
Approved for public release

Facility Testing of E4S via E4S Testsuite,
Spack Test, and buildtest

Shahzeb Siddiqui (Lawrence Berkeley National Laboratory)

Sep 14th 2021

ECP Event: https://www.exascaleproject.org/event/buildtest-21-09/
https://buildtest.readthedocs.io/

http://hpcbuildtest.slack.com/

https://github.com/buildtesters/buildtest

https://www.exascaleproject.org/event/buildtest-21-09/
https://buildtest.readthedocs.io/
http://hpcbuildtest.slack.com/
https://github.com/buildtesters/buildtest

2

About Me

• I am an HPC Consultant at NERSC in the User Engagement Group that is responsible for user support including support
tickets, user documentation, training, and managing software stack for NERSC.

• I am the L4 for Software Integration Group (WBS: 2.4.4.01) in the ECP Project. In this group we are responsible for deploying
the Extreme Scale Scientific Software Stack (E4S) at the DOE Facilities (NERSC, OLCF, ALCF)

• Previously held multiple roles throughout my career including Dassault Systems, Pfizer, Penn State, IBM, NASA, and Northrop
Grumman

• Creator of buildtest: HPC Testing Framework

• Certified Red Hat Certified System Administrator (RHCSA): 200-019-677

• Masters in Computer Science from KAUST

https://github.com/shahzebsiddiqui/

https://www.linkedin.com/in/shahzebmsiddiqui/

https://buildtest.readthedocs.io/en/devel/index.html
https://rhtapps.redhat.com/verify?certId=200-019-677
https://github.com/shahzebsiddiqui/
https://www.linkedin.com/in/shahzebmsiddiqui/

3

E4S

• Extreme-scale Scientific Software Stack (E4S) is a curated set of software
packages for developing and running scientific application on HPC platforms.

• E4S is a subset of Spack Packages

• E4S is deployed as spack manifest, containers, and buildcache.

• Contains up to 80+ software products including: compilers, data and viz tools,
I/O tools, profilers, xSDK and may more

https://e4s-project.github.io/

4

E4S: Extreme-scale Scientific Software Stack
• Curated, Spack based software distribution
• Spack binary build caches for bare-metal installs

– x86_64, ppc64le (IBM Power 9), and aarch64 (ARM64)
• Container images on DockerHub and E4S website of pre-built binaries of ECP ST products
• Base images and full featured containers (with GPU support)
• GitHub recipes for creating custom images from base images
• GitLab integration for building E4S images
• E4S validation test suite on GitHub
• E4S-cl container launcher tool for MPI substitution in applications using MPICH ABI
• E4S VirtualBox image with support for container runtimes

• Docker
• Singularity
• Shifter
• Charliecloud

• AWS and GCP images to deploy E4S
https://e4s.io https://e4s.io/talks/E4S_IAW21.pptx (Slide 41)

https://e4s.io/talks/E4S_IAW21.pptx

5

Extreme-scale Scientific Software Stack (E4S)
• E4S: HPC Software Ecosystem – a curated software portfolio

• A Spack-based distribution of software tested for interoperability
and portability to multiple architectures

• Available from source, containers, cloud, binary caches
• Leverages and enhances SDK interoperability thrust

• Not a commercial product – an open resource for all

• Oct 2018: E4S 0.1 - 24 full, 24 partial release products

• Jan 2019: E4S 0.2 - 37 full, 10 partial release products

• Nov 2019: E4S 1.0 - 50 full, 5 partial release products

• Feb 2020: E4S 1.1 - 61 full release products

• Nov 2020: E4S 1.2 (aka, 20.10) - 67 full release products

• Feb 2021: E4S 21.02 - 67 full release, 4 partial release

• May 2021: E4S 21.05 - 76 full release products

https://e4s.io

Lead: Sameer Shende
(U Oregon)

Also include other products .e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEMhttps://e4s.io/talks/E4S_IAW21.pptx (Slide 44)

https://e4s.io/
https://e4s.io/talks/E4S_IAW21.pptx

6

E4S Facility Deployment Dashboard

7

E4S Test Suite

• The E4S Test Suite is a collection of tests to validate E4S stack and increase test coverage for deployed stack.

• The main script test-all.sh can be run as standalone program which will test everything or you can specify an argument to a
directory of tests to run.

https://github.com/E4S-Project/testsuite

8

E4S Testsuite on Cori

9

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
"""GNU libsigsegv is a library for handling page faults in user mode."""

