
Approved for public release

2022 ECP Community BOF Days

Sharing Experience on HDF5 VOL
Connectors Development and
Maintenance

Jordan Henderson (The HDF Group)

Jerome Soumagne (The HDF Group)

Neil Fortner (The HDF Group)

Houjun Tang (LBNL)

Huihuo Zheng (ANL)

Wednesday, May 11, 2022
1:00 PM – 2:00 PM ET

Suren Byna (LBNL)

Scot Breitenfeld (The HDF Group)

Larry Knox (The HDF Group)

Kai-yuan Hou (Northwestern University)

Wei-keng Liao (Northwestern University)

Sharing Experience on HDF5 VOL Connectors
Development and Maintenance

Scot Breitenfeld

• Suren Byna, Houjun Tang, Jean Luca Bez, Bin Dong (Lawrence Berkeley National Laboratory)
• Scot Breitenfeld, Dana Robinson, Jerome Soumagne, Jordan Henderson, Neil Fortner, and Neelam Bagha (The HDF Group)
• Venkat Vishwanath and Huihuo Zheng (Argonne National Laboratory)
• Wei-keng Liao, Kai-Yuan Hou (Northwestern University)

Overview

2

• HDF5 VOL developers will share their experiences creating and
maintaining HDF5 VOL connectors.
• Each talk will address
• Short description and references
• How will HDF5 apps benefit?
• What is the major success?
• What were the main obstacles to overcome?
• Lessons learned.

Agenda

3

Here’s a tentative agenda:Topic Presenter
Introduction Scot Breitenfeld

VOL framework, VOL toolkit, and Spack Dana Robinson, Larry Knox

VOL Connectors and experiences

• DAOS Jerome Soumagne

• Asynchronous I/O Houjun Tang

• Cache Huihuo Zheng

• Log-based Wei-keng Liao

Question and Answers

Contacts and Useful links

4

• Contacts
– Suren Byna (LBNL) SByna@lbl.gov
– Scot Breitenfeld (The HDF Group) brtnfld@hdfgroup.org

HDF5 User Support:
HDF Helpdesk: help@hdfgroup.org
HDF Forum: https://forum.hdfgroup.org/

HDF5 GitHub: https://github.com/HDFGroup/hdf5

The HDF5 Virtual Object Layer (VOL)
and

VOL Connectors in spack
May 11, 2022

Dana Robinson
Larry Knox

The HDF Group

2

*** Important HDF5 Version Note ***

• ALL VOL CONNECTOR DEVELOPMENT SHOULD TARGET HDF5 1.13.x

• Do NOT use HDF5 1.12.x

• There were important changes to the VOL interface in HDF5 1.13.0 that could not be moved to
1.12.x without breaking binary compatibility

• Note that HDF5 1.13.0 is an experimental branch

• It is possible that the VOL interface could be changed in the 1.13.x versions that will be
released before HDF5 1.14.0

• Should be fairly stable, though

What is the Virtual Object Layer?

4

Original HDF5 Architecture (pre-1.12.0)

Application

Public HDF5 API

Non-Storage
API Call Internals

(H5S, H5P, …)

Storage-Oriented
API Call Internals

G
PUse
c2

sp
lit

Virtual File Layer (VFL)

Storage
co

re

fa
m

ily

di
re

ct …

5

Current HDF5 Architecture (1.12.0+)

Application

Public HDF5 API

Non-Storage
API Call Internals

(H5S, H5P, …)

Storage-Oriented
API Call Internals

G
PUse
c2

sp
lit

Virtual File Layer (VFL)

Storage
co

re

fa
m

ily

di
re

ct …

Virtual Object Layer (VOL)

6

Current HDF5 Architecture (1.12.0+)

Application

Public HDF5 API

Non-Storage
API Call Internals

(H5S, H5P, …)

Storage-Oriented
API Call Internals

G
PUse
c2

sp
lit

Virtual File Layer (VFL)

Storage

co
re

fa
m

ily

di
re

ct …

Virtual Object Layer (VOL) New Layer

Allows you to
replace this with
your own code!

