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History array
Stephen Hudson (June 2022)



H array - Introduction

gen_specs[‘out’] = [(‘x’, float, 2), 
(‘theta’, int)]

H on manager (the global history array).

H is a numpy structured array. This is a numpy array with named fields. Each row 
represents a simulation to evaluate.

Fields can hold different data types. The fields and types in H are defined by 
gen/sim_specs[‘out’] given by tuples.

In addition, there are protected fields (sim_started, sim_ended, and gen_informed
are shown as examples).

sim_specs[‘out’] = [(‘f’, float)]

sim_id x theta f
sim_

started
sim_

ended
gen_

informed

-1 0.0, 0.0 0 0.0 False False False

-1 0.0, 0.0 0 0.0 False False False

-1 0.0, 0.0 0 0.0 False False False

The sim_id field in the manager’s H array is usually the same 
as the index for generated points. 

Example: Each simulation has two 
inputs (x and theta) and one output (f). 

User fieldsUser fields



H arrays – Generator is called

Generator function

gen_specs[‘in’] =
[’x’, ‘theta’, ’f’]

H on manager (the global history array).

Worker 1 H_out

sim_id x theta f sim_started sim_ended

-1 0.0, 0.0 0 0.0 False False

-1 0.0, 0.0 0 0.0 False False

-1 0.0, 0.0 0 0.0 False False

H initialized. No points generated.

gen_specs[‘out’] = [(‘x’, float, 2), 
(‘theta’, int)]

gen_specs[‘in’] brings in 
inputs and outputs from 
previous simulations.

H sent to generator 
has no rows on first 
call – requesting 
points.

x theta

0.0, 0.1 10

1.0, 1.1 11

2.0, 2.1 11

sim_id x theta f sim_started sim_ended

0 0.0, 0.1 10 0.0 False False

1 1.0, 1.1 11 0.0 False False

2 2.0, 2.1 11 0.0 False False

H receives generated data.

gen_specs[‘out’] can be used in 
generator for consistency

NOTE: As the generator did not supply sim_id, manager assigns.

def my_gen(H, persis_info, gen_specs, libE_info): 



H arrays – Points are given out for evaluation

Simulator function

sim_specs[‘in’] = [‘x’, ‘theta’]

H on manager (the global history array).

sim_id x theta f sim_started sim_ended

0 0.0, 0.1 10 0.0 True False

1 1.0, 1.1 11 0.0 True False

2 2.0, 2.1 11 0.0 False False

x theta

0.0, 0.1 10
Worker 1

sim_specs[‘out’] = [(‘f’, float)]

f

100.0
H_out

H_out

NOTE: Multiple rows can be given to the same worker in one 
allocation.

sim_id x theta f sim_started sim_ended

0 0.0, 0.1 10 100.0 True True

1 1.0, 1.1 11 200.0 True True

2 2.0, 2.1 11 0.0 False False

Worker 2
x theta

1.0, 1.1 11

f

200.0

H

H

The allocation function assigns rows to gens/sims.
• sim_started field is set to True as points are given out. 

History arrays in gen and sim functions are subsets of both rows 
and fields of the global H.

H receives simulation result.
• sim_ended field is set to True

def my_sim(H, persis_info, sim_specs, libE_info): 



H arrays – Results returned to generator

Generator function

H on manager (the global history array).

Worker 1

H_out

sim_id x theta f sim_started sim_ended

0 0.0, 0.1 10 100.0 True True

1 1.0, 1.1 11 200.0 True True

2 2.0, 2.1 11 0.0 False False

Returned points given back to the generator.

• Another protected field gen_informed (not shown) is 
set to True.

gen_specs[‘out’] = [(‘x’, float, 2), 
(‘theta’, int)]

gen_specs[‘in’] may contain both evaluation input (x, 
theta) and output (f).

H (calc_in) 

x theta f

0.0, 0.1 10 100.0

1.0, 1.1 11 200.0

H receives generated data.

This generator creates N new points for 
every N results given back.

x Theta

3.0, 3.1 11

4.0, 4.1 12sim_id x theta f sim_started sim_ended

0 0.0, 0.1 10 100.0 True True

1 1.0, 1.1 11 200.0 True True

2 2.0, 2.1 11 0.0 False False

3 3.0, 3.1 11 0.0 False False

4 4.0, 4.1 12 0.0 False False

gen_specs[‘in’] =
[’x’, ‘theta’, ’f’]



Persistent Generator

• Now a persistent gen (spot the difference)

• A persistent generator continues to run on a worker and 
communicates with the manager via send/recv functions.

