
E4S at DOE Facilities with Deep Dive
at NERSC

Sameer Shende, University of Oregon
E4S Technical Lead

Monday, Oct. 4, 2021, 9am – noon PT
Zoom: https://exascaleproject.zoomgov.com/j/1612548862
Slides: https://e4s.io/talks/E4S_NERSC21.pdf

https://exascaleproject.zoomgov.com/j/1612548862

The Growing
Complexity of Scientific
Application Software
Stacks

3

Challenges

• As our software gets more complex, it is getting harder to
install tools and libraries correctly in an integrated and
interoperable software stack.

4

ECP apps (AD) are primary consumers of ST products
Dependency Database

View by AD consumers

View by ST producers

STHI

AD

ECP Internal
Dependencies

https://dx.doi.org/10.1038/s43588-021-00033-y

https://dx.doi.org/10.1038/s43588-021-00033-y

5

Scientific software is becoming extremely
complex

r-rminer

r

r-adabag

r-mass

r-lattice

r-nnet

r-rpart

r-cubist

r-e1071

r-glmnet

r-kernlab

r-kknn

r-mda

r-party

r-plotrix

r-pls

r-randomforest

r-xgboost

bzip2

cairo

freetype

zlib

glib

ncurses

pcre readline

curl

icu4c

jdk
libjpeg-turbo

libtiff

pango

tcltk

fontconfig

pkgconf

libpng
pixman

font-util

gperf

libxml2

util-macros

xz

gettext

libffi

perl

python

tar

gdbm

openssl

sqlite
cmake

nasm

gobject-introspection

harfbuzz

bison

flex

sed

m4 libsigsegv

help2man

libx11 inputproto

kbproto

libxcb

xproto

xextproto

xtrans
libpthread-stubs

libxau

libxdmcp

xcb-proto

r-caret

r-mlbench

r-car

r-nlme

r-foreach

r-ggplot2
r-plyr

r-reshape2

r-modelmetrics

r-mgcv

r-pbkrtest

r-quantreg

r-matrix

r-lme4

r-minqa

r-rcpp

r-nloptr

r-rcppeigen

r-testthat

r-crayon

r-digest

r-magrittr

r-praise

r-r6

r-matrixmodels

r-sparsem

r-codetools

r-iterators

r-gtable

r-lazyeval

r-scales

r-tibble

r-stringr

r-stringi

r-dichromat

r-labeling

r-munsell

r-rcolorbrewer

r-viridislite

r-colorspace

r-assertthat

r-rlang

r-class

r-igraph

gmp

r-irlba

r-pkgconfig autoconf

automake

libtool

r-coin

r-modeltools
r-mvtnorm

r-sandwich

r-zoo

r-survival

r-strucchange

r-multcomp r-th-data

r-data-table

R Miner: R Data Mining Library

dealii

adol-c

arpack-ng

cmake

zlib

openblas

openmpi

assimp
boost

gmsh oce

intel-tbb

gsl

hdf5

metis

muparser

nanoflann

netcdfnetcdf-cxx

netlib-scalapack

p4est

petsc

slepc

suite-sparse

sundials

trilinos

autoconf

m4

automake

libtool

perl

libsigsegv

gdbm

readline

ncurses

pkgconf

openssl

hwloc libxml2
xz

bzip2

gmp

netgen

tetgen

hypre

parmetis

python

superlu-dist
sqlite

glm

matio

mumps

dealii: C++ Finite Element Library

nalu

cmake

openmpi

trilinos

yaml-cpp
ncurses

openssl

pkgconf

zlib

hwloc libxml2 xz

boost

glm

hdf5

matio

metis

mumps

netlib-scalapack

openblas

netcdf

parallel-netcdf

parmetis

suite-sparse

superlu

bzip2

m4 libsigsegv

Nalu: Generalized Unstructured Massively Parallel Low Mach Flow

6

• Half of this DAG is external (blue); more than half of it is open source

• Nearly all of it needs to be built specially for HPC to get the best performance

