
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Early Porting Experience on Crusher:
Cholla and GenASiS

Reuben D. Budiardja
Computational Scientist
Science Engagement: Advanced Computing for
Nuclear, Particles, and Astrophysics
Oak Ridge Leadership Computing Facility (OLCF)
Oak Ridge National Laboratory (ORNL)

22

• The bulk of Frontier’s
computational power
comes from its GPUs.

• Applications must exploit
GPUs to fully realize
Frontier’s capability.

• Several programming
models for GPUs are
supported.

Programming for Frontier’s GPUs

CUDA AMD
HIP

OpenMP
offload

OpenMP
offload

OpenACC

Non-GPU
Applications Porting

FrontierCurrent
Systems

HIPify, macro, …

Direct OpenACC
support for Frontier
is under discussion.

Presenter Notes
Presentation Notes
I will emphasize hat the bulk of Frontier’s computational power comes from its GPUs. As such, applications must be able to run computational kernels on the GPUs to fully realize Frontier’s capability. Frontier supports several programming models for GPU; the two primary ones are HIP and OpenMP. The diagram on the right shows potential migration paths for applications that are already using GPUs on current systems. For applications written with CUDA programming model, the HIP programming environment from AMD provide a relatively straightforward migration path. Some tools are available to help with this migration path.

Applications that have been using OpenMP offload will be supported directly on Frontier. At this point, direct OpenACC support for Frontier is still under discussion, however OpenACC applications may choose to port to OpenMP instead, which should be relatively straightforward.

Any of these programming models can be used to port non-GPU applications to be able to exploit GPUs. Which programming model makes more sense to us depends on the application. It is also possible to combine these programming models in a single application. OLCF continually provide trainings and tutorials to help with these porting efforts. Collaborations with OLCF staff are also welcomed.

In the next few slides, I will show some results from a couple of applications that use AMD HIP and OpenMP offload programming model.

3

Cholla
Cholla (Computational Hydrodynamics
on Parallel (||) Architecture) is a
hydrodynamics code developed to
natively run on GPU using CUDA / HIP.

Features:
• Fully native GPU support
• 1st, 2nd, 3rd order space spatial

reconstruction
• Exact, Roe, HLLC Riemann Solvers
• CTU & Van Leer integrator
• Optically-thin radiative heating / cooling
• Additional (non-hydro) features:

– self-gravity
– particle-based gravity (for dark matter)
– magnetic-fields (in development)

Presenter Notes
Presentation Notes
Cholla stands for … It was started as a hydrodynamics code with radiative cooling that runs natively on Nvidia GPU and has been used to perform galactic-wind simulations. Since then additional non-hydro physics has been developed and are in development. These includes: self-gravity, particle-based gravity, and magnetic fields.

While the computational kernels of Cholla was originally written in CUDA, they have since been ported to AM HIP environment to run on Frontier.

4

CHOLLA Challenge problem on Frontier:
Simulations of a Milky Way-like galaxy at resolutions that allow for self-consistent
star formation and feedback within a multiphase interstellar medium.
• Milky Way diameter: ~160,000 light years = ~50,000 parsecs
• Resolutions to resolve star clusters: ~a few parsecs
• Target resolutions on Frontier: ~10,0003 cells

Cholla is a research project within Frontier Center for
Accelerated Application Readiness (CAAR) program.

Presenter Notes
Presentation Notes
The CHOLLA team was selected as participants in the Frontier CAAR program, which stands for Center for Accelerated Application Readiness. The CAAR program is our vehicle to ensure that applications within this program are ready to run and execute their grand-challenge problem on the first day Frontier is available.

The grand challenge problem of this CAAR project is to be able to perform simulations of a Milky Way-like galaxy that allow for self-consistent star formation and feedback within interstellar medium.
So there is quite a bit of motivations for these kinds of simulations. Recent observational campaigns have drastically increased the data available about the milky way. In fact these data are so exquisite that theory and simulations actually have fallen behind, in that we don’t have simulations that can reproduce these observational data at the requisite resolutions, much less make detailed predictions.

