
Software Design Patterns in Research Software
with examples from OpenFOAM

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 1 / 53

Disclaimer

This webinar is about Design Patterns in Research Software, and I’ll be using examples from my
own work with OpenFOAM, a GPL open-source, but trademarked software:

This content is not approved or endorsed by OpenCFD Limited, producer and distributor of the
OpenFOAM software via www.openfoam.com, and owner of the OPENFOAM® and OpenCFD®
trademarks.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 2 / 53

Research Software
Direct Numerical Simulation methods of multiphase flows

Fluid phases that do not mix are separated by sharp
interfaces (3D surfaces).
Fluid phases exchange mass, momentum, and
energy at fluid interfaces.
Fluid interfaces deform, break up, and merge.
Direct Numerical Simulations aim to resolve all
scales, while ensuring convergence, volume
conservation and (parallel) computational
efficiency.

Multiphase flows are everywhere
Fuel-cells, Lab-On-a-Chip, ship/offshore
hydrodynamics, coating processes, 3D printing, ...

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 3 / 53

Research Software
Unstructured Level Set / Front Tracking Method I

Signed distance field Bubble

Front-mesh mapping
Unstructured mesh

iso-surface reconstruction

geometric distance

Arbitrary polyhedral cells

Level Set / Front Tracking [1, 2, 3, 4] on
unstructured meshes [5, 6, 7, 8] combines

Phase-indication (marker field): which
fluid phase occupies point x at time t?
Signed-distance calculation
(redistancing): curvature approximation.
Front (3D surface mesh) reconstruction:
topology changes.
Point-search operations: vertex-cell
(front-mesh) mapping.
Velocity interpolation.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 4 / 53

Research Software
Unstructured Level Set / Front Tracking Method II

Research software development for LENT is done by Tobias Tolle , Jun Liu , and myself .
Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 5 / 53

https://orcid.org/0000-0002-9279-7605
https://orcid.org/0000-0002-1317-2536
https://orcid.org/0000-0001-8970-1185

Research Software
Unstructured Level Set / Front Tracking Method III

The quality of the method is determined by
validation & verification studies.

There was a another IDEAS/ECP webinar
(2021-04-07) that covers a workflow for
increasing research software quality in
this context.

The sub-algorithms build a hierarchy, whose
elements should be interchangeable at
runtime without changing existing code.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 6 / 53

https://www.youtube.com/watch?v=8Q852y3XUA4&t=2s
https://www.youtube.com/watch?v=8Q852y3XUA4&t=2s

Object-Oriented Programming Crash Course I
Encapsulation on one slide

lentCommunication

// Triangle -> Cell : triangle vertex in cell.
-triangleToCell_: DynamicList<label>
// Vertex -> Cell : vertex in cell.
-vertexToCell_: DynamicList<label>
// Interface cell -> contained triangles (inverse of triangleToCell_)
-interfaceCellToTriangles_: std::map<label, std::vector<label»
// Interface cell -> contained vertices (inverse of vertexToCell_)
-interfaceCellToVertices_: std::map<label, std::vector<label»
// Cell -> Nearest Triangle.
-cellsTriangleNearest_: DynamicList<pointIndexHit>
// Point -> Nearest Triangle.
-pointsTriangleNearest_: DynamicList<pointIndexHit>

+update(): void
+updateVertexToCell(): void
+updateInterfaceCellToTriangles(): void
+updateInterfaceCellToVertices() void

Cannot talk about the hierarchy without
understanding its elements first.

Complex things (e.g. Front-Mesh
communication) are abstracted in C++ as
User-Defined Types (UDT, classes).
A class encapsulates its data (attributes,
data members).
A class implements behavior: member
functions that change the data members.
Access specifiers

+: accessible from outside (public)
-: inaccessible from outside (private)

Private data (-) = narrow focus.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 7 / 53

Object-Oriented Programming Crash Course II
Dynamic Polymorphism on one slide

1 *

B

-c_ : std::vector<C>

+behave() : void

A

+behave() : void

C

1 B object contains
many (*) C objects.
1 B object contains
many (*) C objects.

Cannot talk about the hierarchy without
understanding the interactions between its
elements (UML)

Classes inherit (derive) from other
classes: A inherits from B.
Classes contain (composit) objects of
other classes: A contains C.

