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About the Presenter

• Member of ORNL R&D Staff since 2004
– Future Technologies group, Computer Science and Mathematics

division, 2004-2018
– Scientific Computing group, National Center for Computational

Sciences (NCCS), 2018-2020
– Leader, Algorithms and Performance Analysis group, Science

Engagement section, NCCS, 2020-present

• Education focused on scalable performance tools and techniques
– Ph.D.: University of Wisconsin—Madison, Barton Miller, Paradyn Project
– M.S.: University of Illinois at Urbana-Champaign, Daniel Reed, Pablo project

• In between: software engineer for SuperComputers Intl./CHEN Systems 
Inc./MCSB Technology
– Startup producing high performance enterprise server hardware and software (and 

then just software)
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Early 2022 DOE Landscape

• U.S. Department of Energy (DOE) computing centers exhibit 
variety!
– Hardware

• Accelerators: presence, vendors/types, CPU/GPU ratios, connectivity within node
• Interconnect: type, topology, capabilities, connectivity within node
• NVM: on-node vs. near-node vs. not present

– Software, driven by hardware, community trends, and user 
requirements

– Projects and users

• As a whole, DOE computing centers epitomize need for 
Performance, Portability, and Productivity
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The Oak Ridge Leadership Computing Facility (OLCF)

• Production
– Summit: each node contains six NVIDIA V100 GPUs 

and two 22-core IBM POWER9 CPUs
– Frontier (soon): Four AMD Radeon Instinct MI250X 

GPUs and one 64-core AMD EPYC 7A53 CPU
• HPE Slingshot 11 NIC connected directly to GPUs

• Pre-Production/Training
– Ascent: like Summit
– Crusher (now): like Frontier

• Support
– Andes: commodity x86_64 Linux cluster with a few 

GPU nodes

• 90%+ of production systems’ computational 
capability comes from GPUs

• I will focus on GPUs and functionality (as 
opposed to performance) in this talk

99

Crusher node diagram
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Terminology

• What does “wrong” mean?  ”Wrong” compared 
to what?

• Is “wrong” bad?  Discouraged?  Disallowed?

• For this presentation, “wrong” means:
– Not the usual or generally-accepted way to program 

the GPU on a given system
– Not (necessarily) supported by the system vendors or 

the computing facility

• Focus is on what is possible, not (necessarily)
what is recommended
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An Analogy

• Groups led by Bart Miller (U.Wisconsin-Madison) and Jeff Hollingsworth 
(U.Maryland) collaborate on Dyninst, an API and implementation for 
binary code analysis and instrumentation

• Among other things, allows a tool process to change another process’ 
code while it is running, e.g., to insert/remove instrumentation or to patch 
buggy code
– Most tools instrument at compile time or before

• Alternative model to how many people think about software - that things 
are fixed once compiled/linked

• But wrong? No – compiled code is more malleable than many think
• Requires care!  (More on this later)
• Dyninst available via Spack, used by several other Spack-accessible tools 

like HPCToolkit, Timemory, and STAT
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Natural and “Wrong” Ways on LCF Systems

• Determined mainly by type of GPU and source language

• Not exhaustive lists!

• Summit
– Natural: CUDA, OpenMP target, OpenACC
– ”Wrong”: HIP, OpenCL, SYCL/DPC++

• Frontier
– Natural: HIP, OpenMP target offload, OpenACC
– “Wrong”: OpenCL, SYCL/DPC++

• Aurora
– Natural: OpenMP target offload, SYCL/DPC++
– “Wrong”: HIP

• I consider portability layer software like Kokkos, RAJA, OCCA 
considered natural approach if they have backend support for at 
least one of a system’s natural approaches
E.g.,

Summit Application/Library

CUDA OpenMP OpenACC HIP OpenCL SYCL/DPC++

Frontier Application/Library

CUDA OpenMP OpenACC HIP OpenCL SYCL/DPC++

Aurora Application/Library

CUDA OpenMP OpenACC HIP OpenCL SYCL/DPC++

Kokkos/RAJA/OCCA/Other portability layer software

CUDA OpenMP OpenACC HIP OpenCL SYCL/DPC++

Frontier Application/Library
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HIP