... spack package contents ...

extra_install_tests = ‘tests/.libs’

def test(self):
data_dir = self.test_suite.current_test_data_dir
smoke_test_c = data_dir.join(‘smoke_test.c’)

self.run_test(
'cc’, [

'-I%s' % self.prefix.include,
'-L%s' % self.prefix.lib, '-lsigsegv’,
smoke_test_c,
'-o', 'smoke_test'

]
purpose='check linking’)

self.run_test(
‘smoke_test’, [], data_dir.join('smoke_test.out’),
purpose=‘run built smoke test’)

self.run_test('sigsegv1': ['Test passed’], purpose='check sigsegv1 output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

spack test: write tests directly in Spack packages,
so that they can evolve with the software

Tests are part of a regular Spack recipe class

Easily save source code from the package

User just defines a test() method

Retrieve saved source.
Link a simple executable.

Spack ensures that cc is a compatible compiler

Run the built smoke test and verify output

Run programs installed with package

10

Spack Test Command Line Overview
Command Description
spack test list List tests for installed packages
spack test list --all List all tests for all spack packages
spack test run Run test for all installed specs in environment or installed packages
spack test run hdf5 Run test for spack package hdf5
spack test run --alias hdf5 hdf5@1.10.7 Run test for hdf5@1.10.7 and assign alias for suite name hdf5
spack test results Show results for all test suites

spack test results – hdf5@1.10.7 Show test results for spec hdf5@1.10.7

spack test results <suite-name> Show test results for suite name
spack test remove -y Remove all test results and assume ‘yes’ for each confirmation

11

Running Tests via spack test run

Test Suite name

12

Retrieve Test Results via spack test results

13

Facility Testing Use Case

• We need comprehensive system and software level testing

• We need to test facility deployment of e4s stacks that are usually tied to fix version of spack.

• Test system layer – configuration, filesystem, job scheduler, drivers, modules

• Run benchmark

• Negative tests to address known bugs in system

• User provided tests as part of User Support Tickets

14

What is buildtest

• Buildtest is a testing framework that builds and
execute tests on your HPC systems

• Buildtest is intended for HPC staff, developers to
build a Facility Testsuite for their HPC systems

• Tests are written in YAML called buildspecs which
buildtest process to generate shell scripts.

• Buildspecs are validated with JSON schema.
• Support test execution on local machine or via

batch schedulers. Currently we support Slurm, LSF,
PBS and Cobalt.

• The framework is implemented in python
• Available on GitHub at

https://github.com/buildtesters/buildtest

Installation

https://github.com/buildtesters/buildtest

15

Project Summary

• Total of 37 releases

• Added spack support in v0.10.0

• Added support for Slurm and LSF in v0.8.0, Cobalt in v0.9.1 and PBS in v0.9.5

• Initially a bash program which was converted to python 2 and eventually migrated to python 3.

• Release updates are documented in CHANGELOG.rst

• Distributed as MIT License

• Documentation is built using sphinx and hosted via readthedocs platform

https://github.com/buildtesters/buildtest/blob/devel/CHANGELOG.rst
https://www.sphinx-doc.org/en/master/
https://docs.readthedocs.io/en/stable/

16

Design Goals

• Perform component level testing for system and software stack

• Provide a standard template for writing tests

• Abstract low-level system configuration

• Framework should automate build and execution of test

• Framework must support local and batch submission test

17

Schemas

• The schema development is implemented independent to buildtest. The schemas and docs
are hosted at https://buildtesters.github.io/buildtest/

• We run regression test against example YAML files for each schema to ensure schemas are
written in accordance to desired YAML construct.

• We automate JSON Schema documentation using adobe/jsonschema2md into Markdown
pages and publish schema and documentation to GitHub pages

• Schemas are versioned to allow development to schemas and its YAML structure.

https://buildtesters.github.io/buildtest/
https://github.com/adobe/jsonschema2md

18

Preview of buildtest

19

General Pipeline

o Discover: Find buildspecs based on search criteria (file, directory, tags,
executor)

o Parse: Validates buildspec with JSON Schema
o Build: Generates testscript from YAML
o Run: Executes tests via local or batch executor and retrieve return code

and output/error file.
o Update Report: Update report file with test results including any metadata

20

Parse: Buildspec Validation Process

• Every buildspec is validated by global schema and a subschema defined by type field.
• Buildtest will skip any buildspecs that fails validation.