Even proprietary codes are based on many open source libraries

ARES

tcl

tkscipy

python

cmake

hpdf

opclient

boost

zlib

numpy

bzip2

LAPACK

gsl

HDF5

gperftools papi

GA

bdivxml

sgeos_xmlScallop

rng perflib memusage timers

SiloSAMRAI

HYPRE

matprop

overlink qd

LEOS

MSlibLaser

CRETIN

tdf

Cheetah DSD

Teton

Nuclear

ASCLaser

MPI

ncurses

sqlite readline openssl BLAS

Physics Utility Math External

Types of Packages

7

The Exascale Computing Project is building an entire ecosystem

• Every application has its own stack of dependencies.
• Developers, users, and facilities dedicate (many) FTEs to building & porting.
• Often trade reuse and usability for performance.

80+ software packagesx
5+ target architectures/platforms

Xeon Power KNL
NVIDIA ARM Laptops?

x

Up to 7 compilers
Intel GCC Clang XL

PGI Cray NAG
x

= up to 1,260,000 combinations!

15+ applications

x
10+ Programming Models

OpenMPI MPICH MVAPICH OpenMP CUDA
OpenACC Dharma Legion RAJA Kokkos

2-3 versions of each package +
external dependencies

x

We must make it easier to rely on others’ software!

8

How to install software on a supercomputer

c
o
n
f
i
g
u
r
e

m
a
k
e

F
i
g
h
t

w
i
t
h

c
o
m
p
i
l
e
r
.
.
.

m
a
k
e

T
w
e
a
k

c
o
n
f
i
g
u
r
e

a
r
g
s
.
.
.

m
a
k
e

i
n
s
t
a
l
l

m
a
k
e

c
o
n
f
i
g
u
r
e

c
o
n
f
i
g
u
r
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

c
m
a
k
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

1. Download all 16
tarballs you
need

2. Start building!

3. Run code
4. Segfault!?
5. Start

over…

9

• Most supercomputers deploy some form of environment modules
– TCL modules (dates back to 1995) and Lmod (from TACC) are the most popular

• Modules don’t handle installation!
– They only modify your environment (things like PATH, LD_LIBRARY_PATH, etc.)

• Someone (likely a team of people) has already installed gcc for you!
– Also, you can only `module load` the things they’ve installed

What about modules?

$ gcc
-bash: gcc: command not found

$ module load gcc/7.0.1
$ gcc –dumpversion
7.0.1

Spack Overview

11

Spack

• E4S uses the Spack package manager for software delivery
• Spack provides the ability to specify versions of software packages that are and are not

interoperable.
• Spack is a build layer for not only E4S software, but also a large collection of software tools

and libraries outside of ECP ST.
• Spack supports achieving and maintaining interoperability between ST software packages.
• https://spack.io

https://spack.io/

12

• How to install Spack (works out of the box):

• How to install a package:

• TAU and its dependencies are installed
within the Spack directory.

• Unlike typical package managers, Spack can also install
many variants of the same build.
– Different compilers
– Different MPI implementations
– Different build options

Spack is a flexible package manager for HPC

$ git clone https://github.com/spack/spack
$. spack/share/spack/setup-env.sh

$ spack install tau

@spackpm

github.com/spack/spack

Visit spack.io

https://github.com/LLNL/spack.git

13

• Each expression is a spec for a particular configuration
– Each clause adds a constraint to the spec
– Constraints are optional – specify only what you need.
– Customize install on the command line!

• Spec syntax is recursive
– Full control over the combinatorial build space

Spack provides the spec syntax to describe custom configurations

$ spack install tau unconstrained
$ spack install tau@2.30.1 @ custom version
$ spack install tau@2.30.1 %gcc@9.3.0 % custom compiler

$ spack install tau@2.30.1 %gcc@9.3.0 +level_zero +openmpi +/- build option
$ spack install tau@2.30.1 %gcc@9.3.0 +mpi ^mvapich2@2.3~wrapperrpath ^ dependency information

$ git clone https://github.com/spack/spack
$. spack/share/spack/setup-env.sh
$ spack compiler find # set up compilers
$ spack external find # set up external packages

https://github.com/LLNL/spack.git

14

`spack find` shows what is installed

• All the versions coexist!
– Multiple versions of same

package are ok.

