2022 ECP Community BOF Days

Sharing Experience on HDF5 VOL
Connectors Development and
Maintenance

EXHSCHEOE
COMPUTING
PROSEGH

Approved for public release

Jordan Henderson (The HDF Group) Suren Byna (LBNL) Wednesday, May 11, 2022
1:00 PM - 2:00 PM ET
Jerome Soumagne (The HDF Group) Scot Breitenfeld (The HDF Group)
Neil Fortner (The HDF Group) Larry Knox (The HDF Group)
Houjun Tang (LBNL) Kai-yuan Hou (Northwestern University)
Huihuo Zheng (ANL) Wei-keng Liao (Northwestern University)
//%A V'AVSD%\ Office of

K @) EN ERGY Science
OSSO

Sharing Experience on HDF5 VOL Connectors
Development and Maintenance

Scot Breitenfeld

e Suren Byna, Houjun Tang, Jean Luca Bez, Bin Dong (Lawrence Berkeley National Laboratory)

* Scot Breitenfeld, Dana Robinson, Jerome Soumagne, Jordan Henderson, Neil Fortner, and Neelam Bagha (The HDF Group)
* Venkat Vishwanath and Huihuo Zheng (Argonne National Laboratory)

* Wei-keng Liao, Kai-Yuan Hou (Northwestern University)

- [N — N
el O) Northwestern —(CP &=
jj L Argonne &Y University \\.__) RREJSET

BERKELEY LAB The HDF Group AAAAAAAAAAAAAAAAAA

[

Overview

« HDF5 VOL developers will share their experiences creating and
maintaining HDF5 VOL connectors.

« Each talk will address
« Short description and references
« How will HDF5 apps benefit?
« What is the major success?
« What were the main obstacles to overcome?
* Lessons learned.

PPPPPPP

Agenda

Introduction Scot Breitenfeld
VOL framework, VOL toolkit, and Spack Dana Robinson, Larry Knox

VOL Connectors and experiences

* DAOS Jerome Soumagne
* Asynchronous I/O Houjun Tang

* Cache Huihuo Zheng

* Log-based Wei-keng Liao

Question and Answers

=\
\ EXASCALE

\(\v) —’ COMPUTING

PROJECT

Contacts and Useful links

« Contacts
— Suren Byna (LBNL) SByna@lbl.gov
— Scot Breitenfeld (The HDF Group) brtnfld@hdfgroup.org

HDF5 User Support:
HDF Helpdesk: help@hdfgroup.orq
HDF Forum: https://forum.hdfgroup.orqg/

HDF5 GitHub: https://github.com/HDFGroup/hdf5

PPPPPPP

The HDF5 Virtual Object Layer (VOL)
and
VOL Connectors In spack

May 11, 2022

] Sl

M Dana Robinson

The HDF Group The Fll_ngryGlfgch);

e Sl

*** Important HDF5 Version Note *** .
The HDF Group

ALL VOL CONNECTOR DEVELOPMENT SHOULD TARGET HDF5 1.13.x
Do NOT use HDF5 1.12.x

There were important changes to the VOL interface in HDF5 1.13.0 that could not be moved to
1.12.x without breaking binary compatibility

Note that HDF5 1.13.0 Iis an experimental branch

» |t is possible that the VOL interface could be changed in the 1.13.x versions that will be
released before HDF5 1.14.0

« Should be fairly stable, though

What is the Virtual Object Layer?

LN
N L/1
The HDF Group

Original HDF5 Architecture (pre-1.12.0)

Application

Virtual File Layer (VFL)

>

direct

N
Current HDF5 Architecture (1.12.0+) 1

Application

Public HDF5 API

The HDF Group

-

Non-Storage Storage-Oriented
API Call Internals API Call Internals

Virtual File Layer (VFL)

(H5S, H5P, ...)

- = 0
%_ eq) HE B N
() qrE_C
§ 5 11

Storage

Current HDF5 Architecture (1.12.0+)

Non-Storage

Public HDF5 API

Virtual Object Layer (VOL)

Storage-Oriented

API Call Internals API Call Internals

(H5S, H5P, ...)

Virtual File Layer (VFL)

<= direct

«
«

Rl e

N L/1
The HDF Group

New Layer

Allows you to
replace this with
your own code!

¥
N L/1
The HDF Group

Current HDF5 Architecture (1.12.0+)

Application

Key

Native VOL

Native
VOL

VFL

Two Kinds of VOL Connector

f ~ Terminal
O .
> Maps HDF5 objects to
e arbitrary storage schemes
2
< 4
——

e Sl

N L’1
The HDF Group

a ». Pass-Through

Perform operations (e.g.
caching, logging) before
passing the data on to the
next connector.

