
ECP Software Technology Overview

Michael A. Heroux, Sandia National Laboratories
Director of Software Technology

E4S at DOE Facilities with Deep Dive at NERSC, October 4, 2021

ECP Organizational Sketch

3

ECP Software Technology (ST) is one of three focus areas

Application
Development (AD)

Software
Technology (ST)

Hardware
and Integration (HI)

Performant mission and science applications @ scale
Aggressive RD&D

Project
Mission apps &

integrated S/W stack
Deployment to DOE

HPC Facilities
Hardware tech

advances

Integrated delivery of ECP
products on targeted systems at

leading DOE HPC facilities

6 US HPC vendors focused on
exascale node and system

design; application integration
and software deployment to

facilities

Deliver expanded and vertically
integrated software stack to

achieve full potential of exascale
computing

70 unique software products
spanning programming models
and run times, math libraries,

data and visualization

Develop and enhance the
predictive capability of

applications critical to the DOE

24 applications including
national security, to energy, earth

systems, economic security,
materials, and data

ECP ST has six technical areas

Programming
Models & Runtimes
•Enhance and get
ready for exascale the
widely used MPI and
OpenMP
programming models
(hybrid programming
models, deep
memory copies)

•Development of
performance
portability tools (e.g.
Kokkos and Raja)

•Support alternate
models for potential
benefits and risk
mitigation: PGAS
(UPC++/GASNet)
,task-based models
(Legion, PaRSEC)

•Libraries for deep
memory hierarchy
and power
management

Development
Tools

• Continued,
multifaceted
capabilities in
portable, open-
source LLVM
compiler
ecosystem to
support expected
ECP
architectures,
including support
for F18

• Performance
analysis tools that
accommodate
new
architectures,
programming
models, e.g.,
PAPI, Tau

Math Libraries
•Linear algebra,
iterative linear
solvers, direct linear
solvers, integrators
and nonlinear
solvers,
optimization, FFTs,
etc

•Performance on new
node architectures;
extreme strong
scalability

•Advanced
algorithms for multi-
physics, multiscale
simulation and
outer-loop analysis

•Increasing quality,
interoperability,
complementarity of
math libraries

Data and
Visualization

• I/O via the HDF5
API

• Insightful,
memory-efficient
in-situ
visualization and
analysis – Data
reduction via
scientific data
compression

• Checkpoint
restart

Software
Ecosystem

•Develop features in
Spack necessary to
support all ST
products in E4S, and
the AD projects that
adopt it

•Development of
Spack stacks for
reproducible turnkey
deployment of large
collections of
software

•Optimization and
interoperability of
containers on HPC
systems

•Regular E4S
releases of the ST
software stack and
SDKs with regular
integration of new
ST products

NNSA ST
• Open source

NNSA Software
projects

• Projects that have
both mission role
and open science
role

• Major technical
areas: New
programming
abstractions,
math libraries,
data and viz
libraries

• Cover most ST
technology areas

• Subject to the
same planning,
reporting and
review processes

ECP Software Technology Leadership Team

Rajeev Thakur, Programming Models and Runtimes
Rajeev is a senior computer scientist at ANL and most recently led the ECP Software Technology focus area. His research interests are in parallel
programming models, runtime systems, communication libraries, and scalable parallel I/O. He has been involved in the development of open source
software for large-scale HPC systems for over 20 years.

Jeff Vetter, Development Tools
Jeff is a computer scientist at ORNL, where he leads the Future Technologies Group. He has been involved in research and development of
architectures and software for emerging technologies, such as heterogeneous computing and nonvolatile memory, for HPC for over 15 years.

Xaioye (Sherry) Li, Math Libraries
Sherry is a senior scientist at Berkeley Lab. She has over 20 years of experience in high-performance numerical software, including development of
SuperLU and related linear algebra algorithms and software.

Jim Ahrens, Data and Visualization
Jim is a senior research scientist at the Los Alamos National Laboratory (LANL) and an expert in data science at scale. He started and actively
contributes to many open-source data science packages including ParaView and Cinema.

Mike Heroux, Software Technology Director
Mike has been involved in scientific software R&D for 30 years. His first 10 were at Cray in the LIBSCI and scalable apps groups. At Sandia he
started the Trilinos and Mantevo projects, is author of the HPCG benchmark for TOP500, and leads productivity and sustainability efforts for DOE.

