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Verification
• Code verification uses tests 

– It is much more than a collection of tests

• It is the holistic process through which you ensure that 
– Your implementation shows expected behavior,
– Your implementation is consistent with your model,
– Science you are trying to do with the code can be done.

How do verification and validation differ?
• Verification confirms that you have implemented what you meant to

• Your method does what you wanted it to do
• Validation tells you were right in implementing what you meant to

• What you wanted your method to do is valid
• Your model correctly captures the phenomenon you are trying to 

understand
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Stages and types of verification

• During initial code development
– Accuracy and stability 
– Matching the algorithm to the model
– Interoperability of algorithms

• In later stages
– While adding new major capabilities or modifying existing capabilities 
– Ongoing maintenance 
– Preparing for production
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Components of Verification

• Testing at various granularity levels
– Individual components
– Interoperability of components
– Convergence, stability and accuracy

• Validation of individual components
– Building diagnostics (e.g. ensure conservation of physical quantities)

• Testing practices
– Error bars

• Necessary for differentiating between drift and round-off

• Ensuring code and interoperability coverage

Unit Test

Integration 
Test
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Why not always use the most stringent testing?
• Effort spent in devising running and maintaining test suite is a tax on team 

resources
• When the tax is too high…

– Team cannot meet code-use objectives

• When is the tax is too low…
– Necessary oversight not provided
– Defects in code sneak through 

• Evaluate project needs 
– Objectives: expected use of the code
– Team: size and degree of heterogeneity
– Lifecycle stage: new or production or refactoring
– Lifetime: one off or ongoing production
– Complexity: modules and their interactions

Balance is critical
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Good Testing Practices

• Verify Code coverage
• Must have consistent policy on dealing with failed tests

– Issue tracking
• How quickly does it need to be fixed?
• Who is responsible for fixing it?

• Someone should be watching the test suite
• When refactoring or adding new features, run a regression suite before check in

– Add new regression tests or modify existing ones for the new features

• Code review before releasing test suite is useful
– Another person may spot issues you didn’t
– Incredibly cost-effective
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• Expose parts of the code that aren’t being tested
– gcov - standard utility with the GNU compiler 

collection suite (we will use it in the next few slides)
– Compile/link with –coverage & turn off optimization
– counts the number of times each statement is 

executed

• gcov also works for C and Fortran
– Other tools exist for other languages
– JCov for Java
– Coverage.py for python
– Devel::Cover for perl
– profile for MATLAB

Code coverage tools
How do we determine what other tests are needed?

• Lcov
– a graphical front-end for gcov
– available at 

http://ltp.sourceforge.net/coverage
/lcov.php

– Codecov.io in CI module 

• Hosted servers (e.g. coveralls, 
codecov)

• graphical visualization of results
• push results to server through 

continuous integration server

Interoperability coverage Example Later
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• Example of heat equation
– Add -coverage as shown below to 

Makefile
– Run ./heat runame=“ftcs_results”
– Run gcov heat.C
– Examine heat.C.gcov

• A dash indicates non-executable line

• A number indicated the times the line was called

• ##### indicates line wasn’t exercised

Checking coverage Example
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Graphical View of Gcov Output and Tutorials for Code Coverage 

Online tutorial - https://github.com/amklinv/morpheus
Other example - https://github.com/jrdoneal/infrastructure

Overall Analysis

Detailed Analysis

https://github.com/amklinv/morpheus
https://github.com/amklinv/morpheus
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How to build your test suite ?

• Two purposes
– Regression testing 

• May be long running
• Provide comprehensive coverage

– Continuous integration
• Quick diagnosis of error

• A mix of different granularities works well
– Unit tests for isolating component or sub-component level faults 
– Integration tests with simple to complex configuration and system level
– Restart tests

• Rules of thumb
– Simple 
– Enable quick pin-pointing 

Useful resources https://ideas-productivity.org/resources/howtos/

https://ideas-productivity.org/resources/howtos/
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Test Development For a New Code

• Development of tests and diagnostics goes hand-in-hand with 
code development

– Non-trivial to devise good tests, but extremely important
– Compare against simpler analytical or semi-analytical solutions
– Build granularity into testing
– Use scaffolding ideas to build confidence 
– Always inject errors to verify that the test is working

Detailed example in the next presentation
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There may not be existing tests

• Isolate a small area of the code
• Dump a useful state snapshot
• Build a test driver

– Start with only the files in the area
– Link in dependencies

– Copy if any customizations needed

• Read in the state snapshot
• Restart from the saved state
• Verify correctness

– Always inject errors to verify that the test is working

state

driver

Test Development For a Legacy Code
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Summary

• A productive software team is always checking their work.
– Take time to recognize these checks and harden them into “real,” repeatable 

tests.

• Test layout should mirror the logical structure of your code.
– Test each module, being aware of module to module dependencies.

• Different challenges are associated with exploratory, legacy, and 
release codes.
– Adapt your strategy to fit your situation.
– Eventually you will want to be able to verify all components in a code release.

• Don’t get distracted by all the technologies out there – focus on 
exercising your code.
– Scaffolding projects can help with mechanics.



15
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2:30-2:35pm 00 Introduction David E. Bernholdt, ORNL
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