• Heterogeneous-compute Interface for 
Portability (HIP)

• Portability layer with interface similar to 
CUDA, backends for AMD and NVIDIA 
GPUs

– On NVIDIA systems, verify lightweight header-
only library;  final executable *is* a CUDA 
executable

• ”Hipify” tool available to ease porting from 
CUDA to HIP APIs

• Multiple HIP compilers (e.g., AMD within 
ROCm, HPE’s CCE)

• Growing ecosystem of libraries with 
portability interfaces and support for AMD 
and NVIDIA GPUs

• Open source

11

Producing and Compiling HIP Code

CUDA 
Code

HIP 
Code

Hipify-clang

Hipify-perl
Hipcc, platform ‘nvcc’

Executable 
Code for 
NVIDIA GPU

Executable 
Code for 
AMD GPU

nvcc

Hipcc, platform ‘hcc’ hcc

CUDA Code

HC Code

• Hipify-* tools help convert CUDA 
code (kernels and API calls) to 
HIP

• Hipcc compiler driver invokes 
correct underlying compiler to 
compile for target GPU, with 
GPU-specific HIP headers

How HIP code is translated to NVIDIA executable 
or AMD executable with AMD tools.
Information is slightly dated: no longer a separate 
hipify-clang executable, nor does hipcc invoke a 
compiler called hcc when compiling for AMD 
GPUs
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HIP on Summit

• OLCF now provides a rocm-hip 
module to enable access hipcc
and the HIP headers
– In earlier days, using HIP on Summit 

only involved cloning the HIP 
repository and adding its bin 
directory to the PATH

– Current implementation requires a 
little bit of installation, e.g., to create 
a header containing the software’s 
version information

• HIP performance is very, very 
close to direct use of CUDA
– On Summit, HIP is a header-only 

library
Performance of HIP SHOC benchmarks normalized to CUDA SHOC 
benchmarks.  Only benchmarks whose results are reported by the 
SHOC benchmark suite driver script are included.
CUDA 11.0.3, rocm-hip/4.3.0, gcc 9.1.  Average HIP performance 
including data transfers is 99.4% of CUDA performance.

Parity
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The Importance of the Ecosystem

• Almost any real application targeting GPUs needs more than just a HIP (or CUDA, or 
OpenMP, or OpenCL, or SYCL, or DPC++) compiler – they rely on one or more GPU-
accelerated libraries

• HIP ecosystem includes variety of HIP* libraries that can use either the AMD ROCm or 
NVIDIA CUDA library as a back-end

– E.g., hipBLAS -> cuBLAS, rocBLAS

• OLCF does not (yet?) provide system-wide installations of the hip* libraries on Summit

• HIP* libraries are open source, relatively easy to build and install in one’s home directory
– Many (most?) involve compiling some shim code

hipBLAS

CUDA ROCm

Application

cuBLAS rocBLAS
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HIP on Aurora?

• Recall HIP is a portability layer
• The HIP on Level Zero (HIPLZ) ECP project is working to enable HIP applications to 

run on Intel GPUs
– Level Zero is an Intel runtime that targets GPUs

• Original approach was to adapt the HIPCL (HIP over an OpenCL runtime) 
implementation to use Level Zero instead of the OpenCL runtime

• Have demonstrated several benchmarks and mini/proxy apps running via HIPLZ 
on Intel integrated GPUs
– Recall importance of the ecosystem!  Sparkler proxy app involved implementing a stub 

hipBLAS library that used MKL as a backend for the two BLAS routines it uses

• More recently, HIPCL and HIPLZ projects have combined efforts in the CHIP-SPV 
project that can target Level Zero or OpenCL backends

• Depends on SPIR-V, so Summit and Crusher/Frontier are also potential targets if 
POCL with SPIR-V support is functional