Native (Async
VOL L VOL

LN
N L/1
The HDF Group

Terminal VOL Connectors

H5Fcreate("foo.h5", flags, fcpl , fapl)

Microsoft Azure 10
Blob Storage

PostgreSQL
&9 neOL,

Storage mongoDB

Resources

11

L\
VOL Toolkit Repository N

The HDF Group

Location: https://github.com/HDFGroup/vol-toolkit

All your VOL construction needs in a single location
Does not contain original content

Designed to bring important content from other repositories together with consistent versioning

Content is mainly included as git submodules, though the docs are currently copied Iin
Tags will identify "HDF5 1.13.0", etc. versions of the toolkit

Includes an appropriate version of HDF5

VOL Toolkit Repository

The toolkit contains:

* VOL documentation
» Connector templates
* Terminal
« Passthrough
» TJesting suite
» Tutorial
« HDF5

12

P 1branch © 0tags Go to file Add file ~

'P.; derobins Adds missing table markdown markup

docs

templates

tutonal

.gitmodules

README.md

README.md

A Toolkit for HDF5 VOL Connector Authors

This toolkit is intended to help HDF5 Virtual Object Layer (VOL) connector authors get up and running. It includes
empty “templates” for both pass-through and terminal VOL connectors, a tutorial, and copies of the current VOL
documentation.

Most of the code is obtained via git submodules that refer to particular branches in external repositories. To ensure
you have these submodules, either clone this repository using:

"git clone --recursive <path>"

“git clone <path>”
“git submodule update --init’

As a convenience and to ensure that everything stays in sync, we've also included the HDF5 library as a submodule.

Rl S

N L’1
The HDF Group

13

Documentation

Two documents are included in the toolkit

User's Guide

Covers basic VOL operations like registration, handling plugin paths, etc.

Connector Author's Guide

Helpful instructions for constructing VOL connectors

RM for "connector author" calls that aren't covered in the main HDF5 API docs

e Sl

1=
The HDF Group

Both were copied from the hdf5doc repository (htips://github.com/HDFGroup/hdf5doc/iree/master/RECs/HDE5/VOL)

14

L\
Templates L/
The HDF Group

Two template repositories are linked in the toolkit

vol-template (https://github.com/HDFGroup/vol-template)

» Template for building terminal VOL connectors

* Build files + stubs.

» Developed and supported by THG

 Officially a "template repository" on github so you can clone + rename

vol-external-passthrough (https://github.com/hpc-io/vol-external-passthrough)

» Template for constructing pass-through connectors
* Has no-op, pass-through stubs for all callbacks
* Developed and supported by NERSC

15

Rl e

Production Connectors (NOT in Toolkit) The HDF Group

When developing your own connector, it can be VERY helpful to see what others have done

Examples:

vol-daos (https://github.com/HDFGroup/vol-daos)

» Terminal VOL connector based on Intel's DAOS developed by THG
» Largely complete coverage of the HDF5 API

» Supports parallel HDF5 and async I/0O

vol-async (https://github.com/hpc-io/vol-async)
vol-cache (https://github.com/hpc-io/vol-cache)

» Pass-through VOL connectors developed by NERSC

» Support parallel HDF5 (both) and async I/O (vol-async)

Find a full list here: https://portal.ndfgroup.org/display/support/Reqgistered+VOL+Connectors

Rl S

Testing Suite .
The HDF Group

A subset of the HDF5 library tests has been collected in a separate repository

vol-tests (https://github.com/HDFGroup/vol-tests)

* Requires CMake

» Supports parallel connectors and async

* No Windows support

» Tests a lot of the HDF5 API

» Tests the HDF5 command-line tools

» EXxpect a lot of failed tests until you have significant HDF5 APl coverage in your connector

 Instructions for use located in the repository's README

17

Rl e

Tutorial and Associated VOL Connector mYa
The HDF Group

Feb 2022 VOL tutorial

» Watch here: https://www.youtube.com/watch?v=7XEbm-__ QuM

« "Hello, world!" of VOL creation

» Builds a simple connector from scratch using the template terminal VOL connector as a
starting point

 Tutorial connector:

vol-tutorial (https://github.com/HDFGroup/vol-tutorial.qgit)

Compliance Levels

19

Rl S

VOL "Compliance Levels" ./l
The HDF Group

We want to provide a systematic way to determine what features are supported by a VOL
connector

 What's a "baseline" that every reasonable VOL connector should provide?
* Will probably set up a flag set to cover everything above that
* Need to determine which flags would be useful for VOL consumers?