• Packages are installed to
automatically find correct
dependencies.

• Binaries work regardless of
user’s environment.

• Spack also generates
module files.
– Don’t have to use them.

15

• Spack simplifies HPC software for:
– Users
– Developers
– Cluster installations
– The largest HPC facilities

• Spack is central to ECP’s software strategy
– Enable software reuse for developers and users
– Allow the facilities to consume the entire ECP stack

• The roadmap is packed with new features:
– Building the ECP software distribution
– Better workflows for building containers
– Stacks for facilities
– Chains for rapid dev workflow
– Optimized binaries
– Better dependency resolution

The Spack community is growing rapidly

@spackpm

github.com/spack/spack

Visit spack.io

The Extreme-Scale
Scientific Software
Stack (E4S)
Components

17

E4S: Extreme-scale Scientific Software Stack Components
• Curated, Spack based software distribution
• Spack binary build caches for bare-metal installs

– x86_64, ppc64le (IBM Power 9), and aarch64 (ARM64)
• Container images on DockerHub and E4S website of pre-built binaries of ECP ST products
• Base images and full featured containers (with GPU support)
• GitHub recipes for creating custom images from base images
• GitLab integration for building E4S images
• E4S validation test suite on GitHub
• E4S-cl container launcher tool for MPI substitution in applications using MPICH ABI
• E4S VirtualBox image with support for container runtimes

• Docker
• Singularity
• Shifter
• Charliecloud

• AWS and GCP images to deploy E4S
https://e4s.io

18

Extreme-scale Scientific Software Stack (E4S)
• E4S: HPC Software Ecosystem – a curated software portfolio

• A Spack-based distribution of software tested for interoperability
and portability to multiple architectures

• Available from source, containers, cloud, binary caches

• Leverages and enhances SDK interoperability thrust

• Not a commercial product – an open resource for all

• Oct 2018: E4S 0.1 - 24 full, 24 partial release products

• Jan 2019: E4S 0.2 - 37 full, 10 partial release products

• Nov 2019: E4S 1.0 - 50 full, 5 partial release products

• Feb 2020: E4S 1.1 - 61 full release products

• Nov 2020: E4S 1.2 (aka, 20.10) - 67 full release products

• Feb 2021: E4S 21.02 - 67 full release, 4 partial release

• May 2021: E4S 21.05 - 76 full release products

• August 2021: E4S 21.08 - 88 full release products

https://e4s.io

Lead: Sameer Shende
(U Oregon)

Also include other products .e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://e4s.io/

Using E4S with
containers

20

What are containers

A lightweight collection of executable software that encapsulates everything needed to run a single
specific task

Minus the OS kernel
Based on Linux only

Processes and all user-level software is isolated
Creates a portable* software ecosystem
Think chroot on steroids
Docker most common tool today

Available on all major platforms
Widely used in industry
Integrated container registry via Dockerhub

21

Hypervisors and Containers
Type 1 hypervisors insert layer below host OS
Type 2 hypervisors work as or within the host OS
Containers do not abstract hardware, instead provide “enhanced chroot” to create isolated

environment
Location of abstraction can have impact on performance
All enable custom software stacks on existing hardware