Dynamic polymorphism: addressing an object
of the derived class via a pointer to the base
class can be used to set the type of the object
at runtime.
configData input{"path/to/file"};
smart_pointer<A> Aptr = A::New(input);
Aptr->behave(); // B chosen in input!

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 8 / 53

https://en.wikipedia.org/wiki/Unified_Modeling_Language

Software Design Patterns in Research Software
What are software design patterns useful for?

Support programming on a higher-level of abstraction

A high-level of abstraction is crucial -
thinking in terms of complex objects; not
getting lost in low-level details.
Design patterns modularize abstractions’
functionality and their interaction:

What do parcels require from the mesh
in order to evolve?
Which objects are written with
runTime.write()?

// Peform mesh changes
mesh.update()

// Update moving reference frame
MRF.update();

// Make the fluxes relative to the mesh-motion
fvc::makeRelative(phi, rho, U);

// Evolve the particle cloud
parcels.evolve();

// Evolve the surface film
surfaceFilm.evolve();

// Write data
runTime.write();

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 9 / 53

Software Design Patterns in Research Software
Examples from OpenFOAM

Software Design Patterns [9]: code structures that combine inheritance and composition and
have emerged repeatedly as best-practice solutions for specific design problems.

Software Design Patterns (examples from OpenFOAM)
Template Method: boundary conditions, viscosity models, discretization schemes, ...
Strategy: transport models, solvers and pre-conditioners, ...
Observer: dynamic mesh handling, IO synchronization, ...
OpenFOAM’s Creational Pattern: Runtime-Type Selection (RTS), used everywhere.

Not covered in this webinar

Facade: Level Set / Front Tracking (Additional Slides)
Curiously Recurring Template Pattern (CRTP): Discrete Parcel Method (Additional Slides)

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 10 / 53

https://refactoring.guru/design-patterns/template-method
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/observer
https://refactoring.guru/design-patterns/creational-patterns
https://refactoring.guru/design-patterns/facade
https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

Software Design Patterns in Research Software
Template Method I

Virtual member function: implements different behavior in a derived class.

phaseIndicator

+calcPhaseIndicator(...) : void

smoothHeaviside

+calcPhaseIndicator(...) : void

geometric

+calcPhaseIndicator(...) : void

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 11 / 53

Software Design Patterns in Research Software
Template Method II

OpenFOAM’s boundary conditions

fvPatchField

+updateCoeffs() : void
+evaluate() : void

Type

zeroGradientFvPatchField

+updateCoeffs() : void
+evaluate() : void

Type

fixedValueFvPatchField

+updateCoeffs() : void
+evaluate() : void

Type

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 12 / 53

Software Design Patterns in Research Software
Template Method III

Viscosity model hierarchy

viscosityModel

BirdCarreau Casson CrossPowerLaw HerschelBulkley Newtonian powerLaw strainRateFunction

and the nu Template Method
// Return the laminar viscosity.
virtual tmp<volScalarField> nu() const = 0;

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 13 / 53

Software Design Patterns in Research Software
Template Method IV

The Template Method is the virtual member function (method) to be overridden, it has
nothing to do with C++ templates.
Best practice: utilize virtual member functions (dynamic polymorphism) to extend existing
libraries without modifying them.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 14 / 53

Software Design Patterns in Research Software
Strategy I

1

1

1

1

levelSetMethod

-redistancingModel_ : redistancing
-phaseIndicatorModel_ : phaseIndicator

+redistance() : void
+calcPhaseIndicator() : void

redistancing

+redistance() : void

noRedistancing

+redistance() : void

semiLagrangian

+redistance() : void

phaseIndicator

+calcPhaseIndicator() : void
geometric

+calcPhaseIndicator() : void

smoothHeaviside

+calcPhaseIndicator() : void

A single class contains different
sub-algorithms.
Sub-algorithms can be selected
at runtime.
Combining sub-algorithms does
not require programming.
Basically the composition of the
Template Method for
sub-algorithm hierarchies.
Best practice: when unsure about
sub-algorithm combinations,
implement the Strategy Pattern.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 15 / 53

Software Design Patterns in Research Software
Strategy II

lduMatrix::solver

diagonalSolver GAMGSolver PBiCG PBiCGStab PCG PPCG smoothSolver

Foam::lduMatrix
solverPerf = lduMatrix::solver::New
(

psi.name() + pTraits<Type>::componentNames[cmpt],
*this,
bouCoeffsCmpt,
intCoeffsCmpt,
interfaces,
solverControls