Lois Curfman McInnes, Software Technology Deputy Director
Lois is a senior computational scientist in the Mathematics and Computer Science Division of ANL. She has over 20 years of experience in HPC
numerical software, including development of PETSc and leadership of multi-institutional work toward sustainable scientific software ecosystems.

Kathryn Mohror, NNSA ST
Kathryn is Group Leader for the CASC Data Analysis Group at LLNL. Her work focuses on I/O for extreme scale systems, scalable performance
analysis and tuning, fault tolerance, and parallel programming paradigms. She is a 2019 recipient of the DOE Early Career Award.

Todd Munson, Software Ecosystem and Delivery
Todd is a computational scientist in the Math and Computer Science Division of ANL. He has nearly 20 years of experience in high-performance
numerical software, including development of PETSc/TAO and project management leadership in the ECP CODAR project.

5

6

ST L4 Teams
- WBS
- Name
- PIs
- PCs - Project
Coordinators

WBS WBS Name CAM/PI PC
2.3 Software Technology Heroux, Mike, McInnes, Lois
2.3.1 Programming Models & Runtimes Thakur, Rajeev
2.3.1.01 PMR SDK Shende, Sameer Shende, Sameer
2.3.1.07 Exascale MPI (MPICH) Balaji, Pavan Guo, Yanfei
2.3.1.08 Legion McCormick, Pat McCormick, Pat
2.3.1.09 PaRSEC Bosilica, George Carr, Earl
2.3.1.14 Pagoda: UPC++/GASNet for Lightweight Communication and Global Address Space Support Hargrove, Paul Hargrove, Paul
2.3.1.16 SICM Lang, Michael Vigil, Brittney
2.3.1.17 OMPI-X Bernholdt, David Grundhoffer, Alicia
2.3.1.18 RAJA/Kokkos Trott, Christian Robert Trujillo, Gabrielle
2.3.1.19 Argo: Low-level resource management for the OS and runtime Beckman, Pete Gupta, Rinku
2.3.2 Development Tools Vetter, Jeff
2.3.2.01 Development Tools Software Development Kit Miller, Barton Tim Haines
2.3.2.06 Exa-PAPI++: The Exascale Performance Application Programming Interface with Modern C++Dongarra, Jack Jagode, Heike
2.3.2.08 Extending HPCToolkit to Measure and Analyze Code Performance on Exascale Platforms Mellor-Crummey, John Meng, Xiaozhu
2.3.2.10 PROTEAS-TUNE Vetter, Jeff Glassbrook, Dick
2.3.2.11 SOLLVE: Scaling OpenMP with LLVm for Exascale Chapman, Barbara Kale, Vivek
2.3.2.12 FLANG McCormick, Pat Perry-Holby, Alexis
2.3.3 Mathematical Libraries Li, Sherry
2.3.3.01 Extreme-scale Scientific xSDK for ECP Yang, Ulrike Yang, Ulrike
2.3.3.06 Preparing PETSc/TAO for Exascale Munson, Todd Munson, Todd
2.3.3.07 STRUMPACK/SuperLU/FFTX: sparse direct solvers, preconditioners, and FFT libraries Li, Sherry Li, Sherry
2.3.3.12 Enabling Time Integrators for Exascale Through SUNDIALS/ Hypre Woodward, Carol Woodward, Carol
2.3.3.13 CLOVER: Computational Libraries Optimized Via Exascale Research Dongarra, Jack Carr, Earl
2.3.3.14 ALExa: Accelerated Libraries for Exascale/ForTrilinos Turner, John Grundhoffer, Alicia
2.3.3.15 Sake: Scalable Algorithms and Kernels for Exascale Rajamanickam, Siva Trujillo, Gabrielle
2.3.4 Data and Visualization Ahrens, James
2.3.4.01 Data and Visualization Software Development Kit Atkins, Chuck Bagha, Neelam
2.3.4.09 ADIOS Framework for Scientific Data on Exascale Systems Klasky, Scott Grundhoffer, Alicia
2.3.4.10 DataLib: Data Libraries and Services Enabling Exascale Science Ross, Rob Ross, Rob
2.3.4.13 ECP/VTK-m Moreland, Kenneth Moreland, Kenneth
2.3.4.14 VeloC: Very Low Overhead Transparent Multilevel Checkpoint/Restart/Sz Cappello, Franck Ehling, Scott
2.3.4.15 ExaIO - Delivering Efficient Parallel I/O on Exascale Computing Systems with HDF5 and Unify Byna, Suren Bagha, Neelam
2.3.4.16 ALPINE: Algorithms and Infrastructure for In Situ Visualization and Analysis/ZFP Ahrens, James Turton, Terry
2.3.5 Software Ecosystem and Delivery Munson, Todd
2.3.5.01 Software Ecosystem and Delivery Software Development Kit Willenbring, James M Willenbring, James M
2.3.5.09 SW Packaging Technologies Gamblin, Todd Gamblin, Todd
2.3.5.10 ExaWorks Laney, Dan Laney, Dan
2.3.6 NNSA ST Mohror, Kathryn
2.3.6.01 LANL ATDM Mike Lang Vandenbusch, Tanya Marie
2.3.6.02 LLNL ATDM Becky Springmeyer Gamblin, Todd
2.3.6.03 SNL ATDM Jim Stewart Trujillo, Gabrielle