HIP

CUDA ROCm

Application
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HIP

CUDA ROCm

Application

HIP

CUDA ROCm

Application

OpenCL Level Zero

HIPCL HIPLZ
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CUDA ROCm

Application

HIP

CUDA ROCm
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OpenCL Level Zero
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CUDA ROCm
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OpenCL Level Zero

CHIP-SPV
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OpenCL

• Khronos standard
• By some definitions, very good performance portability due to 

widespread availability of mature implementations
• Originally, C-based kernel language but more recent versions have 

supported C++ features (OpenCL C++ and C++ for OpenCL)
• Allows creation of kernels by:

– Compiling source dynamically
– Ingesting pre-compiled code, either device-native or portable intermediate 

representation
– Not all implementations support all options

• Historically close ties with SPIR-V, a Khronos standard portable binary 
intermediate representation
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OpenCL on Summit

• Summit has incomplete OpenCL support
– From RHEL distribution, have device-independent runtime library but 

not development headers or libraries
– NVIDIA driver installation adds GPU-specific OpenCL driver
– CUDA installations include a device-independent runtime library but it is 

for the wrong CPU architecture for Summit

• NVIDIA, OLCF never claimed to support OpenCL on POWER9
– I am not saying they should!  But exploring alternatives is the point of 

the investigation
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OpenCL on Summit: Experiences I

• Easy to build Khronos’ reference 
implementation of device-
independent runtime library
– Spack’s builtin repository has ocl-icd

package with headers variant

• Platform/device queries (e.g., 
with CLInfo utility) and data 
transfer are functional

• Unable to compile source code 
dynamically
– (Though device queries report 

compiler and linker are available)
CLInfo output with NVIDIA-specific OpenCL driver on Summit
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OpenCL on Summit: Experiences II

• Portable Computing Language (POCL) provides alternative to 
NVIDIA’s ICD
– Uses CUDA runtime
– In theory, can ingest SPIR-V

• Have not yet demonstrated working build on Summit, but I think 
others have
– I may be tripping up on the SPIR-V support
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OpenCL on Crusher/Frontier

• AMD supports OpenCL on x86_64 systems 
with MI250X GPUs (Crusher/Frontier) and 
MI100 (Spock) GPUs

– ICDs installed for GPUs, apparently not for CPUs
– Support dynamic compilation of OpenCL 

source code to AMDGCN

• OpenCL performance comparable with HIP 
performance for low-level SHOC 
benchmarks (MaxFlops, data transfers)

• GEMM performance gap shows benefit of 
using optimized hipBLAS library vs untuned 
OpenCL implementation

• Too many extreme differences (both pro-HIP 
and pro-OpenCL) to show results from 
higher-level benchmarks

– No platform-specific optimizations or problem 
diagnosis yet attempted

Parity
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OpenCL on Aurora: Promising

• Intel traditionally has supported OpenCL and has championed 
SPIR-V

• Intel’s oneAPI includes interoperability support between SYCL 
and OpenCL

• ALCF includes OpenCL in public lists of programming models 
planned to be available on Aurora
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SYCL and DPC++

• SYCL: Khronos standard, C++-based, 
OpenCL’s spiritual successor
– Originally had strong connection to 

SPIR/SPIR-V

• DPC++: part of Intel’s oneAPI, SYCL 1.2 
plus useful extensions intended to 
improve productivity
– Some extensions appear in SYCL 2020 

standard
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SYCL on Summit

• Some options for this “wrong way”:
– hipSYCL: a SYCL 1.2 implementation built on HIP

• CUDA for GPU, OpenMP for CPU
• Have demonstrated this running on Summit with simple 

examples, e.g., matrix aX+Y
– Intel’s Github LLVM staging repository includes 

DPC++ compiler sources
– Found small number of build problems, e.g., reliance 

on CPUID instruction that isn’t supported on POWER9
– Others have reported some success in working 

around for other non-x86_64 platforms, so may be 
possible soon on Summit

– Also tried using CodePlay’s Community Edition to 
compile kernels to PTX code on spare 
x86_64+NVIDIA GPU system, transferring to Summit, 
and loading kernels via POCL – not successful
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Frontier: SYCL/DPC++

• Have less experience trying these “wrong way” approaches on pre-
Frontier systems so far

• AMD has traditionally supported OpenCL 
– But SPIR/SPIR-V support varies by product line - not supported on MI25/MI60
– Options: POCL, “manual” conversion of SPIR-V to AMDGCN

• SYCL and DPC++
– CodePlay funded to implement basic SYCL and DPC++ functionality for AMD 

GPUs in pre-Frontier systems
– Intel LLVM repository

• CPUID not an issue here
• Reliant on SPIR-V tools/translator to convert to AMDGCN, perhaps via LLVM IR?

