
libEnsemble: A Library for Managing
Dynamic Ensembles of Calculations

Stephen Hudson John-Luke Navarro Jeffrey Larson Stefan Wild

Argonne National Laboratory

July 7, 2022



What is libEnsemble

I libEnsemble is a Python toolkit for coordinating workflows of
asynchronous and dynamic ensembles of calculations

I Developed to use massively parallel resources to accelerate the solution of
design, decision, and inference problems

I Developed to expand the class of problems that can benefit from increased
computational concurrency levels

I libEnsemble uses a manager to allocate work to various workers

I A libEnsemble worker is the smallest indivisible unit. The number of
libEnsemble workers is the maximum num to perform

2 of 12
.



What is libEnsemble

I libEnsemble is a Python toolkit for coordinating workflows of
asynchronous and dynamic ensembles of calculations

I Developed to use massively parallel resources to accelerate the solution of
design, decision, and inference problems

I Developed to expand the class of problems that can benefit from increased
computational concurrency levels

I libEnsemble uses a manager to allocate work to various workers

I A libEnsemble worker is the smallest indivisible unit. The number of
libEnsemble workers is the maximum num to perform

2 of 12
.



What is libEnsemble

I libEnsemble is a Python toolkit for coordinating workflows of
asynchronous and dynamic ensembles of calculations

I Developed to use massively parallel resources to accelerate the solution of
design, decision, and inference problems

I Developed to expand the class of problems that can benefit from increased
computational concurrency levels

I libEnsemble uses a manager to allocate work to various workers

I A libEnsemble worker is the smallest indivisible unit. The number of
libEnsemble workers is the maximum num to perform

2 of 12
.



What is libEnsemble

I libEnsemble is a Python toolkit for coordinating workflows of
asynchronous and dynamic ensembles of calculations

I Developed to use massively parallel resources to accelerate the solution of
design, decision, and inference problems

I Developed to expand the class of problems that can benefit from increased
computational concurrency levels

I libEnsemble uses a manager to allocate work to various workers

I A libEnsemble worker is the smallest indivisible unit. The number of
libEnsemble workers is the maximum num to perform

2 of 12
.



What is libEnsemble

I libEnsemble is a Python toolkit for coordinating workflows of
asynchronous and dynamic ensembles of calculations

I Developed to use massively parallel resources to accelerate the solution of
design, decision, and inference problems

I Developed to expand the class of problems that can benefit from increased
computational concurrency levels

I libEnsemble uses a manager to allocate work to various workers

I A libEnsemble worker is the smallest indivisible unit. The number of
libEnsemble workers is the maximum num to perform

2 of 12
.



libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f

sim_f: Evaluates a simulation (any user-defined function) using input
defined by gen_f

alloc_f: As workers become available, decides if a sim_f or gen_f should
be called (and with what input/resources)

3 of 12
.



libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f

sim_f: Evaluates a simulation (any user-defined function) using input
defined by gen_f

alloc_f: As workers become available, decides if a sim_f or gen_f should
be called (and with what input/resources)

3 of 12
.



libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f

sim_f: Evaluates a simulation (any user-defined function) using input
defined by gen_f

alloc_f: As workers become available, decides if a sim_f or gen_f should
be called (and with what input/resources)

3 of 12
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

completed
simulation

4 of 12
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

completed
simulation

requestedpoints

4 of 12
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

idle worker

4 of 12
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

idle workersimulation
work

4 of 12
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

active
simulation

4 of 12
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

completed
simulation

persistent
generation

active
simulation

...

completed
simulation

simulation
output

sim
ulation

output

4 of 12
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

idle worker

persistent
generation

active
simulation

...

idle worker

4 of 12
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

idle worker

persistent
generation

active
simulation

...

idle worker
si
m
ul
at
io
n

ou
tp
ut

simulation
work

4 of 12
.



libEnsemble dependencies
I Python 3.7+, NumPy, psutil, setuptools

I Communications in libEnsemble can be done using
I MPI
I Multiprocessing
I TCP

I The repo contains example gen_f/sim_f functions that require NLopt,
PETSc, SciPy, Tasmanian, etc.

5 of 12
.



libEnsemble dependencies
I Python 3.7+, NumPy, psutil, setuptools

I Communications in libEnsemble can be done using
I MPI
I Multiprocessing
I TCP

I The repo contains example gen_f/sim_f functions that require NLopt,
PETSc, SciPy, Tasmanian, etc.

5 of 12
.



libEnsemble dependencies
I Python 3.7+, NumPy, psutil, setuptools

I Communications in libEnsemble can be done using
I MPI
I Multiprocessing
I TCP

I The repo contains example gen_f/sim_f functions that require NLopt,
PETSc, SciPy, Tasmanian, etc.

5 of 12
.



Possible user requests of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources

I Places requirements on user’s environment and simulation/generation
function

I Termination of unresponsive simulation/generation calculations

I Termination based on intermediate simulation/generation output

6 of 12
.



Possible user requests of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources
I Places requirements on user’s environment and simulation/generation

function

I Termination of unresponsive simulation/generation calculations

I Termination based on intermediate simulation/generation output

6 of 12
.



Possible user requests of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources
I Places requirements on user’s environment and simulation/generation

function

I Termination of unresponsive simulation/generation calculations

I Termination based on intermediate simulation/generation output

6 of 12
.



Possible user requests of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources
I Places requirements on user’s environment and simulation/generation

function

I Termination of unresponsive simulation/generation calculations

I Termination based on intermediate simulation/generation output

6 of 12
.



Possible user requests of libEnsemble

I Maintenance of calculation history, logging, and performance measures

I Simulation/generation checkpoint and restart

I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC, Theta/ALCF)

I Thousands of concurrent workers

7 of 12
.



