
What is E4S?

E4S at NERSC 2022 workshop:
https://www.nersc.gov/users/training/events/e4s-at-nersc-2022/
Thursday, August 25, 2022

https://e4s.io/talks/E4S_at_NERSC_Shende_1.pptx

Sameer Shende
Research Professor and Director, Performance Research Lab, U. Oregon

2

E4S: Extreme-scale Scientific Software Stack
• Curated, Spack based software distribution
• Spack binary build caches for bare-metal installs

– x86_64, ppc64le (IBM Power 9), and aarch64 (ARM64)
• Container images on DockerHub and E4S website of pre-built binaries of ECP ST products
• Base images and full featured containers (with GPU support)
• GitHub recipes for creating custom images from base images
• GitLab integration for building E4S images
• E4S validation test suite on GitHub
• E4S-cl container launcher tool for MPI substitution in applications using MPICH ABI
• E4S VirtualBox image with support for container runtimes

• Docker
• Singularity
• Shifter
• Charliecloud

• AWS and GCP images to deploy E4S
https://e4s.io

3

Extreme-scale Scientific Software Stack (E4S)
• E4S: HPC Software Ecosystem – a curated software portfolio

• A Spack-based distribution of software tested for interoperability and portability to multiple architectures with support
for GPUs from NVIDIA, AMD, and Intel in a single distribution

• Available from source, containers, cloud, binary caches

• Leverages and enhances SDK interoperability thrust

• Not a commercial product – an open resource for all

• Oct 2018: E4S 0.1 - 24 full, 24 partial release products

• Jan 2019: E4S 0.2 - 37 full, 10 partial release products

• Nov 2019: E4S 1.0 - 50 full, 5 partial release products

• Feb 2020: E4S 1.1 - 61 full release products

• Nov 2020: E4S 1.2 (aka, 20.10) - 67 full release products

• Feb 2021: E4S 21.02 - 67 full release, 4 partial release

• May 2021: E4S 21.05 - 76 full release products

• Aug 2021: E4S 21.08 - 88 full release products

• Nov 2021: E4S 21.11 - 91 full release products

• Feb 2022: E4S 22.02 – 100 full release products

• May 2022: E4S 22.05 – 101 full release products

https://e4s.io

Also include other products .e.g.,
AI: PyTorch, TensorFlow (CUDA, ROCm)
Co-Design: AMReX, Cabana, MFEM

https://e4s.io/

4

Spack

• E4S uses the Spack package manager for software delivery
• Spack provides the ability to specify versions of software packages that are and are not

interoperable.
• Spack is a build layer for not only E4S software, but also a large collection of software tools

and libraries outside of ECP ST.
• Spack supports achieving and maintaining interoperability between ST software packages.
• https://spack.io