ECP ST Stats
- 35 L4 subprojects
- 11 PI/PC same
- 24 PI/PC different
- ~27% ECP budget

•~250 staff

• ~70 products

• 34 teams

• ~30 universities

• ~9 DOE labs

• 6 technical areas

• 1 focus area of 3 in ECP

7

We work on products applications need now and into the future

Example Products Engagement

MPI – Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards

OpenMP/OpenACC –On-node parallelism Explore/develop new features and standards

Performance Portability Libraries Lightweight APIs for compile-time polymorphisms

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies

IO: HDF5, MPI-IO, ADIOS Standard and next-gen IO, leveraging non-volatile storage

Viz/Data Analysis ParaView-related product development, node concurrency

Key themes:
• Focus: GPU node architectures and advanced memory & storage technologies
• Create: New high-concurrency, latency tolerant algorithms
• Develop: New portable (Nvidia, Intel, AMD GPUs) software product
• Enable: Access and use via standard APIs
Software categories:
• Next generation established products: Widely used HPC products (e.g., MPICH, OpenMPI, PETSc)
• Robust emerging products: Address key new requirements (e.g., Kokkos, RAJA, Spack)
• New products: Enable exploration of emerging HPC requirements (e.g., SICM, zfp, UnifyCR)

8

Scope and objectives
• SLATE is a distributed, GPU-accelerated, dense linear

algebra library, intended to replace ScaLAPACK
• SLATE covers parallel BLAS, linear system solvers,

least squares, eigensolvers, and the SVD

Accomplishment
• Refactored SLATE to use BLAS++ as portability layer
• Ported BLAS++ to AMD rocBLAS and Intel oneMKL

Impact
• Initially supported NVIDIA’s cuBLAS for use on current

machines like Summit
• Can now use AMD’s rocBLAS in preparation for Frontier,

and Intel’s oneMKL in preparation for Aurora
• Other projects can also leverage BLAS++ for portability

Port to AMD and Intel

One example: SLATE port to AMD and Intel platforms

Deliverables Report: https://www.icl.utk.edu/publications/swan-016
Code in git repos: bitbucket.org/icl/slate/ and bitbucket.org/icl/blaspp/

• SLATE and BLAS++ now support all three major GPU
platforms

Key ECP Software Stack Legacy:
• Portable execution on:

• CPUs
• 3 different GPUs

• A bridge from CPUs to GPUs

https://www.icl.utk.edu/publications/swan-016
http://bitbucket.org/icl/slate/
http://bitbucket.org/icl/blaspp/

E4S Planning,
Executing, Delivering

10

ECP ST Planning Process: Hierarchical, three-phase, cyclical

FY20–23 Baseline Plan
High level Definitions

• Q2 FY19 start
• FY20 Base plan
• FY21–23 planning

packages

Baseline

FY Refine Baseline Plan
As Needed

Basic activity definitions

• 6 months prior to FY
• 4–6 P6 Activities/year
• Each activity:

• % annual budget
• Baseline start/end
• High level description

Annual Refinement

Detailed Plan
Complete activity definitions

• 8 weeks prior to start
• High-fidelity description
• Execution strategy
• Completion criteria
• Personnel details

Per Activity

Two-level
Review Process

Changes to Cost, Scope,
and Schedule

Minor Major

Lightweight
Review in

Jira, L3 and
L2 leads

Change
Control
Board

Review, ECP
leadership

Variance Recorded in Jira
Proceed with Execution

The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

11

KPP-3: Focus on capability integration

• Capability: Any significant product functionality, including existing features adapted to the pre-
exascale and exascale environments, that can be integrated into a client environment.

• Capability Integration: Complete, sustainable integration of a significant product capability into a
client environment in a pre-exascale environment (tentative score) and in an exascale environment
(confirmed score).

