
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Wrong Way: Lessons Learned and Possibilities for
Using the “Wrong” Programming Approach on
Leadership Computing Facility Systems
Philip C. Roth

National Center for Computational Sciences
Oak Ridge National Laboratory

16 February 2022

22 ECP IDEAS Best Practices Webinar - 16 February 2022

About the Presenter

• Member of ORNL R&D Staff since 2004
– Future Technologies group, Computer Science and Mathematics

division, 2004-2018
– Scientific Computing group, National Center for Computational

Sciences (NCCS), 2018-2020
– Leader, Algorithms and Performance Analysis group, Science

Engagement section, NCCS, 2020-present

• Education focused on scalable performance tools and techniques
– Ph.D.: University of Wisconsin—Madison, Barton Miller, Paradyn Project
– M.S.: University of Illinois at Urbana-Champaign, Daniel Reed, Pablo project

• In between: software engineer for SuperComputers Intl./CHEN Systems
Inc./MCSB Technology
– Startup producing high performance enterprise server hardware and software (and

then just software)

Photo by Carlos Jones

33 ECP IDEAS Best Practices Webinar - 16 February 2022

Early 2022 DOE Landscape

• U.S. Department of Energy (DOE) computing centers exhibit
variety!
– Hardware

• Accelerators: presence, vendors/types, CPU/GPU ratios, connectivity within node
• Interconnect: type, topology, capabilities, connectivity within node
• NVM: on-node vs. near-node vs. not present

– Software, driven by hardware, community trends, and user
requirements

– Projects and users

• As a whole, DOE computing centers epitomize need for
Performance, Portability, and Productivity

44 ECP IDEAS Best Practices Webinar - 16 February 2022

The Oak Ridge Leadership Computing Facility (OLCF)

• Production
– Summit: each node contains six NVIDIA V100 GPUs

and two 22-core IBM POWER9 CPUs
– Frontier (soon): Four AMD Radeon Instinct MI250X

GPUs and one 64-core AMD EPYC 7A53 CPU
• HPE Slingshot 11 NIC connected directly to GPUs

• Pre-Production/Training
– Ascent: like Summit
– Crusher (now): like Frontier

• Support
– Andes: commodity x86_64 Linux cluster with a few

GPU nodes

• 90%+ of production systems’ computational
capability comes from GPUs

• I will focus on GPUs and functionality (as
opposed to performance) in this talk

99

Crusher node diagram

55 ECP IDEAS Best Practices Webinar - 16 February 2022

Terminology

• What does “wrong” mean? ”Wrong” compared
to what?

• Is “wrong” bad? Discouraged? Disallowed?

• For this presentation, “wrong” means:
– Not the usual or generally-accepted way to program

the GPU on a given system
– Not (necessarily) supported by the system vendors or

the computing facility

• Focus is on what is possible, not (necessarily)
what is recommended

66 ECP IDEAS Best Practices Webinar - 16 February 2022

An Analogy

• Groups led by Bart Miller (U.Wisconsin-Madison) and Jeff Hollingsworth
(U.Maryland) collaborate on Dyninst, an API and implementation for
binary code analysis and instrumentation

• Among other things, allows a tool process to change another process’
code while it is running, e.g., to insert/remove instrumentation or to patch
buggy code
– Most tools instrument at compile time or before

• Alternative model to how many people think about software - that things
are fixed once compiled/linked

• But wrong? No – compiled code is more malleable than many think
• Requires care! (More on this later)
• Dyninst available via Spack, used by several other Spack-accessible tools

like HPCToolkit, Timemory, and STAT

77 ECP IDEAS Best Practices Webinar - 16 February 2022

Natural and “Wrong” Ways on LCF Systems

• Determined mainly by type of GPU and source language

• Not exhaustive lists!