https://spack.io/

5

Scientific software is becoming extremely
complex

r-rminer

r

r-adabag

r-mass

r-lattice

r-nnet

r-rpart

r-cubist

r-e1071

r-glmnet

r-kernlab

r-kknn

r-mda

r-party

r-plotrix

r-pls

r-randomforest

r-xgboost

bzip2

cairo

freetype

zlib

glib

ncurses

pcre readline

curl

icu4c

jdk
libjpeg-turbo

libtiff

pango

tcltk

fontconfig

pkgconf

libpng
pixman

font-util

gperf

libxml2

util-macros

xz

gettext

libffi

perl

python

tar

gdbm

openssl

sqlite
cmake

nasm

gobject-introspection

harfbuzz

bison

flex

sed

m4 libsigsegv

help2man

libx11 inputproto

kbproto

libxcb

xproto

xextproto

xtrans
libpthread-stubs

libxau

libxdmcp

xcb-proto

r-caret

r-mlbench

r-car

r-nlme

r-foreach

r-ggplot2
r-plyr

r-reshape2

r-modelmetrics

r-mgcv

r-pbkrtest

r-quantreg

r-matrix

r-lme4

r-minqa

r-rcpp

r-nloptr

r-rcppeigen

r-testthat

r-crayon

r-digest

r-magrittr

r-praise

r-r6

r-matrixmodels

r-sparsem

r-codetools

r-iterators

r-gtable

r-lazyeval

r-scales

r-tibble

r-stringr

r-stringi

r-dichromat

r-labeling

r-munsell

r-rcolorbrewer

r-viridislite

r-colorspace

r-assertthat

r-rlang

r-class

r-igraph

gmp

r-irlba

r-pkgconfig autoconf

automake

libtool

r-coin

r-modeltools
r-mvtnorm

r-sandwich

r-zoo

r-survival

r-strucchange

r-multcomp r-th-data

r-data-table

R Miner: R Data Mining Library

dealii

adol-c

arpack-ng

cmake

zlib

openblas

openmpi

assimp
boost

gmsh oce

intel-tbb

gsl

hdf5

metis

muparser

nanoflann

netcdfnetcdf-cxx

netlib-scalapack

p4est

petsc

slepc

suite-sparse

sundials

trilinos

autoconf

m4

automake

libtool

perl

libsigsegv

gdbm

readline

ncurses

pkgconf

openssl

hwloc libxml2
xz

bzip2

gmp

netgen

tetgen

hypre

parmetis

python

superlu-dist
sqlite

glm

matio

mumps

dealii: C++ Finite Element Library

nalu

cmake

openmpi

trilinos

yaml-cpp
ncurses

openssl

pkgconf

zlib

hwloc libxml2 xz

boost

glm

hdf5

matio

metis

mumps

netlib-scalapack

openblas

netcdf

parallel-netcdf

parmetis

suite-sparse

superlu

bzip2

m4 libsigsegv

Nalu: Generalized Unstructured Massively Parallel Low Mach Flow

6

• Half of this DAG is external (blue); more than half of it is open source

• Nearly all of it needs to be built specially for HPC to get the best performance

Even proprietary codes are based on many open source libraries

ARES

tcl

tkscipy

python

cmake

hpdf

opclient

boost

zlib

numpy

bzip2

LAPACK

gsl

HDF5

gperftools papi

GA

bdivxml

sgeos_xmlScallop

rng perflib memusage timers

SiloSAMRAI

HYPRE

matprop

overlink qd

LEOS

MSlibLaser

CRETIN

tdf

Cheetah DSD

Teton

Nuclear

ASCLaser

MPI

ncurses

sqlite readline openssl BLAS

Physics Utility Math External

Types of Packages

7

The Exascale Computing Project is building an entire ecosystem

• Every application has its own stack of dependencies.
• Developers, users, and facilities dedicate (many) FTEs to building & porting.
• Often trade reuse and usability for performance.

80+ software packagesx
5+ target architectures/platforms

Xeon Power KNL
NVIDIA ARM Laptops?

x

Up to 7 compilers
Intel GCC Clang XL

PGI Cray NAG
x

= up to 1,260,000 combinations!

15+ applications

x
10+ Programming Models

OpenMPI MPICH MVAPICH OpenMP CUDA
OpenACC Dharma Legion RAJA Kokkos

2-3 versions of each package +
external dependencies

x

We must make it easier to rely on others’ software!

8

How to install software on a supercomputer

c
o
n
f
i
g
u
r
e

m
a
k
e

F
i
g
h
t

w
i
t
h

c
o
m
p
i
l
e
r
.
.
.

m
a
k
e

T
w
e
a
k

c
o
n
f
i
g
u
r
e

a
r
g
s
.
.
.

m
a
k
e

i
n
s
t
a
l
l

m
a
k
e

c
o
n
f
i
g
u
r
e

c
o
n
f
i
g
u
r
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

c
m
a
k
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

1. Download all 16
tarballs you
need

2. Start building!

3. Run code
4. Segfault!?
5. Start

over…

9

• Most supercomputers deploy some form of environment modules
– TCL modules (dates back to 1995) and Lmod (from TACC) are the most popular

• Modules don’t handle installation!
– They only modify your environment (things like PATH, LD_LIBRARY_PATH, etc.)

• Someone (likely a team of people) has already installed gcc for you!
– Also, you can only `module load` the things they’ve installed

What about modules?

$ gcc
- bash: gcc: command not found

$ module load gcc/7.0.1
$ gcc –dumpversion
7.0.1

10

• How to install Spack (works out of the box):

• How to install a package:

• TAU and its dependencies are installed
within the Spack directory.

• Unlike typical package managers, Spack can also install
many variants of the same build.
– Different compilers
– Different MPI implementations
– Different build options

Spack is a flexible package manager for HPC

$ git clone https://github.com/spack/spack
$. spack/share/spack/setup-env.sh

$ spack install tau

@spackpm

github.com/spack/spack

Visit spack.io

https://github.com/LLNL/spack.git

11

• Each expression is a spec for a particular configuration
– Each clause adds a constraint to the spec
– Constraints are optional – specify only what you need.
– Customize install on the command line!