12

ECP ST Lifecycle summary
Create Annual

Planning
Package

• Each product has its own
planning packages

• Defined for all FYs

Refine upcoming
FY plan

• Complete 6 months prior to FY
• 4 or more P6 activities per product

Refine upcoming
P6 activity

• Complete 8 weeks prior to activity start
• Include all details

Develop capabilities and track
progress via tailored EVM

Integrate into
product

• Full testing, documentation, etc.
• Direct access for some users

Integrate
into SDK

• Satisfy SDK community policies
• Direct access for some users

Integrate
into E4S

• Satisfy E4S community policies
• Full ecosystem with high value

Deliver to
users

• From source (spack)
• Containers, cloud

Managed by P6 Activity Process

Measured by KPP-3 Process

The Extreme-Scale
Scientific Software
Stack (E4S) and
Software Development
Kits (SDKs)

14

Extreme-scale Scientific Software Stack (E4S)
• E4S: HPC Software Ecosystem – a curated software portfolio

• A Spack-based distribution of software tested for interoperability
and portability to multiple architectures

• Available from source, containers, cloud, binary caches

• Leverages and enhances SDK interoperability thrust

• Not a commercial product – an open resource for all

• Oct 2018: E4S 0.1 - 24 full, 24 partial release products

• Jan 2019: E4S 0.2 - 37 full, 10 partial release products

• Nov 2019: E4S 1.0 - 50 full, 5 partial release products

• Feb 2020: E4S 1.1 - 61 full release products

• Nov 2020: E4S 1.2 (aka, 20.10) - 67 full release products

• Feb 2021: E4S 21.02 - 67 full release, 4 partial release

• May 2021: E4S 21.05 - 76 full release products

• August 2021: E4S 21.08 - 88 full release products

https://e4s.io

Lead: Sameer Shende
(U Oregon)

Also include other products .e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://e4s.io/

15

xSDK: Primary delivery mechanism for ECP math libraries’
continual advancements toward predictive science

ECP Math
libraries

Performance
on new node
architectures

Extreme
strong

scalability

Advanced,
coupled

multiphysics,
multiscale

Optimization,
UQ, solvers,

discretizations

Interoperability,
complementarity:

xSDK

Improving library
quality,

sustainability,
interoperability

Next-generation
algorithms

Advances in data
structures for new

node
architectures

Toward
predictive
scientific

simulations

Increasing
performance,

portability,
productivity

xSDK release
1

xSDK release
2

xSDK release
n…..Timeline:

As motivated and validated by
the needs of ECP applications:

xSDK release 0.6.0
(Nov 2020)

hypre
PETSc/TAO
SuperLU
Trilinos
AMReX
ButterflyPACK
DTK
Ginkgo
heFFTe
libEnsemble
MAGMA
MFEM
Omega_h
PLASMA
PUMI
SLATE
Tasmanian
SUNDIALS
Strumpack
Alquimia
PFLOTRAN
deal.II
preCICE
PHIST
SLEPc

from the
broader
community

Ref: xSDK: Building an Ecosystem of Highly Efficient Math Libraries for Exascale, SIAM News, Jan 2021

https://sinews.siam.org/Details-Page/xsdk-building-an-ecosystem-of-highly-efficient-math-libraries-for-exascale

16

Delivering an open, hierarchical software ecosystem
More than a collection of individual products

E4S
Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

SDKs
Source: SDK teams; Non-ECP teams (policy compliant, spackified)
Delivery: Apps directly; spack install sdk; future: vendor/facility

ST
Products Source: ECP L4 teams; Non-ECP Developers; Standards Groups

Delivery: Apps directly; spack; vendor stack; facility stack

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Assure core policies
• Build, integrate, test

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

E4S Community
Policies

18

E4S Community Policies V1.0 Released

19

E4S Community Policies Version 1
A Commitment to Quality Improvement

• Will serve as membership criteria for E4S
– Membership is not required for inclusion in E4S
– Also includes forward-looking draft policies

• Purpose: enhance sustainability and interoperability

• Topics cover building, testing, documentation,
accessibility, error handling and more