Demo – Buildtest Tutorial

22

Buildspec Script Schema

Name of Test

Schema Type

Description of Test

Name of Executor

Tag Name

Script

Declaration of tests
Schema Version

23

Status Check – Regular Expression

• Buildtest supports status check of test based on regular expression, returncode and runtime. This
can be configured via status property

24

Status Check – Return Code

• The return code field can be used to customize how test is passed, by default a return code 0
is a PASS. The return code can be a single number or a list of return codes to match.

25

Status Check - Runtime

• Buildtest can determine PASS/FAIL based on test
runtime. This can be specified using runtime
property with options for specifying min or max or
both if one wants to set a range.

26

Multi Executors

• Every test must be assigned to an executor that is responsible for
running test. This is specified via executor property however one
can specify a regular expression to run across multiple executors.

• The executors property can be used to define configuration based
on executor that are specific to each test run.

• The vars and env are used for declaring variables and environment
variables which expects a list of Key/Value pair

• Executors are defined in your configuration file which can be
retrieved via buildtest config executors

• In this example we run a single test with executor generic.local.sh
and generic.local.bash

27

Buildspec Compiler Schema

• The compiler schema is used for compiling single source code with
compilers

• You must use type: compiler to define tests using this schema
• This test will be built with all gcc compilers
• Compilers are defined in buildtest configuration, one can retrieve compilers

using buildtest config compilers

Source File

Compiler Schema

Start of Compiler Block
Select Compilers based on Regular Expression

Default Section for compilers organized by compiler groups
Default Section for gcc compilers

Set cflags
Set ldflags

28

Override Compiler Default

• Compiler defaults can be overridden in config section which expects compiler names defined in buildtest
setting.

• Buildtest will ignore compiler in config if it’s not picked up in regular expression.

Compiler Names

29

Scheduler Support

Slurm

Cobalt

LSF

PBS

30

Max Pend Time and Poll Interval

• Buildtest will poll batch jobs at set interval to get updated job state for all jobs in queue, once job is
complete buildtest will gather job results and metadata of job.

• The pollinterval property configures number of seconds to sleep until we poll jobs for updated job
state. This value can be overridden on command line via buildtest build –poll-interval

• Buildtest will cancel pending or suspended jobs after pending time exceeds max_pend_time. This
value can be overridden via buildtest build –max-pend-time

Demo – Buildspecs Tutorial

32

Filter and Format buildspec cache

• We can filter and format buildspec
cache using –filter and –format option.

• The filter option expects a list of
key=value pair separated by comma.

• To see list of all filter and format fields
we can use –helpfilter and –helpformat
option

Multi key filter is
evaluated as logical
AND.

33

Show content of buildspec

• The buildtest buildspec show command can show content of buildspec based on a given test
name. In this example we show content of test python_hello

34

Validate Buildspecs

• The buildtest buildspec validate can be used to validate buildspecs with JSON schema and
command options mimic similar to buildtest build

35

Show all invalid buildspecs

• Buildtest will keep record of all invalid buildspecs in the cache upon running buildtest buildspec find,
you can retrieve a list of all invalid buildspecs via buildtest buildspec find invalid command.

• The -e option will print all error messages for every invalid buildspecs

• If you want to load all buildspecs in cache and fix invalid buildspecs then buildtest buildspec find
invalid would be appropriate, however if you want to validate any buildspec without loading in cache
you can use buildtest buildspec validate

Can’t have duplicate tag names for tags property

Invalid value for type field

36

Report Summary

37

Query Test Reports with Filter and Format Examples

• We provide access to test reports through CLI. The
reports are stored in JSON file for post-processing.

• The buildtest report will display all test results which
can be queried with filter and format options.

• The –filter option are passed as key=value pair
• Multiple filter arguments can be delimited by comma

separator and buildtest will treat multiple filter argument
as a logical AND operation

• The –format option alter the columns in the report
tables.

38

Format And Filter fields for buildtest report

• The buildtest report command provides a description of format and filter fields using –helpformat
and –helpfilter

• These fields are lookup keys found in report file, we only expose a subset of these fields suitable for
printing purposes

39

Inspect a Test
• Buildtest stores all test results in JSON file ($BUILDTEST_ROOT/var/report.json) for retrieval

• The buildtest inspect command can retrieve test records from this file.