• These are provided by the PersistentSupport module.

• Remember to add a worker for the persistent generator.



Non-persistent Generator Persistent Generator

def uniform_random_sample(H, persis_info, gen_specs, _):

"""Generate batch of random floats in [0,1)""“

b = gen_specs["user"]["gen_batch_size"]

H_o = np.zeros(b, dtype=gen_specs["out"])

H_o["x"] = persis_info["rand_stream"].uniform(b)

return H_o, persis_info

def persistent_uniform(H, persis_info, gen_specs, libE_info):

"""Generate batches of random floats in [0,1)"""

b = gen_specs["user"]["initial_batch_size"]

ps = PersistentSupport(libE_info, EVAL_GEN_TAG)

tag = None

while tag not in [STOP_TAG, PERSIS_STOP]:

H_o = np.zeros(b, dtype=gen_specs["out"])

H_o["x"] = persis_info["rand_stream"].uniform(b)

tag, _, H = ps.send_recv(H_o)

return H_o, persis_info, FINISHED_PERSISTENT_GEN_TAG



Non-persistent Generator Persistent Generator

def uniform_random_sample(H, persis_info, gen_specs, _):

"""Generate batch of random floats in [0,1)""“

b = gen_specs["user"]["gen_batch_size"]

H_o = np.zeros(b, dtype=gen_specs["out"])

H_o["x"] = persis_info["rand_stream"].uniform(b)

return H_o, persis_info

def persistent_uniform(H, persis_info, gen_specs, libE_info):

"""Generate batches of random floats in [0,1)"""

b = gen_specs["user"]["initial_batch_size"]

ps = PersistentSupport(libE_info, EVAL_GEN_TAG)

tag = None

while tag not in [STOP_TAG, PERSIS_STOP]:

H_o = np.zeros(b, dtype=gen_specs["out"])

H_o["x"] = persis_info["rand_stream"].uniform(b)

tag, _, H = ps.send_recv(H_o)

return H_o, persis_info, FINISHED_PERSISTENT_GEN_TAG



H arrays – Persistent generator is called

Persistent generator function

gen_specs[‘in’] = []

H on manager (the global history array).

Worker 1 H_out

sim_id x theta f sim_started sim_ended

-1 0.0, 0.0 0 0.0 False False

-1 0.0, 0.0 0 0.0 False False

-1 0.0, 0.0 0 0.0 False False

H initialized. No points generated.

gen_specs[‘out’] = [(‘x’, float, 2), 
(‘theta’, int)]

gen_specs[‘in’] is empty -
when the persistent generator 
is first called nothing is given 
to it. This may be different if 
using previous data (H0).

H sent to generator is 
empty

x theta

0.0, 0.1 10

1.0, 1.1 11

2.0, 2.1 11

sim_id x theta f sim_started sim_ended

0 0.0, 0.1 10 0.0 False False

1 1.0, 1.1 11 0.0 False False

2 2.0, 2.1 11 0.0 False False

H receives generated data.

gen_specs[‘out’] can be used in 
generator for consistency

NOTE: As the generator did not supply sim_id, manager assigns.



H arrays – Points are given out for evaluation

Simulator function

sim_specs[‘in’] = [‘x’, ‘theta’]

H on manager (the global history array).

sim_id x theta f sim_started sim_ended

0 0.0, 0.1 10 0.0 True False

1 1.0, 1.1 11 0.0 True False

2 2.0, 2.1 11 0.0 False False

x theta

0.0, 0.1 10
Worker 2

sim_specs[‘out’] = [(‘f’, float)]

f

100.0
H_out

H_out

NOTE: Multiple rows can be given to the same worker in one 
allocation.

sim_id x theta f sim_started sim_ended

0 0.0, 0.1 10 100.0 True True

1 1.0, 1.1 11 200.0 True True

2 2.0, 2.1 11 0.0 False False

Worker 3
x theta

1.0, 1.1 11

f

200.0

H

H

The allocation function assigns rows to gens/sims.
• sim_started field is set to True as points are given out. 

History arrays in gen and sim functions are subsets of both rows 
and fields of the global H.

H receives simulation result.
• sim_ended field is set to True

def my_sim(H, persis_info, sim_specs, libE_info): 



H arrays – Results returned to persistent generator

Persistent generator function

gen_specs[‘persis_in’] = [‘f’]

H on manager (the global history array).