)->solve(psiCmpt, sourceCmpt, cmpt);
selects a linear solver as a (solution) Strategy.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 16 / 53

Software Design Patterns in Research Software
Strategy III

autoPtr<lduMatrix::preconditioner> preconPtr =
lduMatrix::preconditioner::New
(

*this,
controlDict_

);

Each lduMatrix::solver selects its pre-conditioner as a
(preconditioning) Strategy.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 17 / 53

Software Design Patterns in Research Software
Observer I

From GoF Design Patterns Book [9]: ”Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and updated automatically.”
Subject

Has a state that is updated when the subject is modified.
Forwards the update call to a list of its observers.
void subject::update()
{

for (auto& observer : observers_)
observer.update();

}

Observers
Implement the update interface.
Register themselves to the subject via their constructor.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 18 / 53

Software Design Patterns in Research Software
Observer II

Example: Particles tracked along Lagrangian trajectories in an Eulerian (background) mesh

Lagrangian-cloud particles know which cell they are in.
The Eulerian mesh is the subject that changes state.
Lagrangian particle cloud is an observer.
Vice-versa is also relevant, resulting in 6-way coupling
(mass, momentum, energy exchange × 2).

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 19 / 53

Software Design Patterns in Research Software
Observer III

Example: Particles tracked along Lagrangian trajectories in an Eulerian (background) mesh

1. The Eulerian mesh (subject) changes state: it is refined.
2. The Eulerian mesh (subject) updates its observers

for (auto& observer : observers)
observer.update(cellMap);

3. The Lagrangian cloud is an observer
for (auto& particle : cloud)
{

auto found = cellMap.find(particle.cellLabel());
if (found)
{

auto newCellLabel = cloud.find(particle, cellMap);
particle.setCellLabel(newCellLabel);

}
}

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 20 / 53

Software Design Patterns in Research Software
Observer IV

1 *

subject

-observers_ : observerList
-state_ : state

+addObserver(const observer&) : void
+removeObserver(const observer&) : void
+update() : void

observer

subject_ : const subject&

+observer(const subject&)
+update() : void

concreteObserver

+update() : void

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 21 / 53

Software Design Patterns in Research Software
Observer V

Example: write all data that should be written using the same output frequency
A single
runTime.write();

call in the solver application, and
for (regIOobject& : regIOobjects)

regIOobject.writeObject();

in the Time class is better than manually typing
if (runTime.writeTime())
{

alpha.write();
surfaceMesh.write();
cloud.write();
...

}

in a solver application. It is necessary for reactive flows.
Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 22 / 53

Software Design Patterns in Research Software
Observer VI

1 *

objectRegistry

-regIOobjects_ : HashTable<regIOobject*>

+checkIn(const regIOobject&) : void
+checkOut(const regIOobject&) : void
+writeObject() : void

regIOobject

subject_ : const objectRegistry&

+regIOobject(const objectRegistry&)
+writeObject() : void

DimensionedField

+writeObject() : void

Type,GeoMesh

GeometricField

+writeObject() : void

Type,PatchField,GeoMesh

Foam::Time controls simulation (write) time and it is an objectRegistry.
Foam::Time::write() loops over all registered fields and writes them to the drive.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 23 / 53

Software Design Patterns in Research Software
Observer VII

while (runTime.loop()) // runTime state
{

#include "CourantNo.H"

// Pressure-velocity PISO corrector
{

#include "UEqn.H"
// --- PISO loop
while (piso.correct())
{

#include "pEqn.H"
}

}

laminarTransport.correct();
turbulence->correct();
runTime.write(); // runTime state

}

A CFD solver is a procedural application.
Fields (velocity, pressure, density, temperature, ...)
are global variables, modified by FVM differential
operators / solution algorithms.
Observer Pattern simplifies custom post-processing
using OpenFOAM Function Objects (not C++ function
objects).

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 24 / 53

Software Design Patterns in Research Software
Observer VIII

runTime is the subject that changes state:
time-step increment
reached output time
reached end time

Function Objects are the observers.
They access other (mesh or time) observers and
”work” on them: compute the maximal and minimal
temperature, sample the veloity over a line segment, ...