22

E4S Docker and Singularity Containers

23

E4S base images for custom container deployment and CI images

24

21.08 Release: 88 Official Products + dependencies (x86_64 gcc)

Support for GPUs
• nvhpc 21.7
• cuda 11.4
• oneAPI 2021.1.1
• ROCm 3.8

25

21.08 Release: 88 Official Products + dependencies (x86_64 gcc)

• GCC
• DOE fork of LLVM

AI/ML frameworks
• PyTorch
• Tensorflow

26

21.08 Release: x86_64 clang (DOE fork of LLVM)

27

21.08 Release: x86_64 clang (DOE fork of LLVM)

28

21.08 Release: 88 Official Products + dependencies (ppc64le gcc)

Support for GPUs
• nvhpc 21.7
• cuda 11.4.0

29

21.08 Release: 88 Official Products + dependencies (ppc64le gcc)

30

21.08 Release: 88 Official Products + dependencies (ppc64le llvm)

31

21.08 Release: 88 Official Products + dependencies (ppc64le llvm)

32

Using E4S with Shifter on Cori

% shifterimg images | grep e4s
% cd; cp –r /global/homes/s/sameer/demo/testsuite/ .;ln –s ~/testsuite/trilinos/Zoltan ~/
% shifter -E --image=ecpe4s/ubuntu18.04-e4s-gpu:21.08 -- /bin/bash --rcfile /etc/bashrc
% spack find; cd ~/Zoltan; ./compile.sh
% which mpicc
% exit
% cat /etc/os-release
% cat run.job
#!/bin/bash
#SBATCH -N 4 -t 5
#SBATCH --image=ecpe4s/ubuntu18.04-e4s-gpu:21.08
#SBATCH -C haswell
srun -n 4 shifter -- /bin/bash -c 'unset CRAYPE_VERSION; unset MODULEPATH; .
/spack/share/spack/setup-env.sh; spack load --first trilinos%gcc ; spack unload mpich;
./Zoltan'

% sbatch run.job
% cat *.out

33

Using E4S with Shifter on Perlmutter

% cd; cp –r ~sameer/demo/NPB3.1 .
% shifter -E --image=ecpe4s/ubuntu18.04-e4s-gpu:latest -- /bin/bash --rcfile /etc/bashrc
% spack find
% spack load --first trilinos % gcc
% which mpicc
% cd ~/NPB3.1; make clean; make ; cd bin; mpirun –np 4 ./lu.W.4

34

E4S Download from https://e4s.io

35

E4S for bare-metal installation

36

E4S: Spack Build Cache at U. Oregon and AWS

• https://oaciss.uoregon.edu/e4s/inventory.html

• 50,000+ binaries
• S3 mirror
• No need to build

from source code!

Using E4S: From
source using Spack
and build caches

38

E4S Spack environment spack.yaml

• Bare-metal install
% cat spack.yaml
% spack -e . install

• Docker build:

39

E4S: ppc64le Base Container Images

• Ubuntu 18.04
• RHEL/UBI 7.6
• Centos 7.6

• Hub.docker.com
• ecpe4s

40

Multi-platform E4S Docker Recipes

41

E4S: Multi-platform Reproducible Docker Recipes

https://e4s.io

E4S
• x86_64
• ppc64le
• aarch64

42

E4S VirtualBox Image

https://e4s.io

Container Runtimes
• Docker
• Shifter
• Singularity
• Charliecloud

43

e4s-cl: A tool to simplify the launch of MPI jobs in E4S containers

https://github.com/E4S-Project/e4s-cl

• E4S containers support replacement of MPI libraries using MPICH
ABI compatibility layer.

• Applications binaries built using E4S can be launched with Singularity
using MPI library substitution for efficient inter-node communications.

• e4s-cl is a new tool that simplifies the launch and MPI replacement.

• Usage:
1. e4s-cl init --backend singularity --image ~/ecp.simg --soure ~/source.sh

2. e4s-cl mpirun -np <N> -hosts <> <command>

44

e4s-cl Container Launcher

https://e4s.io

E4S Continuous
Integration Testing

46

E4S Validation Test Suite

• git clone https://github.com/E4S-Project/testsuite.git

• Provides automated build and run tests
• Validate container environments and products
• New LLVM validation test suite for DOE LLVM

47

Reproducible Container Builds using E4S Base Images

● PMR SDK base image has Spack build cache mirror and
GPG key installed.

● Base image has GCC and MPICH configured for MPICH
ABI level replacement (with system MPI).

● Customized container build using binaries from E4S
Spack build cache for fast deployment.

● No need to rebuild packages from the source code.
● Same recipe for container and native bare-metal builds

with Spack!