• Recall the importance of the ecosystem!
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Back to General “Wrong”-ness

• Recall Dyninst and the “Requires care” teaser?  Lots of effort 
involved in portability and maintenance
– Many combinations possible between CPU ISAs, operating systems, 

compilers, optimization levels
– Must also be maintained over time as things change (e.g., new 

compiler versions)

• Adopting a “wrong” way comes at a cost!
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Thoughtfully Compare Benefits and Costs

• How much are you and your project willing to devote, now and over time, to obtain the benefits of 
adopting a “wrong” way?

• Evaluate several factors when deciding
– Performance impact
– Portability (current and future)
– Maintainability
– Cost of conversion, including whether intermediate steps are possible

• My opinion: in general, the HPC community does not yet have tools or discipline to make strong 
quantitative benefit/cost comparisons

– Followup question: how much do we care?  How much do we actually have to care?

• Don’t let lack of small number of near-ubiquitous standards (a la MPI for communications) cause 
paralysis

– Consider whether chosen approach is close enough to others to make it easy to transition if it just isn’t turning out 
as desired
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Summary
• Thanks to open source projects, it can be quite interesting to explore the 

“wrong way” options for programming GPUs on HPC systems like OLCF’s 
Summit

• Exploring trade-offs of non-traditional or unsupported GPU programming 
approaches for Summit, Frontier, and Aurora
– OpenCL, HIP, SYCL/DPC++

• When considering the benefits of adopting a “wrong way”, be very 
mindful of the cost
– Performance
– Portability
– Maintainability
– Availability of support

• For more information: rothpc@ornl.gov

mailto:rothpc@ornl.gov
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References I

• CUDA Toolkit for NVIDIA GPUs: https://developer.nvidia.com/cuda-toolkit

• DPC++
– Programming Guide: https://www.intel.com/content/www/us/en/develop/documentation/oneapi-

programming-guide/top/oneapi-programming-model/data-parallel-c-dpc.html
– Intel LLVM staging repository (including DPC++ implementation): https://github.com/intel/llvm

• Dyninst dynamic instrumentation project: https://www.dyninst.org.  Also available via 
Spack.

• HIP C++ performance portability software
– ROCm HIP implementation: https://github.com/ROCm-Developer-Tools/HIP
– CHIP-SPV HIP implementation over OpenCL/Intel Level Zero runtime (subsumes HIPCL and HIPLZ): 

https://github.com/CHIP-SPV/chip-spv
– HIP over Intel’s Level Zero runtime (HIPLZ) on Argonne’s JLSE systems: https://github.com/jz10/hip-

training
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References II

• Khronos Group standards consortium: https://www.khronos.org
• Kokkos C++ performance portability software: https://kokkos.org
• OLCF System User Guides/Quick-Start Guides: https://docs-

internal.apps.granite.ccs.ornl.gov/systems/index.html
• OpenCL application programming interface and kernel language

– Standard specification, links to software like SDK: 
https://www.khronos.org/opencl/

– OpenCL CLInfo utility: https://github.com/Oblomov/clinfo
– Portable Computing Language (POCL): http://portablecl.org

• OCCA C++ performance portability software: https://libocca.org
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References III

• RAJA C++ performance portability software: 
https://github.com/LLNL/RAJA

• Spack package manager: https://spack.readthedocs.io

• SPIR-V portable binary intermediate language: 
https://www.khronos.org/spir/

• SYCL specification and resources: 
https://www.khronos.org/sycl/