OpenFOAM Function Objects change solver behavior
without modifying solver application’s source code.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 25 / 53

Software Design Patterns in Research Software
Observer IX

OpenFOAM Function Objects

1 *

Time

-functionObjects_ : functionObjectList

+read() : bool
+run() : bool

functionObject

+read() : void
+execute() : void
+write() : void
+end() : void

concreteFunctionObject

+read() : void
+execute() : void
+write() : void
+end() : void

Time changes state in ’read’ and ’run’
and forwards appropriate calls to
’functionObject’.

Time changes state in ’read’ and ’run’
and forwards appropriate calls to
’functionObject’.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 26 / 53

https://www.openfoam.com/documentation/guides/latest/api/group__grpFunctionObjects.html#details

Software Design Patterns in Research Software
Observer X

OpenFOAM Function Objects
Observer is also used within Function Objects
themselves: fvMesh is an objectRegistry, FOs
fetch objects registered to the mesh and perform live
(post-)processing tasks as the simulation runs.
This saves research time and HPC resources (green
computing): live post-processing can be used to stop
large-scale simulations as soon as the results are too
erroneous.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 27 / 53

https://www.openfoam.com/documentation/guides/latest/api/group__grpFunctionObjects.html#details

Software Design Patterns in Research Software
Observer XI

boundaryField

internalField

Wall

Wall

InletOutlet

Geometric Fields:
Values grouped into internal values and boundary patch values.
Internal values associated with cell centers (alternatively: face centers or cell
corner-points), boundary with face centers (alternatively, face corner-points).

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 28 / 53

Software Design Patterns in Research Software
Observer XII

The mesh connectivity changes with mesh
refinement / unrefinement.

GeometricFields do not map to the mesh.
Mesh motion stretches/compresses finite
volume faces.

Volumetric fluxes change magnitudes.

Each time the mesh is updated, the fields
are updated.
fvMesh is a Subject,
GeometricFields are the Observers.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 29 / 53

Software Design Patterns in Research Software
Observer XIII

Best practice
Use when the same member function (write, map, execute, read, update) must be
called for many objects.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 30 / 53

Software Design Patterns in Research Software
Runtime Type-Selection I

Using a Creational Pattern to construct
objects (select types) at runtime makes the
solver application highly configurable.
No modification to the solver application is
required to select boundary conditions,
dynamic mesh handling, discretization and
interpolation schemes, models, ...

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 31 / 53

Software Design Patterns in Research Software
Runtime Type-Selection II

Runtime Type Selection (RTS) is OpenFOAM’s Creational Pattern.
RTS constructs OpenFOAM objects based on user input.

Ease-of-use: RTS tables provide information about available types and their parameters.
Simplifies research: ”constructing” the PDE discretization and solution via configuration files.

OpenFOAM’s RTS in a nutshell:
RTS stores a class-static hash-table that maps strings to a virtual member function pointer.
This so-called RTS table is initialized for the base class in its implementation file.
The RTS table is extended in implementation files of derived classes.
The RTS code is generated using preprocessor macros

– RTS declaration and definition
– RTS table extension

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 32 / 53

https://refactoring.guru/design-patterns/creational-patterns
https://www.openfoam.com/documentation/guides/latest/api/runTimeSelectionTables_8H.html
https://www.openfoam.com/documentation/guides/latest/api/addToRunTimeSelectionTable_8H.html

Software Design Patterns in Research Software
Runtime Type-Selection III

Best practice: if a research software provides a creational pattern, learning how to use it
simplifies testing and saves time in research, compared to hacking your own ”if-then-else”
code for different types.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 33 / 53

Software Design Patterns in Research Software
Runtime Type-Selection IV

OpenFOAM RTS macros expanded with gcc -E: no need to learn how this works to use it
typedef autoPtr<implicitSurface> (*ITstreamConstructorPtr)(ITstream is);
typedef ::Foam::HashTable <ITstreamConstructorPtr, ::Foam::word, ::Foam::Hash<::Foam::word> > ITstreamConstructorTableType;
typedef ::Foam::HashTable < std::pair<::Foam::word,int>, ::Foam::word, ::Foam::Hash<::Foam::word> > ITstreamConstructorCompatTableType;
static ITstreamConstructorTableType* ITstreamConstructorTablePtr_;
static std::unique_ptr<ITstreamConstructorCompatTableType> ITstreamConstructorCompatTablePtr_;
static ITstreamConstructorCompatTableType& ITstreamConstructorCompatTable();
static void ITstreamConstructorTablePtr_construct(bool load);
static ITstreamConstructorPtr ITstreamConstructorTable(const ::Foam::word& k);
template<class implicitSurfaceType> struct addAliasITstreamConstructorToTable {
explicit addAliasITstreamConstructorToTable (const ::Foam::word& k, const ::Foam::word& alias, const int ver) {