• Spec syntax is recursive
– Full control over the combinatorial build space

Spack provides the spec syntax to describe custom configurations

$ spack install tau unconstrained
$ spack install tau@2.31 @ custom version
$ spack install tau@2.31 %gcc@9.3.0 % custom compiler
$ spack install tau@2.31 %gcc@9.3.0 +rocm +/- build option
$ spack install tau@2.31 %gcc@9.3.0 +mpi ^mvapich2@2.3~wrapperrpath ^ dependency information

$ git clone https://github.com/spack/spack
$. spack/share/spack/setup-env.sh
$ spack compiler find # set up compilers
$ spack external find # set up external packages

https://github.com/LLNL/spack.git

12

`spack find` shows what is installed

• All the versions coexist!
– Multiple versions of same

package are ok.

• Packages are installed to
automatically find correct
dependencies.

• Binaries work regardless of
user’s environment.

• Spack also generates
module files.
– Don’t have to use them.

13

• Spack simplifies HPC software for:
– Users
– Developers
– Cluster installations
– The largest HPC facilities

• Spack is central to ECP’s software strategy
– Enable software reuse for developers and users
– Allow the facilities to consume the entire ECP stack

• The roadmap is packed with new features:
– Building the ECP software distribution
– Better workflows for building containers
– Stacks for facilities
– Chains for rapid dev workflow
– Optimized binaries
– Better dependency resolution

The Spack community is growing rapidly

@spackpm

github.com/spack/spack

Visit spack.io

14

Facility Deployment: https://dashboard.e4s.io

Default modules for E4S on JLSE and Polaris at ALCF for all users:
% module avail e4s/22.05

15

E4S 22.05 on Perlmutter using PrgEnv-gnu

16

Perlmutter @ NERSC: E4S 22.05 with SLURM and gcc@11.2.0

17

Perlmutter @ NERSC: E4S 22.05 with SLURM and gcc@11.2.0

18

Perlmutter @ NERSC: E4S 22.05 with PrgEnv-gnu

19

Perlmutter @ NERSC: E4S 22.05 with PrgEnv-gnu

20

E4S Download from https://e4s.io

21

Download E4S 22.05 GPU Container Images: NVIDIA, AMD, Intel

https://e4s.io

• Separate full featured
Singularity images for 3 GPU
architectures

• GPU base images for
– x86_64 (Intel, AMD, NVIDIA)
– ppc64le
– aarch64

22

What are containers

A lightweight collection of executable software that encapsulates everything needed to run a single
specific task

Minus the OS kernel
Based on Linux only

Processes and all user-level software is isolated
Creates a portable* software ecosystem
Think chroot on steroids
Docker most common tool today

Available on all major platforms
Widely used in industry
Integrated container registry via Dockerhub

23

Hypervisors and Containers
Type 1 hypervisors insert layer below host OS
Type 2 hypervisors work as or within the host OS
Containers do not abstract hardware, instead provide “enhanced chroot” to create isolated

environment
Location of abstraction can have impact on performance
All enable custom software stacks on existing hardware

24

Download E4S 22.05 GPU Container Images: NVIDIA, AMD, Intel

https://e4s.io

25

Download E4S 22.05 Base GPU Container Images

https://e4s.io

26

Minimal Spack base image on Dockerhub

• Create custom
container images

• 1M+ downloads!

27

22.05 Release: 101 Official Products + dependencies (gcc, x86_64)

28

22.05 Release: 101 Official Products + dependencies (gcc, x86_64)

29

22.05 Release: 101 Official Products + dependencies (gcc, x86_64)

GPU runtimes
• Intel (oneAPI)

• 2022.1.0
• AMD (ROCm)

• 5.1.1
• NVIDIA (CUDA)

• 11.4
• NVHPC

• 22.3

30

E4S 22.05 container deployment on Perlmutter using Shifter

• E4S containers

• Accessing A100 GPUs

• CUDA 11.5

31

E4S 22.05 packages built with support for A100 GPUs in a container

• AI/ML

• HPC

32

E4S 22.05 Release: Support for NVIDIA GPUs

33

E4S 22.05 Release: GUI Tools

34

E4S 22.02 bare-metal Spack installation environments on GitHub

spack.yaml

35

E4S 22.02 bare-metal installation spack.yaml recipe

• E4S products built
with CUDA for A100

• Built with ROCm for
MI100 and MI250X

• Built with oneAPI

36

E4S Validation Test Suite

• git clone https://github.com/E4S-Project/testsuite.git

• Provides automated build and run tests
• Validate container environments and products
• New LLVM validation test suite for DOE LLVM