So what kind of resolutions is needed for these simulations? Well we know that the Milky way diameter is about 160K light years or 50 parsecs. To resolve low-mass star clusters and the clouds of cold gas where these cluster form, we will need a few parsecs per cell resolution. So with some roundings this works out to be about 10,000 cells per dimension covering 50,000 parsecs domain, a resolution that is within reach only on Frontier.

5

Figure of Merit (FOM) Definition

In general

where the sum is over physics modules (e.g. hydrodynamics, self-gravity,
particle, ...) involved and Cp is the cost coefficient for each physics
module.

With all the requisite physics included, the FOM simplifies to

6

Porting Cholla to Frontier

• “HIP-i-fly” (HIP on-the-fly) code to maintain CUDA portability
– a small preprocessor file to translate CUDA calls to HIP calls

• Leverage GPU-attached NICs and GPU-aware MPI:
– Keep grid (hydro) data GPU-resident → avoid more costly host-device data

movement
– Communicate boundary data directly from GPU memory

• Developed new FFT-based Poisson Solver (“Paris”):
– replaced the original CPU PFFT based solver
– completely on GPU with direct GPU-MPI communication, utilizing rocFFT library

• Ported particle evolution to GPU (with HIP)

Presenter Notes
Presentation Notes
Note that we are ahead of our planned milestone in the self-gravity / Paris development.

77

CHOLLA Results with 64 GPUs (GCDs)

Timing for Hydro, Boundaries, Grav. potential, Part.
Boundaries, and Total are scaled down by factor of 10, 10,
100, 2, and 100 respectively to fit the scale of this chart.

Crusher is a system for test and development that contains identical
hardware and similar software as the upcoming Frontier system.

Presenter Notes
Presentation Notes
This plot show timing and speedups of computational portions for a Cholla built using all the physics necessary for the grand-challenge problem. This test problem was run with 64 GPUS on Summit and 64 GCDs on Crusher. Remember that each of MI250X GPUs has two GCDs. So we are comparing one Nvidia V100 GPU with one MI250X GCD. The green and blue bars shows the timing on Summit V100 and Crusher MI250X GCD, respectively. The red bar shows the speedups from Summit to Crusher. Note also that in order to fit the scale of the chart, some of the timing are scaled down by a factor of 10 and 100.

As we can see most of the computational portions gets speedups on Crusher. Some gets more than 5X speedups. The total speedups is more than a factor of 3. We attribute this to mostly two factors. First is that the network interface is directly attached to the GPU. In fact the computational portions that get the most speedups are communication-heavy. Cholla has been optimized so that inter-node communications are performed directly from GPU-resident data. The second factor that contribute to the speedups are the higher memory-bandwidth available on Frontier’s hardware.

8

Cholla Status
• Total speedups: ~16X on 64 GPUs on

Frontier hardware (Crusher) from
baseline (see plot).

• Software development contributed to
~5X speedups on Summit (blue bars on
the plot). Major highlights:
– Made hydro grid fully GPU resident
– Exploited GPU-aware MPI
– Ported gravity solver to GPU
– Ported particle solver to GPU

• Hardware improvements from Summit
to Crusher: ~3X speedups

• Pending: Scaling up to the full Frontier

99

GenASiS

▪ General Astrophysics Simulation System
– Challenge problem: 3D position space + 3D momentum space the

simulations of core-collapse supernovae (sustained exascale)
– Earlier versions have been used to study of fluid instabilities in supernova

dynamics, discover exponential magnetic field amplification in
progenitor star

▪ Code characteristics:
– Modern Fortran (mostly F2008, some F2018)
– Modular, object-oriented design, extensible
– OpenMP for threading + offloading

9

Presenter Notes
Presentation Notes
The second application we look at today is GenASiS, which stands for General Astrophysics Simulation System. GenASiS challenge problem is a core-collapse supernova simulations with 3D position and 3D momentum space. This problem will require sustained exascale to execute. Currently GenASiS is targeting dimensionally reduced simulations with only 1D in momentum space.
GenASiS is written in Fortran and is using OpenMP of both threading and offloading kernels to GPUs.