48

E4S: GitLab Runner Images

• Dockerhub
• Bare-bones
• Multi-platfrom
• Build E4S

49

University of Oregon GitLab CI

E4S Builds:
•Ubuntu 18.04
•Ubuntu 20.04
•RHEL 7.6
•RHEL 8
•CentOS 7
•CentOS 8

Architectures:
ppc64le and x86_64

• https://gitlab.e4s.io

50

GitLab GPU Runners on Frank, U. Oregon

A100 NVIDIA GPU

DG1 Intel GPU

MI50 AMD GPU

Frank @ UO: https://oaciss.uoregon.edu/frank

51

Multi-stage E4S CI Build Pipeline on Cori, NERSC

52

ORNL GitLab Build Pipeline for E4S Spack Build Cache

• ppc64le (Ascent @ ORNL)
• Reproducible container builds

53

E4S CI Badges

E4S Community
Engagement

55

Opportunities via E4S
• E4S enables portfolio strategy for ASCR R&D software delivery:

– Facilities: Robust planning, delivery, integration and testing at Facilities
– Community: MPI Forum, C++, OpenMP, LLVM
– Vendor: Coordinated integration into vendor software stacks
– Users: Turnkey delivery of capabilities to DOE program offices, US agencies, industry, international partners

• E4S provides incentives and support for high-quality research software products
– Community policies: Drives quality by explicit expectations and clear view of gaps
– SDKs for community interaction: Build awareness and collaboration across independent teams
– Transparency: E4S DocPortal, build, test, integration shows quality (good or poor) of a product

• E4S provides direct path for software teams to reach users and other stakeholders
– Example: ArborX is brand new geometric search library

• Part of E4S, available at DocPortal, tested regularly on many platforms
• Installed anywhere E4S is installed, users can count on it being there
• Without E4S: ArborX would take years to become visible and available

– Availability and adoption timeline reduced from years (or never) to months

56

E4S summary

What E4S is
• Extensible, open architecture software ecosystem

accepting contributions from US and international teams.

• Framework for collaborative open-source product
integration for ECP & beyond, including AI and Quantum.

• Full collection if compatible software capabilities and

• Manifest of a la carte selectable software capabilities.

• Vehicle for delivering high-quality reusable software
products in collaboration with others.

• New entity in the HPC ecosystem enabling first-of-a-kind
relationships with Facilities, vendors, other DOE program
offices, other agencies, industry & international partners.

• Hierarchical software framework to enhance (via SDKs)
software interoperability and quality expectations.

• Conduit for future leading edge HPC software targeting
scalable computing platforms.

What E4S is not

• A closed system taking contributions only from DOE
software development teams.

• A monolithic, take-it-or-leave-it software behemoth.

• A commercial product.

• A simple packaging of existing software.

Looking Forward

58

Lessons learned from E4S/ECP ST to carry forward
• Deliver DOE reusable software as a portfolio

– E4S value is already more than the sum of its parts
– Community policies drive quality, membership
– DocPortal, testing, containerization, cloud, build caches, modules, etc., greatly improve access & usability
– Poor performing products are ID’ed, then improved or removed

• E4S is ready to extend to next-generation software and hardware needs
– AI/ML products already in portfolio, ready for any new products
– Quantum, FPGA, neuromorphic devices likely to be accelerators

• From a macro software architecture, similar to GPUs
• Software for these devices can and should be part of the same stack for holistic HPC environment

• DOE software as a portfolio is a first-class entity in the ecosystem
– E4S planning, executing, tracking, assessing is peer collaboration with Facilities, program offices, vendors, etc
– E4S can become a perennial asset for DOE/ASCR as part of its mission impact within and beyond DOE

59

Final points

• E4S is a curated software stack with quality improvement incentives, moving toward turnkey use

• With DOE program managers ECP is starting
– Software ecosystem sustainability planning
– E4S strategic plan (will include monthly townhalls)

• We believe
– E4S has reduced important gaps that limit usefulness of DOE software for industry
– But some gaps remain

• Next steps:
– Better characterize these gaps
– Explore models to further reduce and close gaps
– Plan and execute toward sustainability

60

Thank you
This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Thank you to all collaborators in the ECP and broader computational science communities. The
work discussed in this presentation represents creative contributions of many people who are
passionately working toward next-generation computational science.

https://www.exascaleproject.org

