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What is libEnsemble

I libEnsemble is a Python toolkit for coordinating workflows of
asynchronous and dynamic ensembles of calculations

I Developed to use massively parallel resources to accelerate the solution of
design, decision, and inference problems

I Developed to expand the class of problems that can benefit from increased
computational concurrency levels

I libEnsemble uses a manager to allocate work to various workers

I A libEnsemble worker is the smallest indivisible unit. The number of
libEnsemble workers is the maximum num to perform
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libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f

sim_f: Evaluates a simulation (any user-defined function) using input
defined by gen_f

alloc_f: As workers become available, decides if a sim_f or gen_f should
be called (and with what input/resources)
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libEnsemble dependencies
I Python 3.7+, NumPy, psutil, setuptools

I Communications in libEnsemble can be done using
I MPI
I Multiprocessing
I TCP

I The repo contains example gen_f/sim_f functions that require NLopt,
PETSc, SciPy, Tasmanian, etc.
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Possible user requests of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources

I Places requirements on user’s environment and simulation/generation
function

I Termination of unresponsive simulation/generation calculations

I Termination based on intermediate simulation/generation output
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Possible user requests of libEnsemble

I Maintenance of calculation history, logging, and performance measures

I Simulation/generation checkpoint and restart

I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC, Theta/ALCF)

I Thousands of concurrent workers

7 of 12
.



Possible user requests of libEnsemble

I Maintenance of calculation history, logging, and performance measures

I Simulation/generation checkpoint and restart

I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC, Theta/ALCF)

I Thousands of concurrent workers

7 of 12
.



Possible user requests of libEnsemble

I Maintenance of calculation history, logging, and performance measures

I Simulation/generation checkpoint and restart

I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC, Theta/ALCF)

I Thousands of concurrent workers

7 of 12
.



Possible user requests of libEnsemble

I Maintenance of calculation history, logging, and performance measures

I Simulation/generation checkpoint and restart

I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC, Theta/ALCF)

I Thousands of concurrent workers

7 of 12
.



Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell you
which runs fail and start other work

I Don’t have to write your own kills, just complete libEnsemble templates

I Want to add concurrency to a generator (e.g., multiple local optimizers.)
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Use cases

I A user wants to evaluate a simulation at
parameters randomly sampled from a domain of
allowed values

I Many parameter sets will cause the simulation
to fail

I libEnsemble can stop unresponsive evaluations,
and recover computational resources for future
evaluations

I gen_f can update the sampling after discovering
regions where evaluations of simulation fail

git clone https://github.com/Libensemble/libensemble.git
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Use cases

I To optimize a function that depends on a simulation

I The simulation is already using parallel resources, but not a large fraction
of some computer

I libEnsemble can coordinate the concurrent evaluation of the simulation
sim_f at various parameter values and gen_f would return candidate
parameter values (possibly after each sim_f output)

git clone https://github.com/Libensemble/libensemble.git
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APOSMM
Asynchronously Parallel Optimization Solver for Finding Multiple Minima

I Identify distinct, “high-quality”, local optima of some sim_f output

I Derivatives of sim_f may or may not be available

I sim_f may use parallel resources, but not the entire machine

I Possibly want a specialized local optimization method
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APOSMM
Iteration: 0; r_k: Inf
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APOSMM
Iteration: 1; r_k: 0.743
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APOSMM
Iteration: 2; r_k: 0.743
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APOSMM
Iteration: 3; r_k: 0.689
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APOSMM
Iteration: 4; r_k: 0.643
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APOSMM
Iteration: 5; r_k: 0.605
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Iteration: 10; r_k: 0.605
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APOSMM
Iteration: 35; r_k: 0.605
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Iteration: 36; r_k: 0.605
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Iteration: 37; r_k: 0.589
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Iteration: 38; r_k: 0.574
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Iteration: 39; r_k: 0.560
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Iteration: 40; r_k: 0.548
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Iteration: 41; r_k: 0.536
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Iteration: 42; r_k: 0.525
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Iteration: 43; r_k: 0.515
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Iteration: 44; r_k: 0.497
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APOSMM
Iteration: 45; r_k: 0.480

11 of 12
.



APOSMM
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