StorageForm Class
A class for data and metadata; the ‘workhorse’ of data storage facility in GenASiS.
Simplified tasks like I/O, ghost cell exchange, prolongation & restrictions, etc.
StorageForm % Value (nCells, nVariables)
e.g. Pressure => StorageForm % Value (:, 1),

Density => StorageForm % Value (:, 2), ...

10

D P E ... D’ P’ E’ ...

C
PU

G
PU Informs OpenMP data

location on GPU
→avoid (implicit) allocation &

transfer

StorageForm % AllocateDevice ()
● allocate on GPU
● map CPU and GPU variables

11

Offloading a Computational Kernel call F % Initialize &
([nCells, nVariables])

call F % AllocateDevice ()
call F % UpdateDevice ()
call AddKernel &

(F % Value (:, 1),
F % Value (:, 2), &
F % Value (:, 3))

No implicit data transfer,
no explicit map()

Persistent allocation and association

12

Porting GenASiS to Frontier (Crusher)

• A new Makefile for Crusher. The End. Well, almost …

• Differences in compiler mapping of parallelism to hardware:
“!$omp target teams distribute parallel do simd”

• Initially needed explicit map for reduction variable
– OpenMP 5 spec addressed this issue but was not implemented
– Subsequently this was fixed in compiler (CCE)

1313

GenASiS Basics RiemannProblem • A simplified version of
divergence solvers without
the sophistication of multi-
patches meshes and other
physics modules (self-gravity,
radiations, nuclear EoS, …)

• HLL / HLLC Riemann solver
with 2nd order RK time
integration

• A standard benchmark
problem with shocks in fluid
dynamics, extended to 3D

• Our workhorse proxy-
application for
experimentation and testing
(new platforms, compilers, …)Initial (left) and final (right) density of 1D and 3D RiemannProblem

Presenter Notes
Presentation Notes
As part of GenASiS development, we have also developed some proxy-applications we use for experimentation and testing on different platforms. GenASiS Basics RiemannProblem is one of them. This problem is implemented using a simplified version of the difference solvers in unigrid cartesian coordinate system with HLL Riemann solver. The 1D problem is a standard benchmark problem for shock-capturing solver in fluid dynamics. In this case we have extended the problem to 3D. The initial condition starts with a high-pressure, high-density state on the left side and a low-pressure, low-density state on the right side. The discontinuity produces shock wave that propagate to the right as the problem evolves. In our 3D version, we put the plane of discontinuity at an angle to produce more interesting results.

1414

Presenter Notes
Presentation Notes
Here’s a visualization of three dimensional Riemann problem with about 2 billions cell using 125 GPUs that we ran for our test. The entropy is displayed as volume plot. The top two plot differs in the point of view. While the bottom plot shows different transfer function used in the volume plot. As the shock hit the wall and bounced back, we see that the fluid cascades into a small scale turbulence.

http://drive.google.com/file/d/11mk9EtWRVtfwAjz7D0VE6flXdL2mRS-r/view

1515

Total time is scaled down by factor of
10 to fit chart.

Presenter Notes
Presentation Notes
Here we show the timing and speed up of the computational kernels for the Basics RiemannProblem. As before, we notice also that that kernels involving communications get the most speed up. In the ComputeTimeStep kernel, there is a global reduction to find the minimal Courant-limited timestep. Since this problem involve hydrodynamics solvers only, the speedup from 1 Summit GPU to 1 MI250X GCD is more modest at about 1.4X. This is as expected and is comparable with the ratio of memory bandwidth between the two systems.

1616

Thank You

Reuben D. Budiardja, reubendb@ornl.gov

	Early Porting Experience on Crusher: �Cholla and GenASiS
	Programming for Frontier’s GPUs
	Cholla
	Slide Number 4
	Figure of Merit (FOM) Definition
	Porting Cholla to Frontier
	CHOLLA Results with 64 GPUs (GCDs)
	Cholla Status
	GenASiS
	StorageForm Class
	Slide Number 11
	Porting GenASiS to Frontier (Crusher)
	GenASiS Basics RiemannProblem
	Slide Number 14
	Slide Number 15
	Slide Number 16