Worker 1

H_out

sim_id x theta f sim_started sim_ended

0 0.0, 0.1 10 100.0 True True

1 1.0, 1.1 11 200.0 True True

2 2.0, 2.1 11 0.0 False False

Returned points given back to persistent generator.

• Another protected field gen_informed (not shown) is 
set to True.

gen_specs[‘out’] = [(‘x’, float, 2), 
(‘theta’, int)]

gen_specs[‘persis_in’] may contain both evaluation 
input (x, theta) and output (f) or, as in this case, just 
the output, as the persistent generator already has the 
input.

H (calc_in) 

f

100.0

200.0

H receives generated data.

This generator creates N new points for 
every N results given back.

x Theta

3.0, 3.1 11

4.0, 4.1 12sim_id x theta f sim_started sim_ended

0 0.0, 0.1 10 100.0 True True

1 1.0, 1.1 11 200.0 True True

2 2.0, 2.1 11 0.0 False False

3 3.0, 3.1 11 0.0 False False

4 4.0, 4.1 12 0.0 False False



Storing the history array

• The history array is usually written to file at the end of the ensemble 
– via the user’s calling script.

• Error handling - libEnsemble captures exceptions from the manager 
and workers, and will write history array to file before closing down.

• You can also write the array after every N evaluations.



Running User Applications
Stephen Hudson (June 2022)



Portable/flexible workflows

• How can user’s reuse python scripts across various platforms?

• An executor is a portable interface that can execute applications on 
on various platforms.

• libEnsemble’s executors include:
• Base Executor – subprocess application in-place (e.g. serial/multi-threaded)

• MPI Executor – Launch an MPI run (via detected runner).

• Balsam Executor – Launch MPI or serial runs via Balsam (inc. remote systems).
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Executor Interface

Portable scripts

Work with:

Retries launches

on failure

The main Executor functions are 
submit, poll, wait and kill.

• Allows portable user-
side functions.

from libensemble.executors import MPIExecutor

exctr = MPIExecutor()  # Or BalsamExecutor

exctr.register_app(full_path=sim_app, app_name="forces")

exctr = Executor.executor

task = exctr.submit(app_name="forces“)

while not task.finished:

if 'Error' in task.read_stdout():

task.kill()

else:

time.sleep(poll_interval)

task.poll()
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Executor Interface

Portable scripts

Work with:

Retries launches

on failure

The main Executor functions are 
submit, poll, wait and kill.

• Also supports 
futures interface

from libensemble.executors import MPIExecutor

exctr = MPIExecutor()  # Or BalsamExecutor

exctr.register_app(full_path=sim_app, app_name="forces")

exctr = Executor.executor

future = exctr.submit(app_name="forces“)

while not future.done():

if 'Error' in task.read_stdout():

future.cancel()

else:

time.sleep(poll_interval)

future.poll()

• Allows portable user-
side functions.
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libEnsemble Manager/Workers

• Workers Launch MPI Applications

– Use MPIExecutor to launch tasks (applications)

– Possible on clusters → Launch from compute nodes

– Supercomputers (inc. Theta) launch from MOM/Launch nodes

– libEnsemble manages/schedules resources (slurm/lsf/pbs/cobalt)

• Use Balsam as proxy job launcher.

– Argonne (Data Science Group) Project

– Balsam runs on front-end and maintains database of tasks.

– Direct launches are replaced by creating Balsam tasks

– Balsam dynamically schedules and manages tasks

– Swap in BalsamExecutor to launch

Manager

Worker Simulation

Worker Simulation

Worker Generator

Worker Simulation

libEnsemble

Worker’s directly 

launch simulations 

Front
End

Worker’s launch via 

Balsam

libEnsemble
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Flexible run configurations

• On compute nodes libEnsemble can be run in 
dedicated mode - does share nodes with the worker 
launched applications.

• libE_specs['dedicated_mode'] = True

• It is possible to distribute workers over nodes.
User function can use local memory to interact with 
tasks.

• See example submission scripts
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Example SLURM submission script

#!/bin/bash

#SBATCH -J libE_simple

#SBATCH -A <myproject>

#SBATCH -p <partition_name>

#SBATCH -C <constraint_name>

#SBATCH --time 10

#SBATCH --nodes 2

# Usually either -p or -C above is used.

# On some SLURM systems, these ensure runs can share nodes

export SLURM_EXACT=1

export SLURM_MEM_PER_NODE=0

python libe_calling_script.py --comms local --nworkers 8

• Examples in repo:

• examples/libE_submission_scripts

• Docs contain guides for multiple systems inc:

• Summit
• Perlmutter
• Theta
• Spock/Crusher
• more…
• https://libensemble.readthedocs.io/en/main/pla

tforms/platforms_index.html

https://libensemble.readthedocs.io/en/main/platforms/platforms_index.html
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Executor Tutorial: Electrostatic Forces

• In the repo, navigate to: libensemble/tests/scaling_tests/forces

• Now go into forces_app to build the application.