• Summit
– Natural: CUDA, OpenMP target, OpenACC
– ”Wrong”: HIP, OpenCL, SYCL/DPC++

• Frontier
– Natural: HIP, OpenMP target offload, OpenACC
– “Wrong”: OpenCL, SYCL/DPC++

• Aurora
– Natural: OpenMP target offload, SYCL/DPC++
– “Wrong”: HIP

• I consider portability layer software like Kokkos, RAJA, OCCA
considered natural approach if they have backend support for at
least one of a system’s natural approaches
E.g.,

Summit Application/Library

CUDA OpenMP OpenACC HIP OpenCL SYCL/DPC++

Frontier Application/Library

CUDA OpenMP OpenACC HIP OpenCL SYCL/DPC++

Aurora Application/Library

CUDA OpenMP OpenACC HIP OpenCL SYCL/DPC++

Kokkos/RAJA/OCCA/Other portability layer software

CUDA OpenMP OpenACC HIP OpenCL SYCL/DPC++

Frontier Application/Library

88 ECP IDEAS Best Practices Webinar - 16 February 2022

HIP

• Heterogeneous-compute Interface for
Portability (HIP)

• Portability layer with interface similar to
CUDA, backends for AMD and NVIDIA
GPUs

– On NVIDIA systems, verify lightweight header-
only library; final executable *is* a CUDA
executable

• ”Hipify” tool available to ease porting from
CUDA to HIP APIs

• Multiple HIP compilers (e.g., AMD within
ROCm, HPE’s CCE)

• Growing ecosystem of libraries with
portability interfaces and support for AMD
and NVIDIA GPUs

• Open source

11

Producing and Compiling HIP Code

CUDA
Code

HIP
Code

Hipify-clang

Hipify-perl
Hipcc, platform ‘nvcc’

Executable
Code for
NVIDIA GPU

Executable
Code for
AMD GPU

nvcc

Hipcc, platform ‘hcc’ hcc

CUDA Code

HC Code

• Hipify-* tools help convert CUDA
code (kernels and API calls) to
HIP

• Hipcc compiler driver invokes
correct underlying compiler to
compile for target GPU, with
GPU-specific HIP headers

How HIP code is translated to NVIDIA executable
or AMD executable with AMD tools.
Information is slightly dated: no longer a separate
hipify-clang executable, nor does hipcc invoke a
compiler called hcc when compiling for AMD
GPUs

99 ECP IDEAS Best Practices Webinar - 16 February 2022

HIP on Summit

• OLCF now provides a rocm-hip
module to enable access hipcc
and the HIP headers
– In earlier days, using HIP on Summit

only involved cloning the HIP
repository and adding its bin
directory to the PATH

– Current implementation requires a
little bit of installation, e.g., to create
a header containing the software’s
version information

• HIP performance is very, very
close to direct use of CUDA
– On Summit, HIP is a header-only

library
Performance of HIP SHOC benchmarks normalized to CUDA SHOC
benchmarks. Only benchmarks whose results are reported by the
SHOC benchmark suite driver script are included.
CUDA 11.0.3, rocm-hip/4.3.0, gcc 9.1. Average HIP performance
including data transfers is 99.4% of CUDA performance.

Parity

1010 ECP IDEAS Best Practices Webinar - 16 February 2022

The Importance of the Ecosystem

• Almost any real application targeting GPUs needs more than just a HIP (or CUDA, or
OpenMP, or OpenCL, or SYCL, or DPC++) compiler – they rely on one or more GPU-
accelerated libraries

• HIP ecosystem includes variety of HIP* libraries that can use either the AMD ROCm or
NVIDIA CUDA library as a back-end

– E.g., hipBLAS -> cuBLAS, rocBLAS

• OLCF does not (yet?) provide system-wide installations of the hip* libraries on Summit

• HIP* libraries are open source, relatively easy to build and install in one’s home directory
– Many (most?) involve compiling some shim code

hipBLAS

CUDA ROCm

Application

cuBLAS rocBLAS

1111 ECP IDEAS Best Practices Webinar - 16 February 2022

HIP on Aurora?