• We can retrieve all test names and corresponding test IDs using buildtest inspect list

• The buildtest inspect name can retrieve test records based on test names including all previous runs

• You can pass multiple test names to buildtest inspect name command to query multiple records

40

Inspect a Test Record

41

buildtest inspect query

• The buildtest inspect query command can be used to query individual test records.

• By default, it will retrieve the latest run for given test, however one can use –d option to retrieve all
records or first or last record

42

buildtest inspect query

Demo – Buildspec Interface &
Query Test Report

44

Get Path to tests

• The buildtest path command can retrieve path to test given a test name. If no options are specified
we retrieve the root where test is available.

• You can specify a test ID by specifying name followed by backslash (/) and name of test ID if its not
specified buildtest will fetch the latest run.

45

Query Previous Builds
• The buildtest history query command can be used to query previous builds based on build

identifier. Every buildtest build command will be stored as a new build identifier

Build Details

Discovered Buildspecs

Test Summary

Builder Details

46

Spack support in buildtest

• Spack support was added recently in buildtest v0.10.0 to write buildspecs using the spack schema.

• Current support includes
– Installing specs
– Managing environments (create, activate, remove)
– spack test support
– Specify scheduler options.

• For more details on spack support see https://buildtest.readthedocs.io/en/devel/buildspecs/spack.html

Use Spack schema

Root of spack

List of specs to install

https://buildtest.readthedocs.io/en/devel/buildspecs/spack.html

47

Activate Spack environment

• The env property is used for managing spack
environment and maps to spack env command

• The activate property maps to spack env
activate used for activating named environment

• concretize is a boolean type that will determine if
spack concretize –f will be injecting in the test.

List of specs to add in environment

Activate spack environment

Spack conretize

48

Create spack environment

• The create is a property under env that
is used for creating spack environment.

• User is responsible for activate spack
environment upon creation.

• The install property maps to spack
install and one can pass options via
option property

Create spack environment

Pass options to spack install

Find spack compilers

49

Creating spack environment via spack.yaml

• We can create spack environment based on spack.yaml which can be specified via manifest
property which expects path to spack.yaml file.

50

Remove spack environment
• Buildtest provides two methods for removing spack

environment, one is via rm property which gives user
control over how to remove spack environment. The
alternative is let buildtest automatically remove
environment which can be specified via
remove_environment which expects a boolean.

• The remove_environment is a property under create
while rm is property under env which maps to spack
env rm.

• The remove_environment will remove environment
based on name property

51

Running test via spack test
• The test property maps to spack test command and run

expects a list of specs to run that is defined via specs.

• Buildtest will write one line per spack test run and create
an alias for each spec so one can retrieve the result via
suite name

• pre_cmds are list of commands run before sourcing spack

• post_cmds are list of commands run after spack
List of specs to for spack test run

Get test results via spack test results

52

Cori Testsuite

53

Cori Testsuite
• The Cori Testsuite (https://github.com/buildtesters/buildtest-cori) is buildtest tests that run for Cori

and Perlmutter system.

• There is a GitHub-GitLab CI/CD workflow to trigger pipeline at NERSC GitLab server:
https://software.nersc.gov

• Test results are pushed to CDASH at https://my.cdash.org/index.php?project=buildtest-cori

• Test are run with a single user name e4s

https://github.com/buildtesters/buildtest-cori
https://software.nersc.gov/
https://my.cdash.org/index.php?project=buildtest-cori

54

Scheduled Pipelines • We have a mirror setup at
https://software.nersc.gov/siddiq90/buildtest-cori

• Currently, we have two scheduled pipelines for daily
system check and E4S tests

DAILYCHECK=TRUE

https://software.nersc.gov/siddiq90/buildtest-cori

55

Gitlab Job Output

56

CDASH Results
• We push test results to public CDASH server: https://my.cdash.org/index.php?project=buildtest-cori

for both scheduled pipelines.

• The build names correspond to GitLab job

• The buildtest cdash upload command can push results to CDASH given a report file. The report file
can be passed via –r option

https://my.cdash.org/index.php?project=buildtest-cori

57

CDASH Results

58

E4S Tests on Cori

59

Cori E4S Testing Strategy

• We are testing the facility deployed e4s stacks (e4s/21.05,
e4s/21.02, e4s/20.10). Typically one has to load one of the e4s
modules module load e4s/21.05 and run module load or spack
load to load the software before running the test.