7

Current HDF5 Architecture (1.12.0+)

Application

HDF5 API

Non-VOL
API

Calls

H5S
H5P

…

Virtual Object Layer

Native
VOL

G
PU

se
c2

sp
lit D

A
O

S
V

O
L

VFL

A
sy

nc
V

O
L

N
at

iv
e

V
O

L

StorageStorageStorage

Plugin

Key

Native VOL

HDF5 Library

8

Two Kinds of VOL Connector
D

A
O

S
V

O
L

A
sy

nc
V

O
L

N
at

iv
e

V
O

L

StorageStorage

Terminal

Maps HDF5 objects to
arbitrary storage schemes

Pass-Through

Perform operations (e.g.
caching, logging) before
passing the data on to the
next connector.

9

Storage

VOL Connector

Terminal VOL Connectors

H5Fcreate("foo.h5", flags, fcpl , fapl)

Public API

"foo.h5"
flags

fcpl
fapl

Resources

11

VOL Toolkit Repository

• Location: https://github.com/HDFGroup/vol-toolkit

• All your VOL construction needs in a single location

• Does not contain original content

• Designed to bring important content from other repositories together with consistent versioning

• Content is mainly included as git submodules, though the docs are currently copied in

• Tags will identify "HDF5 1.13.0", etc. versions of the toolkit

• Includes an appropriate version of HDF5

12

VOL Toolkit Repository

The toolkit contains:

• VOL documentation
• Connector templates

• Terminal
• Passthrough

• Testing suite
• Tutorial
• HDF5

13

Documentation

Two documents are included in the toolkit

User's Guide

• Covers basic VOL operations like registration, handling plugin paths, etc.

Connector Author's Guide

• Helpful instructions for constructing VOL connectors

• RM for "connector author" calls that aren't covered in the main HDF5 API docs

Both were copied from the hdf5doc repository (https://github.com/HDFGroup/hdf5doc/tree/master/RFCs/HDF5/VOL)

14

Templates

Two template repositories are linked in the toolkit

vol-template (https://github.com/HDFGroup/vol-template)

• Template for building terminal VOL connectors
• Build files + stubs.
• Developed and supported by THG
• Officially a "template repository" on github so you can clone + rename

vol-external-passthrough (https://github.com/hpc-io/vol-external-passthrough)

• Template for constructing pass-through connectors
• Has no-op, pass-through stubs for all callbacks
• Developed and supported by NERSC

15

Production Connectors (NOT in Toolkit)

When developing your own connector, it can be VERY helpful to see what others have done

Examples:

vol-daos (https://github.com/HDFGroup/vol-daos)
• Terminal VOL connector based on Intel's DAOS developed by THG
• Largely complete coverage of the HDF5 API
• Supports parallel HDF5 and async I/O

vol-async (https://github.com/hpc-io/vol-async)
vol-cache (https://github.com/hpc-io/vol-cache)
• Pass-through VOL connectors developed by NERSC
• Support parallel HDF5 (both) and async I/O (vol-async)

Find a full list here: https://portal.hdfgroup.org/display/support/Registered+VOL+Connectors

16

Testing Suite

A subset of the HDF5 library tests has been collected in a separate repository

vol-tests (https://github.com/HDFGroup/vol-tests)
• Requires CMake
• Supports parallel connectors and async
• No Windows support
• Tests a lot of the HDF5 API
• Tests the HDF5 command-line tools
• Expect a lot of failed tests until you have significant HDF5 API coverage in your connector
• Instructions for use located in the repository's README

17

Tutorial and Associated VOL Connector

Feb 2022 VOL tutorial

• Watch here: https://www.youtube.com/watch?v=7XEbm-__QuM

• "Hello, world!" of VOL creation

• Builds a simple connector from scratch using the template terminal VOL connector as a
starting point

• Tutorial connector:

vol-tutorial (https://github.com/HDFGroup/vol-tutorial.git)

Compliance Levels

19

VOL "Compliance Levels"

We want to provide a systematic way to determine what features are supported by a VOL
connector

• What's a "baseline" that every reasonable VOL connector should provide?

• Will probably set up a flag set to cover everything above that

• Need to determine which flags would be useful for VOL consumers?
• By API? (e.g. "supports references via H5R")
• By functionality? ("supports creation order")
• Something else?