• Recall HIP is a portability layer
• The HIP on Level Zero (HIPLZ) ECP project is working to enable HIP applications to

run on Intel GPUs
– Level Zero is an Intel runtime that targets GPUs

• Original approach was to adapt the HIPCL (HIP over an OpenCL runtime)
implementation to use Level Zero instead of the OpenCL runtime

• Have demonstrated several benchmarks and mini/proxy apps running via HIPLZ
on Intel integrated GPUs
– Recall importance of the ecosystem! Sparkler proxy app involved implementing a stub

hipBLAS library that used MKL as a backend for the two BLAS routines it uses

• More recently, HIPCL and HIPLZ projects have combined efforts in the CHIP-SPV
project that can target Level Zero or OpenCL backends

• Depends on SPIR-V, so Summit and Crusher/Frontier are also potential targets if
POCL with SPIR-V support is functional

HIP

CUDA ROCm

Application

1212 ECP IDEAS Best Practices Webinar - 16 February 2022

HIP on Aurora?

• Recall HIP is a portability layer
• The HIP on Level Zero (HIPLZ) ECP project is working to enable HIP applications to

run on Intel GPUs
– Level Zero is an Intel runtime that targets GPUs

• Original approach was to adapt the HIPCL (HIP over an OpenCL runtime)
implementation to use Level Zero instead of the OpenCL runtime

• Have demonstrated several benchmarks and mini/proxy apps running via HIPLZ
on Intel integrated GPUs
– Recall importance of the ecosystem! Sparkler proxy app involved implementing a stub

hipBLAS library that used MKL as a backend for the two BLAS routines it uses

• More recently, HIPCL and HIPLZ projects have combined efforts in the CHIP-SPV
project that can target Level Zero or OpenCL backends

• Depends on SPIR-V, so Summit and Crusher/Frontier are also potential targets if
POCL with SPIR-V support is functional

HIP

CUDA ROCm

Application

HIP

CUDA ROCm

Application

OpenCL Level Zero

HIPCL HIPLZ

1313 ECP IDEAS Best Practices Webinar - 16 February 2022

HIP on Aurora?

• Recall HIP is a portability layer
• The HIP on Level Zero (HIPLZ) ECP project is working to enable HIP applications to

run on Intel GPUs
– Level Zero is an Intel runtime that targets GPUs

• Original approach was to adapt the HIPCL (HIP over an OpenCL runtime)
implementation to use Level Zero instead of the OpenCL runtime

• Have demonstrated several benchmarks and mini/proxy apps running via HIPLZ
on Intel integrated GPUs
– Recall importance of the ecosystem! Sparkler proxy app involved implementing a stub

hipBLAS library that used MKL as a backend for the two BLAS routines it uses

• More recently, HIPCL and HIPLZ projects have combined efforts in the CHIP-SPV
project that can target Level Zero or OpenCL backends

• Depends on SPIR-V, so Summit and Crusher/Frontier are also potential targets for
POCL with SPIR-V support

HIP

CUDA ROCm

Application

HIP

CUDA ROCm

Application

OpenCL Level Zero

HIPCL HIPLZ

HIP

CUDA ROCm

Application

OpenCL Level Zero

CHIP-SPV

1414 ECP IDEAS Best Practices Webinar - 16 February 2022

OpenCL

• Khronos standard
• By some definitions, very good performance portability due to

widespread availability of mature implementations
• Originally, C-based kernel language but more recent versions have

supported C++ features (OpenCL C++ and C++ for OpenCL)
• Allows creation of kernels by:

– Compiling source dynamically
– Ingesting pre-compiled code, either device-native or portable intermediate

representation
– Not all implementations support all options

• Historically close ties with SPIR-V, a Khronos standard portable binary
intermediate representation

1515 ECP IDEAS Best Practices Webinar - 16 February 2022

OpenCL on Summit

• Summit has incomplete OpenCL support
– From RHEL distribution, have device-independent runtime library but

not development headers or libraries
– NVIDIA driver installation adds GPU-specific OpenCL driver
– CUDA installations include a device-independent runtime library but it is

for the wrong CPU architecture for Summit

• NVIDIA, OLCF never claimed to support OpenCL on POWER9
– I am not saying they should! But exploring alternatives is the point of

the investigation

1616 ECP IDEAS Best Practices Webinar - 16 February 2022

OpenCL on Summit: Experiences I

• Easy to build Khronos’ reference
implementation of device-
independent runtime library
– Spack’s builtin repository has ocl-icd

package with headers variant

• Platform/device queries (e.g.,
with CLInfo utility) and data
transfer are functional