ITstreamConstructorCompatTable() .set(alias, std::pair<::Foam::word,int>(k,ver));
}
};
template<class implicitSurfaceType> struct addITstreamConstructorToTable {

static autoPtr<implicitSurface> New (ITstream is) {
return autoPtr<implicitSurface>(new implicitSurfaceType (is));

} explicit addITstreamConstructorToTable (const ::Foam::word& k = implicitSurfaceType::typeName) {
ITstreamConstructorTablePtr_construct(true);
if (!ITstreamConstructorTablePtr_->insert(k, New)) {

std::cerr << "Duplicate entry " << k << " in runtime table " << "implicitSurface" << std::endl;
::Foam::error::safePrintStack(std::cerr);

}
} ~addITstreamConstructorToTable() {

ITstreamConstructorTablePtr_construct(false);
} addITstreamConstructorToTable (const addITstreamConstructorToTable&) = delete;
void operator= (const addITstreamConstructorToTable&) = delete; };

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 34 / 53

Software Design Patterns in Research Software

Software Design Patterns [9]: design structures that combine inheritance and composition and
have emerged repeatedly as best-practice solutions for specific design problems.

Software Design Patterns (examples from OpenFOAM)
Template Method: boundary conditions, viscosity models, discretization schemes, ... X
Strategy: transport models, solvers and preconditioners, ... X
Observer: dynamic mesh handling, IO synchronisationX

OpenFOAM’s Creational Pattern: Runtime-Type Selection (RTS), used everywhere. X
Not covered in this webinar

Facade: Level Set / Front Tracking (Additional Slides)
Curiously Recurring Template Pattern (CRTP): Discrete Parcel Method (Additional Slides)

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 35 / 53

https://refactoring.guru/design-patterns/template-method
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/observer
https://refactoring.guru/design-patterns/creational-patterns
https://refactoring.guru/design-patterns/facade
https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

Software Design Patterns in Research Software
Traits + RTS + Template Method = Domain-Speific Language for PDEs

fvScalarMatrix TEqn
(

fvm::ddt(T)
+ fvm::div(phi, T)
- fvm::laplacian(DT, T)

==
fvOptions(T)

);
TEqn.solve();

We didn’t cover everything, but
Type Lifting for geometric fields and
differential operators ”+” generic traits for
tensor rank calculation ”+” Template
Method and RTS for discretization and
interpolation schemes + Strategy and RTS
for linear solvers ”=”
OpenFOAM’s Domain-Specific Language
for Partial Differential Equation
discretization.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 36 / 53

Software Design Patterns in Research Software
Conclusions / Discussion

Design Patterns speed up research, if there is a high degree of methodological uncertainty:
we don’t know which algorithms will work, in which combination.
Avoiding dogmatism: not every design question has to be answered by a pattern.
When dealing with legacy research code, it helps a lot understand its design principles:
cargo-cult programming is quicker, but can tank research projects in the long-run.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 37 / 53

Software Design Patterns in Research Software
Acknowledgements

Funded by the German Research Foundation (DFG) - Project-ID 265191195 - CRC 1194

Z-INF sub-project (Prof. Dr. rer. nat. Dieter Bothe , Prof. Dr. Christian Bischof)

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 38 / 53

https://www.sfb1194.tu-darmstadt.de/index.en.jsp
https://orcid.org/0000-0003-1691-8257
https://orcid.org/0000-0003-2711-3032

Additional Slides and References

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 39 / 53

Object-Oriented Programming Crash Course III
UML in OpenFOAM

OpenFOAM’s UML legend

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 40 / 53

https://www.openfoam.com/documentation/guides/latest/api/graph_legend.html

C++ Generic Programming in OpenFOAM (crash course) I
Useful techniques

OpenFOAM uses Generic Programming (GP) for type lifting and traits.
Type lifting: same code is re-used without modification with completely unrelated types. In
OpenFOAM, everything is type-lifted for all tensors (scalar, vector, tensor, symmetric tensor,
spherical tensor).
Template specialization: e.g. specializing a fixed value tensor boundary condition as a
scalar total pressure boundary condition.
Traits: determine the tensor rank of the return type of∇v (used in differential operators).