« By API? (e.g. "supports references via H5R")

* By functionality? ("supports creation order")

« Something else?

* | will send an email to the VOL developer mailing list (and reach out to others)

* Probably meet a few times over the summer so this gets into HDF5 1.14.0

Spack

21

e Sl

Hdf5 & Hdf5 VOL Packages tested with Spack /1
The HDF Group
* VOL Packages: * HDF5 versions for VOL packages
» hdf5-vol-external-passthrough * develop-1.13
* hdf5-vol-async 1.13.1
» hdf5-vol-log * Other HDF5 versions tested
e 1.12.2
* 1.10.8

Build Status for 3 VOL packages with spack defaults — “spack install <vol package>”

« Cori Success —gcc@10.1.0

 Crusher Success —gcc@11.2.0

* Perlmutter Success —gcc@11.2.0

* Spock Success —gcc@11.2.0

 Summit Success — gcc@8.3.1

* Theta Success — gcc@10.1.0 with Acmake@3.22.2

22

Rl S

Testing Hdf5 & 3 VOL Packages in Spack e HDE Grous
with other compilers

HDF5 and the vol packages have also been built with spack with these compilers
where available, specified by adding %compiler@version to the "spack install <vol
package>" command. : cce@10.0, cce@13.0.1, intel@19.1.0.3.166,
intel@19.1.3.304, pgi@20.4, and rocmcc@8.33.

When errors occurred building one of the requisite packages, the package built
with gcc was added to the install command. For example, when building perl

with intel 19.1.3 failed, perl built with gcc 10.1.0 was added using

this command: "spack install <package> %intel@19.1.3.304 *perl@5.34.1%gcc@ 1
0.1.0

Mdf5 @develop-1.13%intel@19.1.3.304".

23

Additional test work planned

Run batch jobs with regression tests: “spack install --test=root <package>"
Replace with verification tests: “spack test <package>~
Test additional VOL packages

Report VOL test results to https://cdash.hdfgroup.org/index.php?project=HDF5.

Rl e

N L/1
The HDF Group

THANK YOU!

Questions & Comments?

© 2022, The HDF Group.

DAOS VOL

=
\\ EXASCALE
) COMPUTING
\ PROJECT
< g

Intel DAOS

Credit: Mohamad Chaarawi (Intel
Corporation)

Compute Nodes

Al / Analytics / Simulation Workflow

POSIX I/0 MPI 1/0 HDF5 Python Spark .

DAOS library -

I Network fabric .
_ Storage Nodes
DAQOS Storage Engine

Metadata, low- Bulk data
latency 1/0s &
indexing/query

NVDIMM

EEEEEEEEEEEEEEEE

S~
\\ EXASCALE
) COMPUTING
\ PROJECT
S

DAOS library directly linked with the applications
No need for dedicated cores

Low memory/CPU footprint

End-to-end OS bypass

KV API, non-blocking, lockless, snapshot support

Low-latency & high-message-rate communications
Native support for RDMA & scalable collective operations
Support for Infiniband, Slingshot, etc through OFI libfabric

Fine-grained I/O with media selection strategy

Only application data on SSD to maximize throughput
Small I/Os aggregated in pmem & migrated to SSD in large
chunks

Full user space model with no system calls on 1/O path
Built-in storage management infrastructure (control plane)
NFSv4-like ACL

Delivers high-lIOPs, high-bandwidth and low-latency
storage with advanced features in a single tier

From “Native” to DAOS Representation

 POSIX I/O was designed for disk-based storage
— High-latency to write data at random offsets because of mechanical aspects iorsEie)
— Current native HDFS5 file format inherited POSIX I/O block-based model (serial)

Shared File Object NI

File on Disk Superblock " header Serial
Address Dataset
Space g

 DAOS is designed for object-based storage /

DAOS Object 2 — Dataset 1-to-1 Mapping

DAQOS Object 1 - Root Group dkey: Internal Metadata o Para”el I/O and

: dkey: Int 1 Metadat . .
DAOS Gontainer ——— chunking first-class

Y. <chunk .. cooras Chunklng
 Independent object

creation

S~
\\ EXASCALE
) COMPUTING
\ PROJECT
S

HDF5 VOL Architecture and DAOS VOL

. New Component

. Enhanced Component

M Native Component

» New HDF5 features:

— Maps (enabled by K/V objects)
— File deletion

— Independent metadata

« HDF5 objects can be created
independently

— Asynchronous 1/O

* Tools support:

— h5dump, h5ls, h5diff, h5repack,

h5copy, etc

Core HDF5
Library

HDF5 Tools

VOL Layer

Native VOL

VFD Layer

POSIX API

File System

Test Suite

HDF5 API

DAOS API

Through

DAOS

External

Test Suite

External
VOL
Connector

DAOS VOL Usage

« Minimal or no code changes for application
developer (if only looking for compatibility)

« Two ways to tell which connector to use

— HDFS5 file access property list (recommended

for new files or when manipulating multiple
VOLs)

herr t H5Pset_fapl daos(hid t fapl id,
const char *pool, const char *sys name)

— Environment variable

HDF5 VOL CONNECTOR=daos

HDF5 PLUGIN PATH=/path/to/connector/folder

« Auto-detect and Unified Namespace
component facilitates opening of DAOS files
with the DAOS connector (embedded DAOS
metadata through extended attributes)

H5Fopen(“my file.h5”,..,H5P DEFAULT);

R

Y

VOL Layer

Redirects to
Default connector

DAOS UNS [#=——— DAOS VOL

Path resolve Pool /
query from stub container
“‘my_file.h5” UUIDs

File System

DAOS

Evaluation — Example w/VPIC (metadata operations)

Re-defined VPIC file structure for electron particle (N VPIC 1/O performance using collective and
particles) independent group creation
Collective (HDF5 MP!I I/O)
Collective (HDF5 DAOS) s
HDF5 File (shared) Only supported with DAOS Independent (HDF5 DAOS) I
100000 g 5
10000 E <
1000 E <
Timestep 0 @ - .
o 100 g =
£ S 5
— — Z
10 F E
1 E E
0.1 L i
8 16 32
Number of Nodes

DAOS VOL - Difficulties and Lessons learned

» Difficulties

The DAOS connector was the first connector to
fully exercise the entire VOL framework

Writing a fully featured VOL connector requires a
LOT of code to cover all the APIs

« Supporting all properties (creation order, fill
values)

« Datatype conversion

» Path resolution

« Selections / copy code from chunking module
Public / private HDF5 APls

» Private APIs made public
Asynchronous I/0O

External VOLs and VOL testing

e [essons learned.

Creating a VOL connector is not an easy task (to
cover all APIs)

« Order development by HDF5 hierarchy / files
and groups / datasets / efc

« Improvements to create convenience
wrappers

» Selections and datatype conversion

There is still room to improve public / private
APIs and their use by VOLs

» Make clear distinction between user APIs and VOL
developer APIs

Design for asynchronous I/O from the start

Plan and test for external VOL compatibility with
specific HDF5 version

Additional Information

« DAOS VOL Connector repository:
— https://github.com/HDF Group/vol-daos
— Latest release is v1.1.0: https://qgithub.com/HDF Group/vol-daos/releases/tag/v1.1.0

* More results / details in IEEE TPDS paper
— https://doi.org/10.1109/TPDS.2021.3097884

This material is based upon work supported by the U.S. Department of Energy and Argonne National Laboratory and its Leadership Computing Facility,
including under Contract DE-AC02-06CH11357 and Award Number 8F-30005. This work was generated with financial support from the U.S.
Government through said Contract and Award Number(s), and as such the U.S. Government retains a paid-up, nonexclusive, irrevocable, world-wide

license to reproduce, prepare derivative works, distribute copies to the public, and display publicly, by or on behalf of the Government, this work in
whole or in part, or otherwise use the work for Federal purposes.

_—
\\ EXASCALE
) COMPUTING
\ PROJECT

Developing Asynchronous I/0
VOL Connector

Houjun Tang
Lawrence Berkeley National Laboratory, USA

PPPPPPP

Asynchronous I/0 VOL Connector

The async VOL uses background threads and supports HDF5 |/O operations, manages

data dependencies transparently and automatically, provides an interface for error
information retrieval.

* https://qgithub.com/hpc-io/vol-pdc/

PROJECT

Apt;;‘l:g::;on Fcreate || Dcreate || Dwrite || Dclose || Fclose |: Compute || Fereate
Async task queue
y q @ App thread idle, start execution
--- *_ - -
Background | Wait ' :’D’:’D’:’D’:’D’:’D’ ; Wait
thread leecmcmemeceemeccccccecmc-e-mcmcmecs-s-eeemes-e-e-e--e==s b e ——————
: |h N : et \ EXASCALE
rr/r}” | M é 2 _— \) =) COMPUTING
iiasad 1he HDF Group ATBONNE, o \(\...