• I will send an email to the VOL developer mailing list (and reach out to others)

• Probably meet a few times over the summer so this gets into HDF5 1.14.0

Spack

21

Hdf5 & Hdf5 VOL Packages tested with Spack

• VOL Packages:
• hdf5-vol-external-passthrough
• hdf5-vol-async
• hdf5-vol-log

• HDF5 versions for VOL packages
• develop-1.13
• 1.13.1

• Other HDF5 versions tested
• 1.12.2
• 1.10.8

Build Status for 3 VOL packages with spack defaults – “spack install <vol package>”

• Cori Success – gcc@10.1.0
• Crusher Success – gcc@11.2.0
• Perlmutter Success – gcc@11.2.0
• Spock Success – gcc@11.2.0
• Summit Success – gcc@8.3.1
• Theta Success – gcc@10.1.0 with ^cmake@3.22.2

22

Testing Hdf5 & 3 VOL Packages in Spack
with other compilers

HDF5 and the vol packages have also been built with spack with these compilers
where available, specified by adding %compiler@version to the "spack install <vol
package>" command. : cce@10.0, cce@13.0.1, intel@19.1.0.3.166,
intel@19.1.3.304, pgi@20.4, and rocmcc@8.33.

When errors occurred building one of the requisite packages, the package built
with gcc was added to the install command. For example, when building perl
with intel 19.1.3 failed, perl built with gcc 10.1.0 was added using
this command: "spack install <package> %intel@19.1.3.304 ^perl@5.34.1%gcc@1
0.1.0
^hdf5@develop-1.13%intel@19.1.3.304".

23

Additional test work planned

• Run batch jobs with regression tests: “spack install --test=root <package>”

• Replace with verification tests: “spack test <package>”

• Test additional VOL packages

• Report VOL test results to https://cdash.hdfgroup.org/index.php?project=HDF5.

THANK YOU!
Questions & Comments?

© 2022, The HDF Group.

DAOS VOL

2

Intel DAOS

DAOS Storage Engine
Storage Nodes

AI / Analytics / Simulation Workflow
Compute Nodes

POSIX I/O MPI I/O HDF5 Python Spark…

DAOS library

Network fabric

Intel® 3D-XPoint Memory 3D-NAND / XPoint SSD

Metadata, low-
latency I/Os &
indexing/query

Bulk data

SPDKPMDK NVMeNVDIMM

HDD

▪ DAOS library directly linked with the applications
▪ No need for dedicated cores
▪ Low memory/CPU footprint
▪ End-to-end OS bypass
▪ KV API, non-blocking, lockless, snapshot support

▪ Low-latency & high-message-rate communications
▪ Native support for RDMA & scalable collective operations
▪ Support for Infiniband, Slingshot, etc through OFI libfabric

▪ Fine-grained I/O with media selection strategy
▪ Only application data on SSD to maximize throughput
▪ Small I/Os aggregated in pmem & migrated to SSD in large

chunks
▪ Full user space model with no system calls on I/O path
▪ Built-in storage management infrastructure (control plane)
▪ NFSv4-like ACL

Delivers high-IOPs, high-bandwidth and low-latency
storage with advanced features in a single tier

Credit: Mohamad Chaarawi (Intel
Corporation)

3

From “Native” to DAOS Representation

• POSIX I/O was designed for disk-based storage
– High-latency to write data at random offsets because of mechanical aspects
– Current native HDF5 file format inherited POSIX I/O block-based model (serial)

• DAOS is designed for object-based storage

Shared
File on Disk …

File
Superblock

Object
header… Object data

DAOS Object 2 – Dataset

dkey: Internal Metadata

dkey: <chunk 1 coords>

record data: array of elmts

dkey: <chunk … coords>

record data: array of elmts

DAOS Object 1 – Root Group

dkey: Internal Metadata

dkey: <Link 1 name>

record data: Link 1 target

DAOS Container
=

HDF5 File

Root
Group

Dataset

HDF5 File

Serial
Address
Space

1-to-1 Mapping

• Parallel I/O and
chunking first-class
citizens

• Implicit
chunking

• Independent object
creation

4

HDF5 VOL Architecture and DAOS VOL

HDF5 API

VOL Layer

VFD Layer

Native VOL

DAOS
VOL

SE
C

2

M
PI

O

File System DAOS

HDF5 Tools Test Suite

…

…

DAOS APIPOSIX API

Core HDF5
Library

External
Test Suite

External
VOL

Connector

Through
MPI I/O

•

•

•

• New HDF5 features:
– Maps (enabled by K/V objects)
– File deletion
– Independent metadata