• Please see https://docs.nersc.gov/applications/e4s/ for more
details regarding our facility deployment of e4s

• We leverage spack test and E4S testsuite to test the e4s stack
and sometimes we develop tests that are site specific.

• E4S tests are available at https://github.com/buildtesters/buildtest-
cori/tree/devel/buildspecs/e4s

• We run all e4s tests using the e4s tags: buildtest build –tags e4s

https://docs.nersc.gov/applications/e4s/
https://github.com/E4S-Project/testsuite
https://github.com/buildtesters/buildtest-cori/tree/devel/buildspecs/e4s

60

Spack Test Example - Gasnet

https://my.cdash.org/test/40848138

https://my.cdash.org/test/40848138

61

OpenPMD Test

https://my.cdash.org/test/40848126

https://my.cdash.org/test/40848126

62

UPC Test

https://my.cdash.org/test/40848145

https://my.cdash.org/test/40848145

63

E4S Testsuite Example – ADIOS2

https://my.cdash.org/test/40848140

https://my.cdash.org/test/40848140

64

Current Issues

• superlu@5.2.1 (https://github.com/buildtesters/buildtest-cori/issues/70) – Permission Error writing
make.inc file in install directory

• hypre@2.20 (https://github.com/buildtesters/buildtest-cori/issues/69) – Can’t find mpicc

• raja@0.13.0 (https://github.com/buildtesters/buildtest-cori/issues/68 and
https://github.com/spack/spack/issues/25047) – Unable to find shared library libRAJA.so

https://github.com/buildtesters/buildtest-cori/issues/70
https://github.com/buildtesters/buildtest-cori/issues/69
https://github.com/buildtesters/buildtest-cori/issues/68
https://github.com/spack/spack/issues/25047

65

Available E4S Tests in buildtest Cori

66

Closing Remarks

• The facility deployment of E4S impacts how tests are written. We need a spack instance for deployment in order to test the user-facing
environment. At Cori we can load e4s via module load e4s which activate a spack environment pre-installed with e4s packages

• spack test and E4S Testsuite requires a spack instance to run tests which is focused on testing spack stack whereas buildtest is focused on
writing facility tests

• Issues with spack test at Facility will be addressed in future spack release, though facility deployment will be fixed to version. In those case we
need to develop tests at facility when appropriate or periodically rebuild software with new version

• Buildtest leverages spack test or E4S Testsuite to run the E4S tests targeting our e4s deployment at NERSC, when test fails we would write a
facility flavored test.

• Tests may require need for batch submission for different schedulers and buildtest can support job submission for Slurm, LSF, PBS and Cobalt.

• Test needs to be run on recurrent basis and automation can be done through the use of Gitlab. Finally test results needs to be published
somewhere to analyze results.

• There are different ways to pass test including: return code, regular expression, runtime. Every test would need some criteria for success or
failure

• We need a human to analyze test result and report issues for facility tests. We need help from Developers to help contribute test and analyze
test results for facility results.

67

References

• Buildtest Docs: https://buildtest.readthedocs.io/en/latest/index.html

• Schema Docs: https://buildtesters.github.io/buildtest/

• Installing buildtest: https://buildtest.readthedocs.io/en/latest/installing_buildtest.html

• Getting Started: https://buildtest.readthedocs.io/en/latest/getting_started.html

• References: https://buildtest.readthedocs.io/en/latest/references.html

• Slack: http://hpcbuildtest.slack.com/

• API: https://buildtest.readthedocs.io/en/latest/api/index.html

• Spack: https://spack.readthedocs.io/en/latest/

• E4S Testsuite: https://github.com/E4S-Project/testsuite

https://buildtest.readthedocs.io/en/latest/index.html
https://buildtesters.github.io/buildtest/
https://buildtest.readthedocs.io/en/latest/installing_buildtest.html
https://buildtest.readthedocs.io/en/latest/getting_started.html
https://buildtest.readthedocs.io/en/latest/references.html
http://hpcbuildtest.slack.com/
https://buildtest.readthedocs.io/en/latest/api/index.html
https://spack.readthedocs.io/en/latest/
https://github.com/E4S-Project/testsuite

68

Acknowledgement

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system engineering and early testbed platforms,
in support of the nation’s exascale computing imperative.

This research used resources of the National Energy Research Scientific Computing Center (NERSC),
a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National
Laboratory, operated under Contract No. DE-AC02-05CH11231.