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 41 / 53

http://www.generic-programming.org/about/intro/lifting.html
https://www.boost.org/community/generic_programming.html#traits

C++ Generic Programming in OpenFOAM (crash course) II
C++ templates: if-then-else for types

template<class Type>
Type sum(const UList<Type>& f)
{

if (f.size())
{

Type Sum = pTraits<Type>::zero;
TFOR_ALL_S_OP_F(Type, Sum, +=, Type, f)
return Sum;

}
else
{

return pTraits<Type>::zero;
}

}

template(Merriam Webster dictionary)
a gauge, pattern, or mold (such as a thin
plate or board) used as a guide to the form
of a piece being made
a molecule (as of DNA) that serves as a
pattern for the generation of another
macromolecule (such as messenger RNA)
something that establishes or serves as a
pattern

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 42 / 53

C++ Generic Programming in OpenFOAM (crash course) III
Type Lifting

template<class Type>
class fixedValueFvPatchField
:

public fvPatchField<Type>
{

A boundary condition class template is
type-lifted all tensors.
The same is done for arithmetic field
operators, discretization schemes, ...

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 43 / 53

C++ Generic Programming in OpenFOAM (crash course) IV
Template Specialization

#define makePatchTypeFieldTypedef(fieldType, type) \
typedef type##FvPatchField<fieldType> \

CAT4(type, FvPatch, CAPITALIZE(fieldType), Field);

class totalPressureFvPatchScalarField
:

// fixedValueFvPatchField<scalar>
public fixedValueFvPatchScalarField

Specialized boundary conditions for pressure, temperature, velocity,...

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 44 / 53

C++ Generic Programming in OpenFOAM (crash course) V
Traits I

template<class Type>
tmp
<

GeometricField
<

typename outerProduct<vector,Type>::type,
fvPatchField,
volMesh

>
>
grad (const tmp<GeometricField<Type, fvsPatchField, surfaceMesh>>& tssf)
{

...

The return-type of the gradient function template is determined based on the argument.
The gradient of a scalar field is a vector field.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 45 / 53

C++ Generic Programming in OpenFOAM (crash course) VI
Traits II

template<class arg1, class arg2>
class outerProduct
{
public:

typedef typename typeOfRank
<

typename pTraits<arg1>::cmptType,
direction(pTraits<arg1>::rank) + direction(pTraits<arg2>::rank)

>::type type;
};

Traits determine the component types of scalars, vectors, tensors.
Component type and rank traits promote outer product type.
One only needs this if the research involves extending the set of differential operators.
Type-lifting is enough for 99% of research using OpenFOAM.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 46 / 53

Combining Object-Oriented and Generic Programming

template<class Type>
class inletOutletFvPatchField
:

public mixedFvPatchField<Type>
{

protected:

// Protected data

//- Name of flux field
word phiName_;

OpenFOAM combines Generic and Object
Oriented Programming.
Makes sense: e.g. the inlet-outlet
boundary condition is a mixed boundary
condition, and it behaves exactly the same
way for different tensors.
Using OOP here for the tensor Type is
much more cumbersome and potentially
slower than using type lifting.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 47 / 53

Software Design Patterns in Research Software
Facade I

Facade hides the complexity of sub-algorithms, for example, the order of execution:
void lent::advect()
{

frontReconstructionModel->reconstructFront(); // Updates Front-Mesh communication.
frontMotionSolver->evolveFront(); // Front-Mesh Comm. update, using Search Algorithms.
distanceFieldCalculator->calcSignedDistances();

}

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 48 / 53

Software Design Patterns in Research Software
Facade II

1

1

1

1

levelSetMethod

-redistancingModel_ : redistancing
-phaseIndicatorModel_ : phaseIndicator

+evolve() : void

redistancing

+redistance() : void

phaseIndicator

+calcPhaseIndicator() : void

void evolve() {
redistancingModel_->redistance();
phaseIndicatorModel_->calcPhaseIndicator();
}

void evolve() {
redistancingModel_->redistance();
phaseIndicatorModel_->calcPhaseIndicator();
}

Best practice: implement
sub-algorithms as Strategies, test
them individually, then integrate them
in a specific execution order using
Facade.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 49 / 53

Software Design Patterns in Research Software
Curiously Recurring Template Pattern I

template<typename Parameter>
class MyType

: public Parameter

Class template inheriting from its template
parameter.
Used in generic programming for
policy-based design: extending the host
class (MyType) interface by inheriting
from the template parameter
(Parameter).