37

E4S MPI Tests (OMB) using Buildtest @ NERSC

• CI/CD using GitLab

• Buildtest integration

38

Multi-platform E4S Docker Recipes

39

E4S: Multi-platform Reproducible Docker Recipes

https://e4s.io

E4S
• x86_64
• ppc64le
• aarch64

40

WDMApp: Speeding up bare-metal installs using E4S build cache

• E4S Spack build cache
• Adding E4S mirror
• WDMApp install speeds up!

41

Pantheon and E4S build cache support end-to-end ECP examples
Overview: The Exascale Computing Project (ECP) is a complex undertaking,
involving a myriad of technologies working together. An outstanding need is a
way to capture, curate, communicate and validate workflows that cross all of
these boundaries.

The Pantheon and E4S projects are collaborating to advance the integration
and testing of capabilities, and to promote understanding of the complex
workflows required by the ECP project. Utilizing a host of ECP technologies
(spack, Ascent, Cinema, among others), this collaboration brings curated
workflows to the fingertips of ECP researchers.

Contributions
- Curated end-to-end application/in-situ analysis examples can be run quickly

by anyone on Summit. (https://github.com/pantheonscience/ECP-E4S-Examples)
- Pantheon/E4S integration speeds up build/setup times over source builds

due to cached binaries (approx.10x speed up).

Instructions page for (top) Nyx,
Ascent and Cinema workflow
repository, and (bottom) Cloverleaf3d,
Ascent, Cinema workflow. These
curated workflows use Pantheon,
E4S and spack to provide curated
workflows for ECP.

LA-UR-20-27327 8/25/22

https://github.com/pantheonscience/ECP-E4S-Examples

42

E4S Build Cache at U. Oregon

Over 88,000 binaries!

43

E4S Support for AD teams: ExaWind

44

E4S Custom Docker Images using E4S Build Cache: ExaWind

45

e4s-cl: A tool to simplify the launch of MPI jobs in E4S containers

https://github.com/E4S-Project/e4s-cl

• E4S containers support replacement of MPI libraries using MPICH ABI
compatibility layer and Wi4MPI [CEA] for OpenMPI and MPICH variants.

• Applications binaries built using E4S can be launched with Singularity using MPI
library substitution for efficient inter-node communications.

• e4s-cl is a new tool that simplifies the launch and MPI replacement.

• Usage:
. /opt/intel/oneapi/setvars.sh
e4s-cl init --backend singularity --image /home/tutorial/ecp.simg --source /home/tutorial/source.sh
cat ~/source.sh
. /spack/share/spack/setup-env.sh
spack load trilinos+cuda cuda_arch=80

e4s-cl mpirun -np 4 ./a.out

46

e4s-cl Container Launcher

https://e4s.io

47

E4S VirtualBox Image

https://e4s.io

Container Runtimes
• Docker
• Shifter
• Singularity
• Charliecloud

48

E4S 22.05 AWS image: US-West2 (OR) ami-0d7295416d1c63e3a

Private E4S 22.05 image
• Build cache
• Nalu-X demonstration
• Singularity and

Docker runtimes
• Discussing a

compelling demo in
E4S iteration 42

• Was demonstrated at
ISC22 and ATPESC.

49

E4S Summary

• What E4S isWhat E4S is not
Extensible, open architecture software ecosystem accepting
contributions from US and international teams.
Framework for collaborative open-source product
integration.

A full collection of compatible software capabilities and
A manifest of a la carte selectable software capabilities.

Vehicle for delivering high-quality reusable software
products in collaboration with others.

The conduit for future leading edge HPC software targeting
scalable next-generation computing platforms.
A hierarchical software framework to enhance (via SDKs)
software interoperability and quality expectations.

A closed system taking contributions only from DOE
software development teams.

A monolithic, take-it-or-leave-it software behemoth.

A commercial product.

A simple packaging of existing software.

50

Acknowledgment

“This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of
two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security

Administration) responsible for the planning and preparation of a capable exascale ecosystem, including
software, applications, hardware, advanced system engineering, and early testbed platforms, in support

of the nation’s exascale computing imperative.”

51