– $ mpicc -O3 -o forces.x forces.c -lm

• To run with libEnsemble:

– $ cd ../forces_simple

– $ python run_libe_forces.py --comms local --nworkers 4

• Note this example produces an ensemble directory with output for each run of forces.

• See libE_stats.out for a summary of each simulation with timing.

Tutorial online: https://libensemble.readthedocs.io/en/main/tutorials/executor_forces_tutorial.html

Binder:  https://mybinder.org/v2/gh/Libensemble/libensemble/develop?filepath=examples%2Ftutorials%2Fforces_tutorial_notebook.ipynb

https://libensemble.readthedocs.io/en/main/tutorials/executor_forces_tutorial.html
https://mybinder.org/v2/gh/Libensemble/libensemble/develop?filepath=examples%2Ftutorials%2Fforces_tutorial_notebook.ipynb
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Set up and run via Executor

from forces_simf import run_forces # Sim from current dir

from libensemble.executors import MPIExecutor

# Initialize MPI Executor instance

exctr = MPIExecutor()

# Register simulation executable with executor

sim_app = os.path.join(os.getcwd(), “../forces_app/forces.x")

exctr.register_app(full_path=sim_app, app_name="forces")

import numpy as np

from libensemble.executors import Executor

def run_forces(H, persis_info, sim_specs, libE_info):

# Retrieve our MPI Executor instance

exctr = Executor.executor

task = exctr.submit(app_name="forces", app_args=args)

task.wait()

data = np.loadtxt("forces.stat")

final_energy = data[-1]

Calling Script Simulation function

Tutorial online: https://libensemble.readthedocs.io/en/main/tutorials/executor_forces_tutorial.html

Binder:  https://mybinder.org/v2/gh/Libensemble/libensemble/develop?filepath=examples%2Ftutorials%2Fforces_tutorial_notebook.ipynb

https://libensemble.readthedocs.io/en/main/tutorials/executor_forces_tutorial.html
https://mybinder.org/v2/gh/Libensemble/libensemble/develop?filepath=examples%2Ftutorials%2Fforces_tutorial_notebook.ipynb
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Exercises

• Use https://libensemble.readthedocs.io/en/main/executor/mpi_executor.html to 
modify the sim functions as follows:

– Adjust the executor submit method to launch forces with four processes.

– Adjust submit() again so the app's stdout and stderr are written to ``stdout.txt`` and 
``stderr.txt`` respectively.

– Set a timeout for the task, and kill if taking too long (see how long runs take in libE_stats.txt).

https://libensemble.readthedocs.io/en/main/executor/mpi_executor.html
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Resource Manager
Stephen Hudson (June 2022)
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Resource Management

• On HPC systems, libEnsemble is usually run within one job submission / node allocation. 

• libEnsemble has its own resource manager

– Resources are divided amongst workers.

– Node-lists detected via standard env. variables on SLURM, PBS, COBALT, LSF.

– Or supply a node-list in a file called 'nodelist' in the run directory.

– Can disable with libE_specs['disable_resource_manager'] == True

– Executor is aware of resources, and will use all cpu resources assigned to it, if not specified in submit function. 

• Allows libEnsemble workflows to run consistently across various systems, irrespective of 
systems application level resource scheduling.
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Zero-resource workers

• Most common case is that a persistent 
generator does not require resources.

– Supply a list of zero-resource worker IDs and add an 
extra worker. 

• In this example, run with 4 workers and set:

– libE_specs['zero_resource_workers'] == [1]

Hint: The parse_args command line reader also has a 

nsim_workers option that will add the gen worker and 

set this option for you.

$ python run_libe_forces.py --comms local --nsim_workers 3
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Dynamic resource assignment
Stephen Hudson (June 2022)



Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

W1 W2 W3 W4 W5 W6 W7 W8

sim_id x f Resource_sets

0 ****** *** 1

1 ****** *** 1

2 ****** *** 1

3 ****** *** 1

4 ****** *** 1

5 ****** *** 1

6 ****** *** 1

7 ****** *** 1

• Run with as many workers as needed for smallest size simulations
• One worker points to one resource set. 
• If at sub-node level, slots are enumerated on a node.