• HDF5 objects can be created
independently

– Asynchronous I/O

• Tools support:
– h5dump, h5ls, h5diff, h5repack,

h5copy, etc

New Component

Enhanced Component

Native Component

5

DAOS VOL Usage

• Minimal or no code changes for application
developer (if only looking for compatibility)

• Two ways to tell which connector to use
– HDF5 file access property list (recommended

for new files or when manipulating multiple
VOLs)
herr_t H5Pset_fapl_daos(hid_t fapl_id,
const char *pool, const char *sys_name)

– Environment variable
HDF5_VOL_CONNECTOR=daos

HDF5_PLUGIN_PATH=/path/to/connector/folder

• Auto-detect and Unified Namespace
component facilitates opening of DAOS files
with the DAOS connector (embedded DAOS
metadata through extended attributes)

HDF5 API

VOL Layer

Native VOL

DAOS VOL

Default

Redirects to
connector

H5Fopen(“my_file.h5”,…,H5P_DEFAULT);

HDF5 auto-detect

DAOS UNS

File System DAOS

Pool /
container

UUIDs

Path resolve
query from stub

“my_file.h5”

6

Evaluation – Example w/VPIC (metadata operations)

Re-defined VPIC file structure for electron particle (N
particles)

VPIC I/O performance using collective and
independent group creation

Timestep_0

Part1

HDF5 File (shared)

… PartN

/

{i,dx,dy,dz,ux,uy,uz,w}

Only supported with DAOS

7

DAOS VOL – Difficulties and Lessons learned

• Difficulties
– The DAOS connector was the first connector to

fully exercise the entire VOL framework
– Writing a fully featured VOL connector requires a
LOT of code to cover all the APIs
• Supporting all properties (creation order, fill

values)
• Datatype conversion
• Path resolution
• Selections / copy code from chunking module

– Public / private HDF5 APIs
• Private APIs made public

– Asynchronous I/O
– External VOLs and VOL testing

• Lessons learned.
– Creating a VOL connector is not an easy task (to

cover all APIs)
• Order development by HDF5 hierarchy / files

and groups / datasets / etc
• Improvements to create convenience

wrappers
• Selections and datatype conversion

– There is still room to improve public / private
APIs and their use by VOLs
• Make clear distinction between user APIs and VOL

developer APIs

– Design for asynchronous I/O from the start
– Plan and test for external VOL compatibility with

specific HDF5 version

8

• DAOS VOL Connector repository:
– https://github.com/HDFGroup/vol-daos

– Latest release is v1.1.0: https://github.com/HDFGroup/vol-daos/releases/tag/v1.1.0

• More results / details in IEEE TPDS paper
– https://doi.org/10.1109/TPDS.2021.3097884

Additional Information

This material is based upon work supported by the U.S. Department of Energy and Argonne National Laboratory and its Leadership Computing Facility,
including under Contract DE-AC02-06CH11357 and Award Number 8F-30005. This work was generated with financial support from the U.S.
Government through said Contract and Award Number(s), and as such the U.S. Government retains a paid-up, nonexclusive, irrevocable, world-wide
license to reproduce, prepare derivative works, distribute copies to the public, and display publicly, by or on behalf of the Government, this work in
whole or in part, or otherwise use the work for Federal purposes.

Developing Asynchronous I/O
VOL Connector

Houjun Tang
Lawrence Berkeley National Laboratory, USA

Asynchronous I/O VOL Connector

• The async VOL uses background threads and supports HDF5 I/O operations, manages
data dependencies transparently and automatically, provides an interface for error
information retrieval.