• Unable to compile source code
dynamically
– (Though device queries report

compiler and linker are available)
CLInfo output with NVIDIA-specific OpenCL driver on Summit

1717 ECP IDEAS Best Practices Webinar - 16 February 2022

OpenCL on Summit: Experiences II

• Portable Computing Language (POCL) provides alternative to
NVIDIA’s ICD
– Uses CUDA runtime
– In theory, can ingest SPIR-V

• Have not yet demonstrated working build on Summit, but I think
others have
– I may be tripping up on the SPIR-V support

1818 ECP IDEAS Best Practices Webinar - 16 February 2022

OpenCL on Crusher/Frontier

• AMD supports OpenCL on x86_64 systems
with MI250X GPUs (Crusher/Frontier) and
MI100 (Spock) GPUs

– ICDs installed for GPUs, apparently not for CPUs
– Support dynamic compilation of OpenCL

source code to AMDGCN

• OpenCL performance comparable with HIP
performance for low-level SHOC
benchmarks (MaxFlops, data transfers)

• GEMM performance gap shows benefit of
using optimized hipBLAS library vs untuned
OpenCL implementation

• Too many extreme differences (both pro-HIP
and pro-OpenCL) to show results from
higher-level benchmarks

– No platform-specific optimizations or problem
diagnosis yet attempted

Parity

1919 ECP IDEAS Best Practices Webinar - 16 February 2022

OpenCL on Aurora: Promising

• Intel traditionally has supported OpenCL and has championed
SPIR-V

• Intel’s oneAPI includes interoperability support between SYCL
and OpenCL

• ALCF includes OpenCL in public lists of programming models
planned to be available on Aurora

2020 ECP IDEAS Best Practices Webinar - 16 February 2022

SYCL and DPC++

• SYCL: Khronos standard, C++-based,
OpenCL’s spiritual successor
– Originally had strong connection to

SPIR/SPIR-V

• DPC++: part of Intel’s oneAPI, SYCL 1.2
plus useful extensions intended to
improve productivity
– Some extensions appear in SYCL 2020

standard

2121 ECP IDEAS Best Practices Webinar - 16 February 2022

SYCL on Summit

• Some options for this “wrong way”:
– hipSYCL: a SYCL 1.2 implementation built on HIP

• CUDA for GPU, OpenMP for CPU
• Have demonstrated this running on Summit with simple

examples, e.g., matrix aX+Y
– Intel’s Github LLVM staging repository includes

DPC++ compiler sources
– Found small number of build problems, e.g., reliance

on CPUID instruction that isn’t supported on POWER9
– Others have reported some success in working

around for other non-x86_64 platforms, so may be
possible soon on Summit

– Also tried using CodePlay’s Community Edition to
compile kernels to PTX code on spare
x86_64+NVIDIA GPU system, transferring to Summit,
and loading kernels via POCL – not successful

2222 ECP IDEAS Best Practices Webinar - 16 February 2022

Frontier: SYCL/DPC++

• Have less experience trying these “wrong way” approaches on pre-
Frontier systems so far

• AMD has traditionally supported OpenCL
– But SPIR/SPIR-V support varies by product line - not supported on MI25/MI60
– Options: POCL, “manual” conversion of SPIR-V to AMDGCN

• SYCL and DPC++
– CodePlay funded to implement basic SYCL and DPC++ functionality for AMD

GPUs in pre-Frontier systems
– Intel LLVM repository

• CPUID not an issue here
• Reliant on SPIR-V tools/translator to convert to AMDGCN, perhaps via LLVM IR?

• Recall the importance of the ecosystem!