Node 0 Node 1

Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

4 5 6 70 1 2 3Resource set IDs

In calling script ...

W1 W2 W3 W4 W5 W6 W7 W8



Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

W1 W2 W3 W4 W4 W6 W5 W8

sim_id x f Resource_sets

8 ****** *** 2

9 ****** *** 1

10 ****** *** 1

11 ****** *** 2

12 ****** *** 2

W1 W2W2 W3

• Generator provides a resource_sets field in H. Giving no. of resource sets required for each sim.
• Allocation functions find smallest space on a node that fits required resources.
• The next available worker is given work and resources.

Node 0 Node 1

W7 W8

Workers currently 
inactive

Waiting for resources

In generator ...

4 5 6 70 1 2 3Resource set IDs



sim_id x f Resource_sets

12 ****** *** 2

13 ****** *** 1

14 ****** *** 1

15 ****** *** 4

Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

W1 W2 W3 W4

Node 0 Node 1

• The simulator can obtain resources available to this worker via Resources module.
• MPIExecutor is aware of resources module, and will automate num_nodes etc.. if not supplied.

In simulator ...

Sim:12
CUDA_VISIBLE_DEVICES = 0,1

Active worker IDs will vary.

4 5 6 70 1 2 3Resource set IDs



• Multi-node scenarios
• Currently, if resource_sets  takes up more than one node, it will split evenly if possible or round up to full 

nodes.

sim_id x f Resource_sets

16 ****** *** 7

17 ****** *** 1

18 ****** *** 1

19 ****** *** 2

Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

W1

Node 0 Node 1
4 5 6 70 1 2 3Resource set IDs

Sim:16
CUDA_VISIBLE_DEVICES = 0,1,2,3

In simulator ...



Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

W1 W2 W3 W4 W5 W6 W7 W8

• Scheduler Options
• Sim 22 could fit on one node if all slots were free – but only 2 are free on each node.
• split2fit (default: True) If True will split across nodes if an even split exists.
• match_slots (default: True) If True slots much match between nodes.

Node 0 Node 1

Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

4 5 6 70 1 2 3Resource set IDs

In calling script ...

W1 W2 W8

sim_id x f Resource_sets

20 ****** *** 2

21 ****** *** 2

22 ****** *** 4 Waiting for resources
This would allow sim 22 to be scheduled. But may be 
an issue if setting CUDA_VISIBLE_DEVICES.

Note: If 6 
resource sets 
were 
requested, 
would split 3 
per node, even 
if split2fit is 
False, as this 
can never fit on 
one node.

libE_specs['scheduler_opts'] = {'match_slots': False}



• Example: Sim function wants one CPU and one GPU per resource_set (where MPI tasks will be the 
number of resource sets).



W1 W2 W3 W4

sim_id x f Resource_sets

0 ****** *** 1

1 ****** *** 1

2 ****** *** 1

3 ****** *** 1

• Note that resource_sets and slot numbers are based on workers. If you halved the workers in this 
example you would have the following (each resource set has twice the CPUs and GPUs).

Node 0 Node 1

Slot 0

GPU

CPUs

GPU

Slot 1

GPU

CPUs

GPU

Slot 0

GPU

CPUs

GPU

Slot 1

GPU

CPUs

GPU

2 30 1Resource set IDs



Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

W2 W3 W4 W5 W6 W7 W8 W9

sim_id x f Resource_sets

0 ****** *** 1

1 ****** *** 1

2 ****** *** 1

3 ****** *** 1

4 ****** *** 1

5 ****** *** 1

6 ****** *** 1

7 ****** *** 1

• For a persistent generator. Run this example with 9 workers:
• Either use a zero resource worker (if gen should always be same worker)
• Or set num_resources_sets to 8 explicitly. 

Node 0 Node 1

Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

4 5 6 70 1 2 3Resource set IDs

In calling script ...
Either:

OR:

To give generator resources set:

Default is zero (persistent workers keep their resources).

Zero resource 
worker for Gen

W1



Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

W2 W3 W4 W5

sim_id x f Resource_sets

0 ****** *** 1

1 ****** *** 1

2 ****** *** 1

3 ****** *** 1

4 ****** *** 1

5 ****** *** 1

6 ****** *** 1

7 ****** *** 1

• Resource sets can be set to more than the number of corresponding workers:
• In this example there are 5 workers (one for gen) and 8 resource sets.
• The additional resource sets will be used for larger simulations.