Possible user requests of libEnsemble

I Maintenance of calculation history, logging, and performance measures

I Simulation/generation checkpoint and restart

I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC, Theta/ALCF)

I Thousands of concurrent workers

7 of 12
.



Possible user requests of libEnsemble

I Maintenance of calculation history, logging, and performance measures

I Simulation/generation checkpoint and restart

I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC, Theta/ALCF)

I Thousands of concurrent workers

7 of 12
.



Possible user requests of libEnsemble

I Maintenance of calculation history, logging, and performance measures

I Simulation/generation checkpoint and restart

I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC, Theta/ALCF)

I Thousands of concurrent workers

7 of 12
.



Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell you
which runs fail and start other work

I Don’t have to write your own kills, just complete libEnsemble templates

I Want to add concurrency to a generator (e.g., multiple local optimizers.)

8 of 12
.



Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell you
which runs fail and start other work

I Don’t have to write your own kills, just complete libEnsemble templates

I Want to add concurrency to a generator (e.g., multiple local optimizers.)

8 of 12
.



Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell you
which runs fail and start other work

I Don’t have to write your own kills, just complete libEnsemble templates

I Want to add concurrency to a generator (e.g., multiple local optimizers.)

8 of 12
.



Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell you
which runs fail and start other work

I Don’t have to write your own kills, just complete libEnsemble templates

I Want to add concurrency to a generator (e.g., multiple local optimizers.)

8 of 12
.



Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell you
which runs fail and start other work

I Don’t have to write your own kills, just complete libEnsemble templates

I Want to add concurrency to a generator (e.g., multiple local optimizers.)

8 of 12
.



Use cases

I A user wants to evaluate a simulation at
parameters randomly sampled from a domain of
allowed values

I Many parameter sets will cause the simulation
to fail

I libEnsemble can stop unresponsive evaluations,
and recover computational resources for future
evaluations

I gen_f can update the sampling after discovering
regions where evaluations of simulation fail

git clone https://github.com/Libensemble/libensemble.git

9 of 12
.



Use cases

I To optimize a function that depends on a simulation

I The simulation is already using parallel resources, but not a large fraction
of some computer

I libEnsemble can coordinate the concurrent evaluation of the simulation
sim_f at various parameter values and gen_f would return candidate
parameter values (possibly after each sim_f output)

git clone https://github.com/Libensemble/libensemble.git

9 of 12
.



Use cases

I To optimize a function that depends on a simulation

I The simulation is already using parallel resources, but not a large fraction
of some computer

I libEnsemble can coordinate the concurrent evaluation of the simulation
sim_f at various parameter values and gen_f would return candidate
parameter values (possibly after each sim_f output)

git clone https://github.com/Libensemble/libensemble.git

9 of 12
.



APOSMM
Asynchronously Parallel Optimization Solver for Finding Multiple Minima

I Identify distinct, “high-quality”, local optima of some sim_f output

I Derivatives of sim_f may or may not be available

I sim_f may use parallel resources, but not the entire machine

I Possibly want a specialized local optimization method

10 of 12
.



APOSMM
Asynchronously Parallel Optimization Solver for Finding Multiple Minima

I Identify distinct, “high-quality”, local optima of some sim_f output

I Derivatives of sim_f may or may not be available

I sim_f may use parallel resources, but not the entire machine

I Possibly want a specialized local optimization method

10 of 12
.



APOSMM
Asynchronously Parallel Optimization Solver for Finding Multiple Minima

I Identify distinct, “high-quality”, local optima of some sim_f output

I Derivatives of sim_f may or may not be available

I sim_f may use parallel resources, but not the entire machine

I Possibly want a specialized local optimization method

10 of 12
.



APOSMM
Asynchronously Parallel Optimization Solver for Finding Multiple Minima

I Identify distinct, “high-quality”, local optima of some sim_f output

I Derivatives of sim_f may or may not be available

I sim_f may use parallel resources, but not the entire machine

I Possibly want a specialized local optimization method

10 of 12
.



APOSMM
Iteration: 0; r_k: Inf

11 of 12
.



APOSMM
Iteration: 1; r_k: 0.743

11 of 12
.



APOSMM
Iteration: 2; r_k: 0.743

11 of 12
.



APOSMM
Iteration: 3; r_k: 0.689

11 of 12
.



APOSMM
Iteration: 4; r_k: 0.643

11 of 12
.



APOSMM
Iteration: 5; r_k: 0.605

11 of 12
.



APOSMM
Iteration: 6; r_k: 0.605

11 of 12
.



APOSMM
Iteration: 7; r_k: 0.605

11 of 12
.



APOSMM
Iteration: 8; r_k: 0.605

11 of 12
.



APOSMM
Iteration: 9; r_k: 0.605

11 of 12
.



APOSMM
Iteration: 10; r_k: 0.605

11 of 12
.



APOSMM
Iteration: 35; r_k: 0.605

11 of 12
.



APOSMM
Iteration: 36; r_k: 0.605

11 of 12
.



APOSMM
Iteration: 37; r_k: 0.589

11 of 12
.



APOSMM
Iteration: 38; r_k: 0.574

11 of 12
.



APOSMM
Iteration: 39; r_k: 0.560

11 of 12
.



APOSMM
Iteration: 40; r_k: 0.548

11 of 12
.



APOSMM
Iteration: 41; r_k: 0.536

11 of 12
.



APOSMM
Iteration: 42; r_k: 0.525

11 of 12
.



APOSMM
Iteration: 43; r_k: 0.515

11 of 12
.



APOSMM
Iteration: 44; r_k: 0.497

11 of 12
.



APOSMM
Iteration: 45; r_k: 0.480

11 of 12
.



APOSMM

12 of 12
.


