more)

41

Updates in the next Open MPI release (5.0)
•OMPI 5.0.0rc6 (Apr 2022)

– Builds as a monolithic library with plugins directly linked into the
library (single .so file), a more file system friendly approach at scale

– Removed the C++ bindings
– Removed support for MPIR, now tools support via PMIx tools interface
– Revamped and refreshed documentation on readthedocs.io
– PRRTE, upgraded to PMIx 4.2 (many fixes to the mpiexec option parsing)

•New features:
– MPI 4.x readiness (persistent collectives, partitioned communications (#8641),

sessions, and more)
– User Level Fault Mitigation (ULFM) support
– FP16 support (MPIX extension)
– Extended MPI_Op support for vectorial ISA (x86 but also ARM64)

42

Updates in the next Open MPI release (5.0)
•Performance improvements

– Architecture-aware collective (HAN) will become the default
instead of tuned

– Additional multi-threaded improvements for one and two sided communications
– Atomic operations (ARM64, PPC, C11)
– MPI non-contiguous datatypes optimizations
– CUDA+OFI support
– ABI compatible with 4.1.x
– Ready for anything from HPC to cloud (containers, AWS, …)

43

Welcome and Introduction
• Goal: Provide an opportunity for ECP participants to discuss

the MPI standard and key implementations

• Outline
– Major MPI 4 features

• Sessions, Persistent Collectives, Partitioned Communications – Matthew
Dosanjh (SNL)

• MPI_T, Hardware Topologies, Error Management – Ken Raffenetti (ANL)
– MPI Forum next steps – Howard Pritchard (LANL)
– MPI Hybrid & Accelerator Working Group Update– Jim Dinan (NVIDIA)
– Recent highlights in MPICH – Yanfei Guo (ANL)
– Recent highlights in Open MPI – Aurelien Bouteiller (UTK)
– General Q&A and discussion – David Bernholdt (ORNL), moderator

	Welcome to the…�MPI BoF
	Welcome and Introduction
	MPI Sessions, Persistent Collectives, and Partitioned Communication
	MPI Sessions
	MPI Persistent Collectives
	MPI Persistent Collectives
	Partitioned Communication
	Early Bird Communication
	Example (send side)
	Example (receive side)
	Partitioned communication (MPI 4.0) implementation status
	Hardware Topologies, Error Handling, and MPI_T Events
	New Ways to Adapt to Hardware Topologies
	Improved Error Handling
	MPI_T Events: Callback-driven event information
	MPI Forum next steps
	What’s happening in MPI Forum
	MPI Forum Working group highlights
	MPI Forum Working Group Highlights (cont.)
	Items brewing in working groups (cont.)
	Joining Working Groups
	MPI Hybrid & Accelerator�Working Group Update
	Hybrid & Accelerator Working Group
	COMPLETION CONTINUATIONS
	Clarification of Thread Ordering
	Stream Triggered Neighbor Exchange
	Accelerator Bindings for MPI Partitioned APIs
	Kernel Triggered Communication Usage
	Kernel & Stream Triggered Communication Usage
	Kernel & Stream Triggered Communication Usage
	Slide Number 31
	MPICH Updates
	Exascale MPI (MPICH)
	MPICH Releases
	MPICH-4.0 – Full support for MPI-4 standard
	MPI+THREAD
	MPI+GPU
	MPICH 4.1 Release Plan
	Open MPI Update
	Recent updates in Open MPI stable (4.x)
	Updates in the next Open MPI release (5.0)
	Updates in the next Open MPI release (5.0)
	Welcome and Introduction