New Async and EventSet APIs

« Async version of HDF5 APls

* HSFcreate async (fname, .., es id);
* HSDwrite async (dset, .., es id);

* Track and inspect multiple I/0O operations with an EventSet ID
* HS5EScreate () ;
* HOESwailt (es 1d, timeout, &remaining, &op failed);
* HS5ESget err info(es 1d, ...);
« H5ESclose (es 1id);

=N \
3 \ EXASCALE

) —J COMPUTING
PROJECT

How to use Async VOL

Detailed description in https://hdf5-vol-async.readthedocs.io

 Installation
« Compile HDF5 (github develop branch or released version 1.13+), with thread-safety support
« Compile Argobots threading library
« Compile Async VOL connector
« ““DENABLE_WRITE_MEMCPY?” flag to have async vol copy write buffer

* Set environment variables
« export LD LIBRARY PATH=$VOL DIR/1ib:$H5 DIR/1ib:$ABT DIR/1lib:$LD LIBRARY PATH
* export HDF5_PLUGIN_PATH="$VOL_DIR/lib"
* export HDF5 VOL CONNECTOR="async under vol=0;under info={}"
* (optional) export HDEF5 ASYNC EXE FCLOSE=1
* (optional) export HDEF5 ASYNC MAX MEM MB=67108864

* Run the application (using the async and EventSet APIs)
« MPI must be initialized with MPI_THREAD MULTIPLE

spack install hdf5-vol-async

) EXASCALE
) COMPUTING
PROJECT

- L)

frreeeee

™1 https://github.com/hpc-io/vol-async 4 e
LRI The HDF Group Arg(gm]g& \‘&\”

Evaluation Overview

VPIC-10 I/O kernel from VPIC, a plasma physics code Write, single file for all steps, 8
that simulates kinetic plasma particles. variables, 256 MB per process per
timestep.
BDCATS-IO I/O kernel from BDCATS, a parallel clustering Read, single file, 8 variables,
algorithm code that analyze VPIC data. 256 MB per process per timestep.
© AMReX/Nyx I/O workload from Nyx, an adaptive mesh Write, one file for each timestep,
% cosmological simulation code that solves 6 variables, single refinement level,
/V X, £ equations of compressible hydrodynamics with simulation metadata,
% - flow. 385 GB per timestep
AMReX/Castro I/O workload from Castro, an adaptive mesh Write, one file for each timestep,
C&T 0 compressible radiation / MHD 6 variables, 3 refinement levels,
& /hydrodynamics code for astrophysical with simulation metadata,
flows. 559 GB per timestep
i Ih N ’-;\ \ EXASCALE
/1 Argonneé 5 E— \) - COMPLITING

BERKELEY LAB The HDF Group AAAAAAAAAAAAAAAAAA \(\~

~

frreeeee

BERKELEY L

0
~
@
£
h=
(®)
=
o
o
>
S
@
0
2
(e

A
I

AB

Speedup with VPIC-10 and BDCATS-I0 on Summit

® HDF5 A HDF5-async

ol

VPIC-IO, writes 256MB per process, 5 steps,
emulated compute time.

Lt N\
L/1
The HDF Grou

Nl

rLD:\b(b“b\%

9‘5\\6

\‘57’\%1

'5‘5“\6&

Number of processes / number of nodes

A
p '8

OﬂﬂE°

NATIONAL LABORATORY

®
U

12

® HDF5 A HDF5-async

10

o—0-
A ———A

A y © © N
o Rl N p o \gq,\'s'?« (b%b(\‘b

Number of processes / number of nodes

BDCATS-IO, reads 256 MB per process, 5 steps,
emulated compute time.

) EXASCALE
COMPUTING
PROJECT

~

frreeeee

BERKELEY L

A
I

AB

Speedup with AMReX Applications on Summit

200

150

100

Observed /O time (s)
g

® HDF5 A HDF5asyc

A——/‘\‘

g g |
The HDF Group *"82 0.

WP

I\
96\ 1‘6%

fz,%b‘\@‘ 6\7’66

ok
,\g’L ,\c_{b

Number of processes / number of nodes

NyX workload, single refinement level,

writes 385GB x 5 steps, emulated compute time.