• https://github.com/hpc-io/vol-pdc/

2

New Async and EventSet APIs

• Async version of HDF5 APIs
• H5Fcreate_async(fname, …, es_id);
• H5Dwrite_async(dset, …, es_id);
• …

• Track and inspect multiple I/O operations with an EventSet ID
• H5EScreate();
• H5ESwait(es_id, timeout, &remaining, &op_failed);
• H5ESget_err_info(es_id, ...);
• H5ESclose(es_id);

3

How to use Async VOL
Detailed description in https://hdf5-vol-async.readthedocs.io
• Installation

• Compile HDF5 (github develop branch or released version 1.13+), with thread-safety support
• Compile Argobots threading library
• Compile Async VOL connector

• “-DENABLE_WRITE_MEMCPY” flag to have async vol copy write buffer
• Set environment variables

• export LD_LIBRARY_PATH=$VOL_DIR/lib:$H5_DIR/lib:$ABT_DIR/lib:$LD_LIBRARY_PATH
• export HDF5_PLUGIN_PATH="$VOL_DIR/lib"
• export HDF5_VOL_CONNECTOR="async under_vol=0;under_info={}"
• (optional) export HDF5_ASYNC_EXE_FCLOSE=1
• (optional) export HDF5_ASYNC_MAX_MEM_MB=67108864

• Run the application (using the async and EventSet APIs)
• MPI must be initialized with MPI_THREAD_MULTIPLE

4https://github.com/hpc-io/vol-async

spack install hdf5-vol-async

Evaluation Overview
Case Information I/O Pattern

VPIC-IO I/O kernel from VPIC, a plasma physics code
that simulates kinetic plasma particles.

Write, single file for all steps, 8
variables, 256 MB per process per
timestep.

BDCATS-IO I/O kernel from BDCATS, a parallel clustering
algorithm code that analyze VPIC data.

Read, single file, 8 variables,
256 MB per process per timestep.

AMReX/Nyx I/O workload from Nyx, an adaptive mesh
cosmological simulation code that solves
equations of compressible hydrodynamics
flow.

Write, one file for each timestep,
6 variables, single refinement level,
with simulation metadata,
385 GB per timestep

AMReX/Castro I/O workload from Castro, an adaptive mesh
compressible radiation / MHD
/hydrodynamics code for astrophysical
flows.

Write, one file for each timestep,
6 variables, 3 refinement levels,
with simulation metadata,
559 GB per timestep

5

Speedup with VPIC-IO and BDCATS-IO on Summit

6

VPIC-IO, writes 256MB per process, 5 steps,
emulated compute time.

BDCATS-IO, reads 256MB per process, 5 steps,
emulated compute time.

Speedup with AMReX Applications on Summit

7

NyX workload, single refinement level,
writes 385GB x 5 steps, emulated compute time.

Castro workload, 3 refinement levels,
writes 559GB x 5 steps, emulated compute time.

Obstacles During Implementation

• Many HDF5 APIs for implementation and testing.
• HDF5 (thread-safe) global mutex.
• New H5*_async and H5ES* APIs.
• Future ID.
• Error handling and reporting.

8

Best Practice & Lessons Learned

• Async is effective when I/O time is a significant portion of the total application
execution time, and there is enough compute time to overlap with.

• Some operations cannot be done asynchronously, avoid if possible.
• E.g. The “future ID” obtained from H5Dget_space needs to be realized (w/ disk I/O) when the

ID is used (e.g. hyperslab selection).

• MPI_THREAD_MULTIPLE has overhead.
• Background thread interference.

• Minimal interference for GPU-accelerated applications.
• OpenMP applications should leave 1 core/thread for the async background thread.

• Memory allocation needs to be handled properly.
• Peak memory usage could be higher than sync mode, due to double buffering.
• Async VOL will switch to sync mode when not enough system memory is available.

9

Thank you!
Questions?

10

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of
Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support the nation’s exascale computing imperative.

HDF5 Cache VOL: efficient parallel I/O
through caching data on node local storage

Huihuo Zheng
Argonne National Laboratory

huihuo.zheng@anl.gov
May 11th, 2022

H. Zheng et al, HDF5 Cache VOL: Efficient and Scalable Parallel I/O
through Caching Data on Node-local Storage, CCGrid’22

https://github.com/hpc-io/vol-cache.git

mailto:huihuo.zheng@anl.gov

Transparently integrating node-local storage
into parallel I/O

Node-local storage
• No network / resource contention; larger

aggregate bandwidth compared to the
parallel file systems

Challenges of using node-local storage
• Distributed storage -> w/o global namespace
• Accessible only during job running

