
exascaleproject.org

Software Testing

Patricia Grubel
Los Alamos National Laboratory

Anshu Dubey, Rinku Gupta
Argonne National Laboratory

David M. Rogers
Oak Ridge National Laboratory

Developing a Testing and Continuous Integration Strategy for your Team 
tutorial @ ECP Annual Meeting, April 2021

See slide 2 for 
license details

LA-UR-21-23405



2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Patricia A. Grubel, and James M. Willenbring, 

Developing a Testing and Continuous Integration Strategy for your Team tutorial, in Exascale Computing Project 
Annual Meeting, online, 2021. DOI: 10.6084/m9.figshare.14376956

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial…

Acknowledgements
• Additional contributors include: David E. Bernholdt, Anshu Dubey, Rinku K. Gupta, Mike Heroux, Alicia Klinvex, Mark Miller, Jared O’Neal, 

Katherine Riley, David Rogers, Deborah Stevens, James Willenbring
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR), 

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the 
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department 
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of 
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National 
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S. 
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and 
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for 
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.14376956


3

Verification
• Code verification uses tests 

– It is much more than a collection of tests

• It is the holistic process through which you ensure that 
– Your implementation shows expected behavior,
– Your implementation is consistent with your model,
– Science you are trying to do with the code can be done.

How do verification and validation differ?
• Verification confirms that you have implemented what you meant to

• Your method does what you wanted it to do
• Validation tells you were right in implementing what you meant to

• What you wanted your method to do is valid
• Your model correctly captures the phenomenon you are trying to 

understand



4

Stages and types of verification

• During initial code development
– Accuracy and stability 
– Matching the algorithm to the model
– Interoperability of algorithms

• In later stages
– While adding new major capabilities or modifying existing capabilities 
– Ongoing maintenance 
– Preparing for production



5

Components of Verification

• Testing at various granularity levels
– Individual components
– Interoperability of components
– Convergence, stability and accuracy

• Validation of individual components
– Building diagnostics (e.g. ensure conservation of physical quantities)

• Testing practices
– Error bars

• Necessary for differentiating between drift and round-off

• Ensuring code and interoperability coverage

Unit Test

Integration 
Test



6

Why not always use the most stringent testing?
• Effort spent in devising running and maintaining test suite is a tax on team 

resources
• When the tax is too high…

– Team cannot meet code-use objectives

• When is the tax is too low…
– Necessary oversight not provided
– Defects in code sneak through 

• Evaluate project needs 
– Objectives: expected use of the code
– Team: size and degree of heterogeneity
– Lifecycle stage: new or production or refactoring
– Lifetime: one off or ongoing production
– Complexity: modules and their interactions

Balance is critical



7

Good Testing Practices

• Verify Code coverage
• Must have consistent policy on dealing with failed tests

– Issue tracking
• How quickly does it need to be fixed?
• Who is responsible for fixing it?

• Someone should be watching the test suite
• When refactoring or adding new features, run a regression suite before check in

– Add new regression tests or modify existing ones for the new features

• Code review before releasing test suite is useful
– Another person may spot issues you didn’t
– Incredibly cost-effective



8

• Expose parts of the code that aren’t being tested
– gcov - standard utility with the GNU compiler 

collection suite (we will use it in the next few slides)
– Compile/link with –coverage & turn off optimization
– counts the number of times each statement is 

executed

• gcov also works for C and Fortran
– Other tools exist for other languages
– JCov for Java
– Coverage.py for python
– Devel::Cover for perl
– profile for MATLAB

Code coverage tools
How do we determine what other tests are needed?

• Lcov
– a graphical front-end for gcov
– available at 

http://ltp.sourceforge.net/coverage
/lcov.php

– Codecov.io in CI module 

• Hosted servers (e.g. coveralls, 
codecov)

• graphical visualization of results
• push results to server through 

continuous integration server

Interoperability coverage Example Later



9

• Example of heat equation
– Add -coverage as shown below to 

Makefile
– Run ./heat runame=“ftcs_results”
– Run gcov heat.C
– Examine heat.C.gcov

• A dash indicates non-executable line

• A number indicated the times the line was called

• ##### indicates line wasn’t exercised

Checking coverage Example



10

Graphical View of Gcov Output and Tutorials for Code Coverage 

Online tutorial - https://github.com/amklinv/morpheus
Other example - https://github.com/jrdoneal/infrastructure

Overall Analysis

Detailed Analysis

https://github.com/amklinv/morpheus
https://github.com/amklinv/morpheus


11

How to build your test suite ?

• Two purposes
– Regression testing 

• May be long running
• Provide comprehensive coverage

– Continuous integration
• Quick diagnosis of error

• A mix of different granularities works well
– Unit tests for isolating component or sub-component level faults 
– Integration tests with simple to complex configuration and system level
– Restart tests

• Rules of thumb
– Simple 
– Enable quick pin-pointing 

Useful resources https://ideas-productivity.org/resources/howtos/

https://ideas-productivity.org/resources/howtos/


12

Test Development For a New Code

• Development of tests and diagnostics goes hand-in-hand with 
code development

– Non-trivial to devise good tests, but extremely important
– Compare against simpler analytical or semi-analytical solutions
– Build granularity into testing
– Use scaffolding ideas to build confidence 
– Always inject errors to verify that the test is working

Detailed example in the next presentation



13

There may not be existing tests

• Isolate a small area of the code
• Dump a useful state snapshot
• Build a test driver

– Start with only the files in the area
– Link in dependencies

– Copy if any customizations needed

• Read in the state snapshot
• Restart from the saved state
• Verify correctness

– Always inject errors to verify that the test is working

state

driver

Test Development For a Legacy Code



14

Summary

• A productive software team is always checking their work.
– Take time to recognize these checks and harden them into “real,” repeatable 

tests.

• Test layout should mirror the logical structure of your code.
– Test each module, being aware of module to module dependencies.

• Different challenges are associated with exploratory, legacy, and 
release codes.
– Adapt your strategy to fit your situation.
– Eventually you will want to be able to verify all components in a code release.

• Don’t get distracted by all the technologies out there – focus on 
exercising your code.
– Scaffolding projects can help with mechanics.



15

Agenda
Time (EDT) Module Topic Speaker
2:30-2:35pm 00 Introduction David E. Bernholdt, ORNL

2:35pm-2:40pm 01 Motivation and Overview Patricia A. Grubel, LANL

2:40pm-3:00pm 02 Software Testing 1 Patricia A. Grubel, LANL

3:00pm-3:25pm 03 Software Testing 2 David E. Bernholdt, ORNL

3:25pm-3:55pm 04 Continuous Integration James M. Willenbring, SNL

3:55pm-4:00pm 05 Summary James M. Willenbring, SNL


	Software Testing
	License, Citation and Acknowledgements
	Verification
	Stages and types of verification
	Components of Verification
	Why not always use the most stringent testing?
	Good Testing Practices�
	How do we determine what other tests are needed?
	Checking coverage Example
	Graphical View of Gcov Output and Tutorials for Code Coverage 
	How to build your test suite ?
	Test Development For a New Code
	Slide Number 13
	Summary
	Agenda