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 50 / 53

https://www.boost.org/community/generic_programming.html#policy

Software Design Patterns in Research Software
Curiously Recurring Template Pattern II

Curiously Recurring Template Pattern (CRTP) is couriously recurring and nested for the
Lagrangian / Eulerian Discrete Parcel Method.

template<class CloudType>
class ReactingCloud
:

public CloudType,
public reactingCloud

{

namespace Foam
{

typedef ReactingCloud
<

ThermoCloud
<

KinematicCloud
<

Cloud<basicReactingParcel>
>

>
> basicReactingCloud;

}

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 51 / 53

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

References I

[1] S. Shin, D. Juric, Modeling Three-Dimensional Multiphase Flow Using a Level Contour Reconstruction Method for Front Tracking
without Connectivity, J. Comput. Phys. 180 (2002) 427–470. URL: http://dx.doi.org/10.1006/jcph.2002.7086.
doi:10.1006/jcph.2002.7086.

[2] S. Shin, S. I. Abdel-Khalik, V. Daru, D. Juric, Accurate representation of surface tension using the level contour reconstruction method,
J. Comput. Phys. 203 (2005) 493–516. doi:10.1016/j.jcp.2004.09.003.

[3] S. Shin, I. Yoon, D. Juric, The Local Front Reconstruction Method for direct simulation of two- and three-dimensional multiphase flows,
J. Comput. Phys. 230 (2011) 6605–6646. URL: http://dx.doi.org/10.1016/j.jcp.2011.04.040.
doi:10.1016/j.jcp.2011.04.040.

[4] S. Shin, J. Chergui, D. Juric, A solver for massively parallel direct numerical simulation of three-dimensional multiphase flows, J.
Mech. Sci. Technol. 31 (2017) 1739–1751. doi:10.1007/s12206-017-0322-y. arXiv:1410.8568.

[5] T. Maric, H. Marschall, D. Bothe, LentFoam - A hybrid Level Set/Front Tracking method on unstructured meshes, Comput. Fluids 113
(2015) 20–31. doi:10.1016/j.compfluid.2014.12.019.

[6] T. Tolle, D. Bothe, T. Marić, SAAMPLE: A Segregated Accuracy-driven Algorithm for Multiphase Pressure-Linked Equations, Comput.
Fluids 200 (2020) 104450. URL: https://linkinghub.elsevier.com/retrieve/pii/S0045793020300268.
doi:10.1016/j.compfluid.2020.104450.

[7] J. Liu, T. Tolle, D. Bothe, T. Maric, A consistent discretization of the single-field two-phase momentum convection term for the
unstructured finite volume level set / front tracking method, 2022. arXiv:2109.01595.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 52 / 53

http://dx.doi.org/10.1006/jcph.2002.7086
http://dx.doi.org/10.1006/jcph.2002.7086
http://dx.doi.org/10.1016/j.jcp.2004.09.003
http://dx.doi.org/10.1016/j.jcp.2011.04.040
http://dx.doi.org/10.1016/j.jcp.2011.04.040
http://dx.doi.org/10.1007/s12206-017-0322-y
http://arxiv.org/abs/1410.8568
http://dx.doi.org/10.1016/j.compfluid.2014.12.019
https://linkinghub.elsevier.com/retrieve/pii/S0045793020300268
http://dx.doi.org/10.1016/j.compfluid.2020.104450
http://arxiv.org/abs/2109.01595

References II

[8] T. Tolle, D. Gründing, D. Bothe, T. Marić, trisurfaceimmersion: Computing volume fractions and signed distances from triangulated
surfaces immersed in unstructured meshes, Computer Physics Communications 273 (2022) 108249. URL:
http://dx.doi.org/10.1016/j.cpc.2021.108249. doi:10.1016/j.cpc.2021.108249.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, D. Patterns, Elements of reusable object-oriented software, volume 99, Addison-Wesley
Reading, Massachusetts, 1995.

Software Design Patterns in Research Software with examples from OpenFOAM - Dr.-Ing. Tomislav Maric 2022-03-08 IDEAS Productivity | ECP 53 / 53

http://dx.doi.org/10.1016/j.cpc.2021.108249
http://dx.doi.org/10.1016/j.cpc.2021.108249

	References