Node-local storage (SSD, NVMe, etc)
Remote
storage

ThetaGPU (DGX-3) @ ALCF: NVMe (15.4 TB / node)
Summit @ OLCF: GPFS + NVMe (1.6 TB / node)
Perlmutter @ NERSC: Lustre + SSD (960 GB/node)
Frontier @ OLCF: Lustre + NVMe (37PB total)

Cache VOL
• Caching / staging data on node-local storage
• Asynchronous data movement to hide overhead
• All complexity hidden in the library
• Easy to integrate to existing HPC applications with

minimal code change.

https://github.com/hpc-io/vol-cache.git

Parallel Write (H5Dwrite)

3

Partial overlap of compute with I/O

Parallel file system
Shared HDF5 file

Node-local
storage

1. Data is synchronously copied from the
memory buffer to memory mapped files
on the node-local storage using POSIX I/O.

2. Move data from memory mapped
file to the parallel file system
asynchronously by calling the dataset
write function from Async VOL
stacked below the Cache VOL

3. Wait for all the tasks to finish in
H5Dclose() / H5Fclose()

Compute RAM->NLS Compute
I/O: NLS->PFS

Compute I/O (RAM�PFS) Computew/o
cachingw/
caching

Details are hidden from the application developers.

https://github.com/hpc-io/vol-cache.git

Compute node RAM

Parallel Read (H5Dread)

4

Single shared HDF5 file

MPI_Win

Parallel file
system

Compute
node RAM

MPI_Put

Create memory mapped files and attached them
to a MPI_Win for one-sided remote access

1. Reading data
from parallel file
system

2. Caching data
using MPI_Put

Node-local
storage

One-sided communication for accessing
remote node storage.
• Each process exposes a part of its memory to

other processes (MPI Window)
• Other processes can directly read from or write

to this memory, without requiring that the
remote process synchronize (MPI_Put, MPI_Get)

MPI_
Get

Compute I/O Compute

Compute I/O Computew/o Caching

w/ Caching

Reading data from
NLS using MPI_Put

First time reading the data Reading the data directly from node-local storage

https://github.com/hpc-io/vol-cache.git

How to use Cache VOL
export HDF5_PLUGIN_PATH=$HDF5_VOL_DIR/lib
export HDF5_VOL_CONNECTOR="cache_ext
config=SSD.cfg;under_vol=518;under_info={under_vol=0;under_info={}}”
export LD_LIBRARY_PATH=$HDF5_PLUGIN_PATH:$LD_LIBRARY_PATH

3) Initializing MPI with MPI_Init_thread(…, MPI_THREAD_MULTIPLE…)

2) Enabling caching VOL
Opt. 1 Through global environment variables (HDF5_CACHE_RD / HDF5_CACHE_WR [yes|no])

1) Setting VOL connectors

Opt. 2 Through setting file access property: H5Pset_fapl_plist(’HDF5_CACHE_RD’, true)

#contents of SSD.cfg
HDF5_CACHE_STORAGE_SIZE
137438953472
HDF5_CACHE_STORAGE_TYPE SSD
HDF5_CACHE_STORAGE_PATH /local/scratch/
HDF5_CACHE_STORAGE_SCOPE LOCAL
HDF5_CACHE_WRITE_BUFFER_SIZE 102457690
HDF5_CACHE_REPLACEMENT_POLICY LRU

https://github.com/hpc-io/vol-cache.git

4) In some cases, rearranging the function calls to allow the overlap of computation with data
migration (see examples later)

How do HDF5 apps benefit

6March 30th, 2021

Staging data to the node-local storage for deep
learning applications to improve the training
throughput (work with h5py)

Hiding the check-pointing I/O overhead behind the
computation to improve observed I/O performance

Minimal code changes is needed

Success and obstacles

Success
• Improved scaling efficiency and performance of write I/O (VPIC-IO)
• Improved the training throughput for deep learning applications

Main obstacles to overcome
• Thread mutex and HDF5 library locking
• Async tasks blocking issues

• Internal blocking of data migration due to thread mutex
• Blocking by H5Dclose and H5Fclose

• Async tasks dependence issue
• Integrating to h5py
• Combining write and read

7March 30th, 2021

Lessons learned

• External passthrough connector is a very good template to
start:

https://github.com/hpc-io/vol-external-passthrough.git
• Working closely with the THG team and for new functionalities

development, bug fixes.
• Taking advantage of existing works without reinventing the

wheels. (Cache VOL uses Async VOL for data migration). I also
learned a lot from Async VOL.