OﬂﬂE°

200

150

100

50

® HDF5 A HDF5asyc

— //
\\O s Ca A2 =0
o® Ao Rk A \6%6\7’

Number of processes / number of nodes

Castro workload, 3 refinement levels,

writes 559GB x 5 steps, emulated compute time.

) EXASCALE
COMPUTING
PROJECT

Obstacles During Implementation

- Many HDF5 APIs for implementation and testing.
. HDF5 (thread-safe) global mutex.

. New H5*_async and H5ES* APls.

- Future ID.

- Error handling and reporting.

PPPPPPP

Best Practice & Lessons Learned

* Async is effective when I/O time is a significant portion of the total application
execution time, and there is enough compute time to overlap with.

« Some operations cannot be done asynchronously, avoid if possible.

* E.g. The “future ID” obtained from H5Dget space needs to be realized (w/ disk I/O) when the
ID is used (e.g. hyperslab selection).

« MPI THREAD MULTIPLE has overhead.

« Background thread interference.

» Minimal interference for GPU-accelerated applications.
» OpenMP applications should leave 1 core/thread for the async background thread.

« Memory allocation needs to be handled properly.
« Peak memory usage could be higher than sync mode, due to double buffering.
* Async VOL will switch to sync mode when not enough system memory is available.

é Q\) ExAscALe
I U I 9 — COMPUTING
“.() PROJECT
T Argonne \
The HDF Group oooooooooooooooooo Sy

Thank you!

Questions?

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of
Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support the nation’s exascale computing imperative.

= I n = ’-'\

r:'—r>| 'RI ° — \ EXASCALE
10 S COMPUTING
. f LA Argonne \(\ | =S

= The HDF Group NATIONAL LABORATORY . .

HDF5 Cache VOL.: efficient parallel I/0
through caching data on node local storage

Huihuo Zheng
Argonne National Laboratory
huihuo.zheng@anl.gov
May 11th, 2022

H. Zheng et al, HDF5 Cache VOL: Efficient and Scalable Parallel 1/0
through Caching Data on Node-local Storage, CCGrid’22

/\H\| ﬁ A S https://github.com/hpc-io/vol-cache.git — (,:\) S NN
ELAAREE The HDF Group rgQQNQE OOOOOOO \\~ PPPPPPP

mailto:huihuo.zheng@anl.gov

ransparently integrating node-local storage
into parallel I/0

Node-local storage

* No network / resource contention; larger
aggregate bandwidth compared to the
parallel file systems

Challenges of using node-local storage

* Distributed storage -> w/o global namespace

e Accessible only during job running

Node-local storage (SSD, NVMe, etc) storage Cache VOL
* Caching / staging data on node-local storage
ThetaGPU (DGX-3) @ ALCF: NVMe (15.4 TB / node) * Asynchronous data movement to hide overhead
Summit @ OLCF: GPFS + NVMe (1.6 TB / node) .

All complexity hidden in the library
e Easy to integrate to existing HPC applications with
minimal code change.

Perlmutter @ NERSC: Lustre + SSD (960 GB/node)
Frontier @ OLCF: Lustre + NVMe (37PB total)

§ Ih N . . . ’.:\\ EXASCALE
/\I I @ Ar onne° https://github.com/hpc-io/vol-cache.git —)| caverne
LGN E The HDF Group gonne " \\~

Parallel Write (H5Dwrite)

Compute node RAM F

Node-local
storage

w/o
cevc}wmg

caching

~
N LI
reeceee| ! M

LTS The HDF Group

n

Shared HDFS5 file

'

1. Data is synchronously copied from the
memory buffer to memory mapped files

on the node-local storage using POSIX 1/0O.

2. Move data from memory mapped
. file to the parallel file system
Parallel file system ﬁ -

asynchronously by calling the dataset

write function from Async VOL
stacked below the Cache VOL

3. Wait for all the tasks to finish in
H5Dclose() / H5Fclose()

Compute /O (RAMLIPFS) Compute
Compute RAM->NLS| Compute
Partial overlap of compute with I/0 /0: NLS->PFS

AAAAAAAAAAAAAAAAAA

Details are hidden from the application developers.

https://github.com/hpc-io/vol-cache.git 3 —

\\ EXASCALE

) —J COMPUTING
PROJECT

Parallel Read (H5Dread)

Create memory mapped files and attached them
to a MPI_Win for one-sided remote access

Node-Iocal[@ @ @ @J MPI_Win
storage

Compute
node RAM

Parallel file
system

2. Caching data

\MPI_Put,
using MPI_Put

1

Single shared HDF5 file

1. Reading data
from parallel file
system

w/ Caching Compute /0 Compute

First time reading the data

ey LJINI_
BERKELEY LAB The HDF Group

AAAAAAAAAAAAAAAAAA

One-sided communication for accessing

remote node storage.