• Multi-year effort led by SDK team
– Included representation from across ST
– Multiple rounds of feedback incorporated from ST

leadership and membership

• Modeled after xSDK Community Policies

• https://e4s-project.github.io/policies.html

https://e4s-project.github.io/policies.html

E4S DocPortal

21

E4S DocPortal

• Single point of access

• All E4S products

• Summary Info
– Name
– Functional Area
– Description
– License

• Searchable

• Sortable

• Rendered daily from repos

https://e4s-project.github.io/DocPortal.html

All we need from the software team is
a repo URL + up-to-date meta-data files

https://e4s-project.github.io/DocPortal.html

22

Goal: All E4S product documentation accessible from single portal on E4S.io
(working mock webpage below)

https://e4s-project.github.io/DocPortal.html

https://e4s-project.github.io/DocPortal.html

23

E4S: Better quality, documentation, testing, integration, delivery, building & use

Community Policies
Commitment to software quality

DocPortal
Single portal to all E4S product info

Portfolio testing
Especially leadership platforms

Curated collection
The end of dependency hell

Quarterly releases
Release 1.2 – November

Build caches
10X build time improvement

Turnkey stack
A new user experience https://e4s.io Community & LSSw

US agencies, industry, international

Delivering HPC software to facilities, vendors, agencies, industry, international partners in a brand-new way

https://e4s.io/

Growing and Sustaining
the Software Community

25

IDEAS-ECP team works with the ECP community to improve
developer productivity and software sustainability as key aspects of
increasing overall scientific productivity. https://ideas-productivity.org

Customize and curate
methodologies
● Target scientific software

productivity and sustainability
● Use workflow for best practices

content development

Incrementally and iteratively
improve software practices
● Determine high-priority topics for

improvement and track progress
● Productivity and Sustainability

Improvement Planning (PSIP)

Establish software communities
● Determine community policies to improve

software quality and compatibility
● Create Software Development Kits (SDKs)

to facilitate the combined use of
complementary libraries and tools

Engage in community outreach
● Broad community partnerships
● Collaboration with computing facilities
● Webinars, tutorials, events
● WhatIs and HowTo docs
● Better Scientific Software site (https://bssw.io)

1

2

3

4

https://bssw.io/

26

BSSw Fellowship: Meet the Fellows https://bssw.io/fellowship

2022 Fellows applications open: https://bssw.io/blog_posts/applications-open-for-the-2022-bssw-fellowship-program

https://bssw.io/blog_posts/applications-open-for-the-2022-bssw-fellowship-program

27

Advancing Scientific Productivity through Better
Scientific Software:
Developer Productivity & Software Sustainability Report

https://exascaleproject.org/better-scientific-productivity-through-better-scientific-software-the-ideas-report

Disruptive changes in computer architectures and the
complexities of tackling new frontiers in extreme-scale
modeling, simulation, and analysis present daunting
challenges to software productivity and sustainability.

This report explains the IDEAS approach, outcomes,
and impact of work (in partnership with the ECP and
broader computational science community).

Target readers are all those who care about the quality
and integrity of scientific discoveries based on
simulation and analysis. While the difficulties of
extreme-scale computing intensify software challenges,
issues are relevant across all computing scales, given
universal increases in complexity and the need to
ensure the trustworthiness of computational results.

https://exascaleproject.org/better-scientific-productivity-through-better-scientific-software-the-ideas-report

Preparing for
Sustainable Software
Efforts after ECP:
Leadership Scientific
Software (LSSw.io)

29

Background

• US Department of Energy (DOE) Exascale Computing Project (ECP)
– Developing enabling technologies for upcoming exascale computers

• ECP Software Technology (ST) focus area:
– Uses a macro-engineering software lifecycle to

• Plan, execute, track, and assess product development toward the
• Delivery of a curated portfolio of reusable, open-source software products

called
• The Extreme-scale Scientific Software Stack or E4S (https://e4s.io)

• During the final years of ECP, one key objective is to:
– Transition our efforts to a sustainable organization and model for

• Continued development and delivery of future capabilities, including
– Incorporation of new scientific software domains, and

• Expansion of the contributor and user communities

• LSSw is key component toward sustainability

https://exascaleproject.org/
https://e4s.io/

30

LSSw Mission

• LSSw is dedicated to
– Building community and understanding around the

• Development and sustainable delivery of
– Leadership scientific software

• Development
– Portfolio-driven approach
– Co-design with hardware, system software, applications

• Sustainable
– Organizational stability
– Emphasis on quality
– Broad accessibility

31

Leadership Scientific Software (defn)

• Libraries, tools and environments that
– Contribute to scientific discovery and insight in

• New and emerging computing environments

• Are end-user applications within scope?
– Yes, as stakeholders in the effort
– Goal is to provide