8March 30th, 2021

Acknowledgment

• This work was supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, under
contract number DE-AC02-05CH11231 (Project: Exascale Computing
Project [ECP] - ExaHDF5 project).

• This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02- 06CH11357.

• This research used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC05-00OR22725.

https://github.com/hpc-io/vol-cache.git 9

exascaleproject.org

Log-based Data Layout VOL

Presenters:
Wei-keng Liao, Kai-yuan Hou

DataLib Team members:
Kai-yuan Hou, Alok, Choudhary, Wei-keng Liao, Northwestern University
Rob Latham, Rob Ross, Argonne National Laboratory
Galen Shipman, Los Alamos National Laboratory

BOF: Sharing Experience on HDF5 VOL Connectors Development and
Maintenance

ECP annual meeting, May 11, 2022

2

Log File Layout Based VOL

• To store write data contiguously in the

file, like time logs

– Multi-dimensional arrays are flattened into
1D dataset objects

– Write data is appended one after another
in files

– Keeps files conforming with HDF5 format
– Makes use of native VOL to manage HDF

objects

• VOL connector identifier: 514

• https://github.com/DataLib-ECP/vol-log-based

May 11 2022 Log-based Data Layout VOL- ECP COMMUNITY BOF

P0 P1 P2

P3 P4 P5

P6 P7 P8

Canonical
layout in file

P0 P1 P2

P3 P4 P5

P6 P7 P8

Log layout
in file

P0

P1

3

Benefit to Application Users

• High performance for write operations
– Avoid expensive inter-process communication to rearrange data

in canonical data layout

– Aggregation of small requests into large ones

• Enabled through VOL environment variables
– No change to the applications

• Same HDF5 utility programs
• E.g., h5ls, h5dump to view the metadata and data

Log-based Data Layout VOL- ECP COMMUNITY BOFMay 11 2022

4

Case study – E3SM

• Irregular noncontiguous I/O pattern
– A separate E3SM I/O benchmark
– https://github.com/Parallel-

NetCDF/E3SM-IO
– Production run cases

• F case: 21.3 GiB, 414 variables
• G case: 80 GiB, 52 variables
• I case: 86.1 GiB, 560 variables

• Experiment settings
– Cori KNL nodes
– PnetCDF nonblocking I/O is used
– HDF5 multi-dataset APIs coming soon

May 11 2022

I/O method F case G case I case

HDF5 –
native VOL
(canonical layout)

can’t finish can’t finish can’t finish

PnetCDF
(canonical layout) 15.60 8.04 111.57

HDF5 –
log-based VOL
(log layout)

3.91 4.26 28.42

Time in seconds

Log-based Data Layout VOL- ECP COMMUNITY BOF

https://github.com/Parallel-NetCDF/E3SM-IO

5

Obstacles

• Read performance can be poor
–Reading a subarray of a dataset must sweep through all metadata

logs to find the interactions

• Log metadata size can be large for fragment requests
–File size can be larger than the one in canonical layout

• Using native VOL to write logs to file is slower
–Log VOL queries the file offsets of datasets and use MPI I/O

directly to write

May 11 2022 Log-based Data Layout VOL- ECP COMMUNITY BOF

6

Lessons Learned

• One can use a data layout different

from the default

– Any high-level I/O libraries, such as
HDF5 and PnetCDF, can be used to
support this idea

– Experimental examples can be found in
the E3SM-IO benchmark repo

– https://github.com/Parallel-NetCDF/E3SM-IO

May 11 2022 Log-based Data Layout VOL- ECP COMMUNITY BOF

0.8 1.1

11.5

0.7 1.2

6.1
2.8 3.7

41.7

0

5

10

15

20

25

30

35

40

45

F case G case I case

Ti
m

e
in

 s
ec

on
ds

E3SM I/O Time on Cori

PnetCDF HDF5 ADIOS