« Each process exposes a part of its memory to
other processes (MPI Window)

» Other processes can directly read from or write
to this memory, without requiring that the
remote process synchronize (MPI_Put, MPI_Get)

/ \g/m_ \ Reading data from
et ! NLSusing MPI_Put
H i

w/o Caching Compute 1/0O Compute

Reading the data directly from node-local storage

EXASCALE

=\
https://github.com/hpc-io/vol-cache.git 4 — \) —) COMROTNG

PROJECT

How to use Cache VOL

1) Setting VOL connectors

export HDF5 PLUGIN_ PATH=$HDF5 VOL DIR/1lib
export HDF5 VOL CONNECTOR="cache_ext

config=SSD.cfg;under_vol=518;under_info={under_vol=0;under_info={}}"
export LD_LIBRARY PATH=$HDF5 PLUGIN PATH:$LD LIBRARY PATH

2) Enabling caching VOL

Opt. 1 Through global environment variables (HDF5_CACHE_RD / HDF5_CACHE_WR [yes|no])
Opt. 2 Through setting file access property: H5Pset fapl plist(’HDF5 CACHE RD’, true)

3) Initializing MPI with MPI_Init_thread(..., MPI_THREAD_MULTIPLE...)

4) In some cases, rearranging the function calls to allow the overlap of computation with data

migration (see examples later)

FT b
rL/1 Argonne

A
I

BERKELEY LAB The HDF Group AAAAAAAAAAAAAAAA

#contents of SSD.cfg

HDF5_CACHE_STORAGE_SIZE

137438953472

HDF5_CACHE_STORAGE_TYPE
HDF5_CACHE_STORAGE_PATH
HDF5_CACHE_STORAGE_SCOPE
HDF5_CACHE_WRITE_BUFFER_SIZE

/local/scratch/

102457690

HUFS_CACHE_REPLACEMENT _PULICY

https://github.com/hpc-io/vol-cache.git

EXASCALE

—J COMPUTING

PROJECT

o
()
0
~

a

e
Q
)
©
—
()
—

=
s

©
()
>
|
()
0

Q

@)

A
I

frreeeee

BERKELEY LAB

How do HDF5 apps benefit

Hiding the check-pointing 1/0O overhead behind the
computation to improve observed I/O performance

1000 1w vPIC-10 Baseline
B VPIC-IO + Cache VOL (SSD)
800 A
600 1 Eagle filesystem @ Theta
Stripe count: 64
400 - Stripe size: 16MB
200 - J
S s
4 8 16 32 128 256 512 1024 2048
Number of nodes (ppn=16)
Minimal code changes is needed
S n 30th
March 30th, 2021
rL/1 Argonne o

The HDF Group = © wmowsusorurons

Time (sec)

Staging data to the node-local storage for deep

learning applications to improve the training

throughput (work with h5py)

1250 1
1000 1
750 A
500 -
250 -

—&— Baseline
—e— w/ Cache VOL

EXASCALE
COMPUTING
PROJECT

~
A
rrrrrrr |"'|

BERKELEY LAB

Success and obstacles

Success
» Improved scaling efficiency and performance of write I/O (VPIC-IO)
* Improved the training throughput for deep learning applications

Main obstacles to overcome
* Thread mutex and HDF5 library locking

» Async tasks blocking issues
* Internal blocking of data migration due to thread mutex
» Blocking by H5Dclose and H5Fclose

» Async tasks dependence issue
 Integrating to h5py
« Combining write and read

(L= ’:\

March 30th, 2021 7 (—
ML poonne® {
The HDF Group uuuuuuuuuuuuuuuuuu =

EEEEEEEE
PPPPPPP

[

Lessons learned

» External passthrough connector is a very good template to
start:

https://github.com/hpc-io/vol-external-passthrough.git

« Working closely with the THG team and for new functionalities
development, bug fixes.

» Taking advantage of existing works without reinventing the
wheels. (Cache VOL uses Async VOL for data migration). | also
learned a lot from Async VOL.

’-Q\
) EEEEEEEE
) CCCCCCCCC

PPPPPPP

March 30th, 2021 8

Acknowledgment

« This work was supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, under
contract number DE-AC02-05CH11231 (Project: Exascale Computing
Project [ECP] - ExaHDF5 project).