• High-priority functionality not available elsewhere
• Portable performance on leading edge and emerging platforms
• A sustainable turnkey software ecosystem

32

Leadership Scientific Software (defn)

• Push the boundary of feasibility
– Enabling

• Larger scale, higher fidelity and greater integration of
– Advanced computing ecosystems

• Does “leadership” limit the scope of discussion?
– Yes, we are directly focused on non-commodity environments, but:

• Still use laptops, desktops, CPU clusters as part of our development efforts
• Many of our tools and libraries need to be available everywhere
• Non-commodity focus does not mean we work only on non-commodity systems

• Focus is on efforts that include co-design of
– Computing platforms: Modeling & simulation, AI/ML, edge: at scale
– System software: Collaborative co-design with vendors
– Science-specific tools and libraries: What we are developing for users

33

ECP Efforts

• ECP is a notable project:
– Stable, sustained funding of a national project with clear goals
– Infrastructure to innovate and establish new collaborative work

• ECP enables tremendous opportunities to:
– Create a new generation of scientific software
– Provide a curated portfolio of reusable software products for apps
– Qualitatively change how we plan, develop and deliver leadership SW

Join the conversation

• https://lssw.io: Main portal for the LSSw community
• LSSw Town Hall Meetings:

• 3rd Thursday each month, 3 – 4:30 pm Eastern US time

• Slack: Share your ideas interactively
• White Papers: Written content for LSSw conversations

• We need your ideas
• 2 – 4 page white paper
• Submit via GitHub PR or attachment to contribute@lssw.io

• References:
• Help us build a reading list
• Submit via GitHub PR or email to contribute@lssw.io

https://lssw.io/

35

Summary & Next Steps
• Scientific software capabilities and complexity are increasing

• Computing systems are becoming more diverse

• A portfolio approach to planning and delivering is attractive

• ECP provides a working example to address complexity:
– ECP ST lifecycle enables coordinated planning, executing, tracking and assessing
– E4S and SDKs provide a scalable software architecture and portfolio for “turnkey” software stack
– The IDEAS project and BSSw provide community building for scientific software developers
– Goal: Better, faster and cheaper

• We believe the next steps require broad community engagement:
– What are other fundamental requirements for improving leadership scientific software?
– How can we collaborate as a broad community in development and use?
– Are there other working software ecosystems we should learn from?
– What topics are missing from the conversation?

• We need your engagement in this effort!

36

Thank you
This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Thank you to all collaborators in the ECP and broader computational science communities. The
work discussed in this presentation represents creative contributions of many people who are
passionately working toward next-generation computational science.

https://www.exascaleproject.org

https://www.exascaleproject.org/

	ECP Software Technology Overview
	ECP Organizational Sketch
	ECP Software Technology (ST) is one of three focus areas
	ECP ST has six technical areas
	ECP Software Technology Leadership Team
	ST L4 Teams��- WBS�- Name�- PIs�- PCs - Project � Coordinators
	We work on products applications need now and into the future
	One example: SLATE port to AMD and Intel platforms
	E4S Planning, Executing, Delivering
	ECP ST Planning Process: Hierarchical, three-phase, cyclical
	KPP-3: Focus on capability integration
	ECP ST Lifecycle summary
	The Extreme-Scale Scientific Software Stack (E4S) and Software Development Kits (SDKs)
	Extreme-scale Scientific Software Stack (E4S)
	xSDK: Primary delivery mechanism for ECP math libraries’ continual advancements toward predictive science
	Delivering an open, hierarchical software ecosystem�More than a collection of individual products
	E4S Community Policies
	E4S Community Policies V1.0 Released
	E4S Community Policies Version 1�A Commitment to Quality Improvement
	E4S DocPortal
	E4S DocPortal
	Goal: All E4S product documentation accessible from single portal on E4S.io (working mock webpage below)
	E4S: Better quality, documentation, testing, integration, delivery, building & use�
	Growing and Sustaining the Software Community
	IDEAS-ECP team works with the ECP community to improve developer productivity and software sustainability as key aspects of increasing overall scientific productivity. �
	BSSw Fellowship: Meet the Fellows
	Advancing Scientific Productivity through Better Scientific Software: �Developer Productivity & Software Sustainability Report��
	Preparing for Sustainable Software Efforts after ECP: �Leadership Scientific Software (LSSw.io)
	Background
	LSSw Mission
	Leadership Scientific Software (defn)
	Leadership Scientific Software (defn)
	ECP Efforts
	Join the conversation
	Summary & Next Steps
	Thank you