2323 ECP IDEAS Best Practices Webinar - 16 February 2022

Back to General “Wrong”-ness

• Recall Dyninst and the “Requires care” teaser? Lots of effort
involved in portability and maintenance
– Many combinations possible between CPU ISAs, operating systems,

compilers, optimization levels
– Must also be maintained over time as things change (e.g., new

compiler versions)

• Adopting a “wrong” way comes at a cost!

2424 ECP IDEAS Best Practices Webinar - 16 February 2022

Thoughtfully Compare Benefits and Costs

• How much are you and your project willing to devote, now and over time, to obtain the benefits of
adopting a “wrong” way?

• Evaluate several factors when deciding
– Performance impact
– Portability (current and future)
– Maintainability
– Cost of conversion, including whether intermediate steps are possible

• My opinion: in general, the HPC community does not yet have tools or discipline to make strong
quantitative benefit/cost comparisons

– Followup question: how much do we care? How much do we actually have to care?

• Don’t let lack of small number of near-ubiquitous standards (a la MPI for communications) cause
paralysis

– Consider whether chosen approach is close enough to others to make it easy to transition if it just isn’t turning out
as desired

2525 ECP IDEAS Best Practices Webinar - 16 February 2022

Acknowledgements

• This research was supported by the Exascale Computing Project (17-
SC-20-SC), a joint project of the U.S. Department of Energy’s Office
of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including
software, applications, and hardware technology, to support the
nation’s exascale computing imperative.

• This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

2626 ECP IDEAS Best Practices Webinar - 16 February 2022

Summary
• Thanks to open source projects, it can be quite interesting to explore the

“wrong way” options for programming GPUs on HPC systems like OLCF’s
Summit

• Exploring trade-offs of non-traditional or unsupported GPU programming
approaches for Summit, Frontier, and Aurora
– OpenCL, HIP, SYCL/DPC++

• When considering the benefits of adopting a “wrong way”, be very
mindful of the cost
– Performance
– Portability
– Maintainability
– Availability of support

• For more information: rothpc@ornl.gov

mailto:rothpc@ornl.gov

2727 ECP IDEAS Best Practices Webinar - 16 February 2022

References I

• CUDA Toolkit for NVIDIA GPUs: https://developer.nvidia.com/cuda-toolkit

• DPC++
– Programming Guide: https://www.intel.com/content/www/us/en/develop/documentation/oneapi-

programming-guide/top/oneapi-programming-model/data-parallel-c-dpc.html
– Intel LLVM staging repository (including DPC++ implementation): https://github.com/intel/llvm

• Dyninst dynamic instrumentation project: https://www.dyninst.org. Also available via
Spack.

• HIP C++ performance portability software
– ROCm HIP implementation: https://github.com/ROCm-Developer-Tools/HIP
– CHIP-SPV HIP implementation over OpenCL/Intel Level Zero runtime (subsumes HIPCL and HIPLZ):

https://github.com/CHIP-SPV/chip-spv
– HIP over Intel’s Level Zero runtime (HIPLZ) on Argonne’s JLSE systems: https://github.com/jz10/hip-

training

2828 ECP IDEAS Best Practices Webinar - 16 February 2022

References II

• Khronos Group standards consortium: https://www.khronos.org
• Kokkos C++ performance portability software: https://kokkos.org
• OLCF System User Guides/Quick-Start Guides: https://docs-

internal.apps.granite.ccs.ornl.gov/systems/index.html
• OpenCL application programming interface and kernel language

– Standard specification, links to software like SDK:
https://www.khronos.org/opencl/

– OpenCL CLInfo utility: https://github.com/Oblomov/clinfo
– Portable Computing Language (POCL): http://portablecl.org

• OCCA C++ performance portability software: https://libocca.org

2929 ECP IDEAS Best Practices Webinar - 16 February 2022

References III

• RAJA C++ performance portability software:
https://github.com/LLNL/RAJA

• Spack package manager: https://spack.readthedocs.io

• SPIR-V portable binary intermediate language:
https://www.khronos.org/spir/

• SYCL specification and resources:
https://www.khronos.org/sycl/