Node 0 Node 1

Slot 0

GPU

CPUs

Slot 1

GPU

CPUs

Slot 2

GPU

CPUs

Slot 3

GPU

CPUs

4 5 6 70 1 2 3Resource set IDs

In calling script ...

Zero resource 
worker for Gen

W1

Can also specify on the command line ...



Where to find

• Tutorial:
• Assign GPUs – Basic GPU example.

• (in repository at libensemble/tests/scaling_tests/forces/forces_gpu) 

• Example regression tests: 
• test_persistent_gp.py

• test_persistent_sampling_CUDA_variable_resources.py (Demo – runs on CPU)

• Docs:
• https://libensemble.readthedocs.io/en/main/resource_manager/overview.html

https://libensemble.readthedocs.io/en/main/resource_manager/overview.html


Executor Tutorial 2: Electrostatic Forces on GPU

• In the repo, navigate to: libensemble/tests/scaling_tests/forces

• If running on a GPU go into forces_app to build the application with OMP TARGET line enabled.
• Find correct build line from build_forces.sh

• To run with libEnsemble:
• $ cd ../forces_gpu
• $ python run_libe_forces.py --comms local --nworkers 4

• On SLURM systems use env. variable export SLURM_EXACT=True when multiple user applications 
share a node.

Tutorial online: https://libensemble.readthedocs.io/en/main/tutorials/forces_gpu_tutorial.html
libEnsemble with GPUs demo: https://www.youtube.com/watch?v=Av8ctYph7-Y

https://libensemble.readthedocs.io/en/main/tutorials/forces_gpu_tutorial.html
https://www.youtube.com/watch?v=Av8ctYph7-Y
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Extract resources for this worker

from libensemble.resources.resources import Resources

def run_forces(H, persis_info, sim_specs, libE_info):

# Only showing new changed lines for varying resources

resources = Resources.resources.worker_resources

resources.set_env_to_slots("CUDA_VISIBLE_DEVICES")

task = exctr.submit(

app_name="forces", app_args=args,

num_nodes=resources.local_node_count,

procs_per_node=resources.slot_count,

# extra_args="--gpus-per-task=1"  # Let slurm assign GPUs

)

Simulation function

Use worker resources information to 
configure run:

• Assign environment variables
• Set MPI command line options.

Find more options in docs:

https://libensemble.readthedocs.io/en/
main/resource_manager/worker_resour
ces.html

Tutorial online: https://libensemble.readthedocs.io/en/main/tutorials/forces_gpu_tutorial.html

https://libensemble.readthedocs.io/en/main/resource_manager/worker_resources.html
https://libensemble.readthedocs.io/en/main/tutorials/forces_gpu_tutorial.html


40

Variable resources

from libensemble.gen_funcs.sampling import (

uniform_random_sample_with_variable_resources as gen_f

)

gen_specs = {

"gen_f":  gen_f , "in": [],

"out": [

("x", float, (1,)),

("resource_sets", int)

],

"user": {

# ….

"gen_batch_size": 8,

"max_resource_sets": nworkers

}

}

Modify lines in calling script

Simulation function is unchanged.

You can uncomment prints in gen and 
sim to show resources.

This simple example uses a random 
number of resource sets for each 
simulation.

Tutorial online: https://libensemble.readthedocs.io/en/main/tutorials/forces_gpu_tutorial.html

https://libensemble.readthedocs.io/en/main/tutorials/forces_gpu_tutorial.html
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Using libEnsemble for multi-fidelity simulations

• libEnsemble used for multi-fidelity 
ensembles with WarpX and FBPIC.

– libEnsemble now coupled with Dragonfly and 
BoTorch optimization methods.

– Methods observe simulation output and request 
subsequent simulations at various fidelity levels

– libEnsemble dynamically allocates CPU/GPU 
resources as requested by the methods

– Increased computational efficiency as less-
expensive, lower fidelity simulations can guide 
numerical optimization methods

Progress from ten replications of libEnsemble+FBPIC with two 

multifidelity methods and a single (highest) fidelity method. Objective 

value is computed from the highest fidelity simulation.
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• libEnsemble docs:
https://libensemble.readthedocs.io

libEnsemble with GPUs demo
https://www.youtube.com/watch?v=Av8ctYph7-Y

GitHub:
https://github.com/Libensemble/libensemble

Thank you!

https://libensemble.readthedocs.io/
https://www.youtube.com/watch?v=Av8ctYph7-Y
https://github.com/Libensemble/libensemble