* This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02- 06CH11357.

* This research used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC05-000R22725.

Ll A . . . "—‘\\ EEEEEEEE
™/ Arconne https://github.com/hpc-io/vol-cache.git 9 [()[—) coveore
G The HDF Group O oo S \

—

"Q\\

EXASCALE COMPUTING PROJECT

Log-based Data Layout VOL

Presenters:
Wei-keng Liao, Kai-yuan Hou

DatalLib Team members:

Kai-yuan Hou, Alok, Choudhary, Wei-keng Liao, Northwestern University
Rob Latham, Rob Ross, Argonne National Laboratory

Galen Shipman, Los Alamos National Laboratory

BOF: Sharing Experience on HDF5 VOL Connectors Development and
Maintenance
ECP annual meeting, May 11, 2022

.S. A 2 “I
exascaleproject.org EsﬁMERmREEFY Office of N AVSE-;Q‘J

Science N ecurity Administration

Log File Layout Based VOL

 To store write data contiguously in the
file, like time logs

— Multi-dimensional arrays are flattened into
1D dataset objects

— Write data is appended one after another
in files

— Keeps files conforming with HDF5 format

— Makes use of native VOL to manage HDF
objects

* VOL connector identifier; 514

May 11 2022 Log-based Data Layout VOL- ECP COMMUNITY BOF

Fo B4 B2
B3 B4 Bs
Ps 7 Pg
Po P1 B2
Pa B4 Ps
Ps Pz g

https://github.com/DataLib-ECP/vol-log-based

EEEEEEEE
EEEEEEEEE
PPPPPPP

Benefit to Application Users

» High performance for write operations

— Avoid expensive inter-process communication to rearrange data
in canonical data layout

— Aggregation of small requests into large ones

* Enabled through VOL environment variables
— No change to the applications

« Same HDF5 utility programs
* E.g., hdls, h5dump to view the metadata and data

EEEEEEEEE

E (C\\ P EEEEEEEE
3 May 11 2022 Log-based Data Layout VOL- ECP COMMUNITY BOF Northwestern \ Ay
University

May 11 2022

Case study — E3SM

* Irregular noncontiguous I/O pattern

— A separate E3SM I/O benchmark

— https://github.com/Parallel-
NetCDF/E3SM-10O

— Production run cases
* F case: 21.3 GiB, 414 variables
» G case: 80 GiB, 52 variables
» | case: 86.1 GiB, 560 variables

» Experiment settings

— Cori KNL nodes
— PnetCDF nonblocking I/O is used

— HDF5 multi-dataset APIs coming soon

Log-based Data Layout VOL- ECP COMMUNITY BOF

/0 method F case G case

HDF5 —

native VOL
(canonical layout)

can’t finish | can’t finish

PnetCDF

. 15.60 8.04
(canonical layout)

HDF5 —

log-based VOL 3.91 4.26
(log layout)

Time in seconds

Northwestern
University

| case

can’t finish

111.57

28.42

o \
\ EXASCALE
) COMPUTING
\ PROJECT

https://github.com/Parallel-NetCDF/E3SM-IO

Obstacles

* Read performance can be poor

—Reading a subarray of a dataset must sweep through all metadata
logs to find the interactions

* Log metadata size can be large for fragment requests
—File size can be larger than the one in canonical layout

 Using native VOL to write logs to file is slower

—Log VOL queries the file offsets of datasets and use MPI 1/O
directly to write

EEEEEEEEE

2 E (C\\ P EEEEEEEE
5 May 11 2022 Log-based Data Layout VOL- ECP COMMUNITY BOF Northwestern \ NI FRgheer
University

Lessons Learned

« One can use a data layout different
from the default

— Any high-level I/O libraries, such as
HDF5 and PnetCDF, can be used to
support this idea

— Experimental examples can be found in
the E3SM-IO benchmark repo

— https://github.com/Parallel-NetCDF/E3SM-10

May 11 2022 Log-based Data Layout VOL- ECP COMMUNITY BOF

Time in seconds

45
40
35
30
25
20
15
10

5

0

E3SM I/O Time on Cori
417

11.5

. 6.1
0.8 0.7 2:8 1112 o
— ||

F case G case | case

mPnetCDF ®=HDF5 ®=ADIOS

_—
‘§ EEEEEEEE
()= cayeuTne
PROJECT
Northwestern \

University

