
LLNL-PRES-820872
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory 
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

ZFP: compressed floating-point arrays
ECP Annual Meeting 2021

Peter Lindstrom
March 30, 2021



LLNL-PRES-820872
2

§ Answer #1: A new, efficient number format for small vectors and tensors
— Alternative to IEEE 754/SSE/AVX/tensor core registers, bfloats, posits, flexpoint, …

§ Answer #2: An implementation of multidimensional arrays with user-specifiable 
memory footprint or accuracy
— Alternative to std::vector, Eigen/GSL/Kokkos/NumPy arrays, …

§ Answer #3: A fast, streaming compressor for large floating-point & integer arrays
— Alternative to gzip, bzip2, blosc, fpzip, JPEG, …

What is ZFP?



LLNL-PRES-820872
3

§ ZFP compactly represents small vectors and tensors of real values
— Encodes d-dimensional block of 4d values as variable-length bit string

— Fixed-length code obtained via bit string truncation
• Analogous to float approximation 1/5 = 0.001100110011… ≈ 0.0011
• May incur round-off error
• “Common” blocks have shorter codes ⟹ less or no round-off error

— H/W friendly encoder: integer additions and bitwise operations

— Replaces IEEE 754 as number format for numerical computations
• Usually orders of magnitude more accurate than IEEE 754

ZFP is a compressed number format for multi-dimensional 
floating-point arrays



LLNL-PRES-820872
4

§ ZFP provides C++ classes for multi-dimensional arrays
— Read & write random access at block granularity

• Block decomposition is transparent to user

— User specifies memory footprint or error tolerance

— Conventional API: C++ operator overloading hides complexity of (de)compression
• double a[n] Û std::vector<double> a(n) Û zfp::array<double> a(n, bits_per_value)
• C, experimental NumPy APIs are also available

ZFP multi-dimensional arrays offer in-memory compressed 
storage with high-speed read and write access

20

8



LLNL-PRES-820872
5

ZFP’S C++ compressed arrays can replace STL vectors and
C arrays with minimal code changes

// example using STL vectors

std::vector<double> u(nx * ny, 0.0);
u[x0 + nx*y0] = 1;
for (double t = 0; t < tfinal; t += dt) {

std::vector<double> du(nx * ny, 0.0);
for (int y = 1; y < ny - 1; y++)

for (int x = 1; x < nx - 1; x++) {
double uxx = (u[(x-1)+nx*y] - 2*u[x+nx*y] + u[(x+1)+nx*y]) / dxx;
double uyy = (u[x+nx*(y-1)] - 2*u[x+nx*y] + u[x+nx*(y+1)]) / dyy;
du[x + nx*y] = k * dt * (uxx + uyy);

}
for (int i = 0; i < u.size(); i++)

u[i] += du[i];
}

// example using ZFP arrays

zfp::array2<double> u(nx, ny, bits_per_value);
u(x0, y0) = 1;
for (double t = 0; t < tfinal; t += dt) {

zfp::array2<double> du(nx, ny, bits_per_value);
for (int y = 1; y < ny - 1; y++)

for (int x = 1; x < nx - 1; x++) {
double uxx = (u(x-1, y) - 2*u(x, y) + u(x+1, y)) / dxx;
double uyy = (u(x, y-1) - 2*u(x, y) + u(x, y+1)) / dyy;
du(x, y) = k * dt * (uxx + uyy);

}
for (int i = 0; i < u.size(); i++)

u[i] += du[i];
}

required changes
optional changes for improved readability



LLNL-PRES-820872
6

§ ZFP also supports streaming compression for I/O, communication, storage
— Supports absolute and relative error tolerances and lossless compression

— Serial, OpenMP, CUDA, HIP, and FPGA implementations
• Up to 160 GB/s parallel throughput

— C, C++, Python, Fortran bindings
• 3rd party Julia & Rust bindings available

— I/O & viz support: ADIOS, Conduit, HDF5, Intel IPP, OpenZGY, Silo, TTK, VTK-m, …

§ ZFP has other nice properties
— Supports spatially adaptive compression

— Supports progressive reconstruction (aka. SNR scalability)

— Resilient to data corruption

ZFP supports fast, parallel (de)compression of whole arrays



LLNL-PRES-820872
7

ZFP GPU compression achieves up to 160 GB/s throughput

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16 32

th
ro

ug
hp

ut
 (u

nc
om

pr
es

se
d 

GB
/s

)

rate (compressed bits/value)

ZFP throughput on NVIDIA P100, AMD MI60

CUDA compress CUDA decompress HIP compress HIP decompress



LLNL-PRES-820872
8

ZFP improves accuracy in finite difference computations using 
less storage than IEEE 754 and POSITS

8-bit 12-bit 16-bit 24-bit 32-bit

IE
EE

 7
54

PO
SI

T
ZF

P



LLNL-PRES-820872
9

Contrary to conventional floating-point, finite-difference 
accuracy using ZFP with grid resolution

O(h215/64) compression error

O(h8) truncation error

O(h−1) roundoff error
1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

9.8E-04 2.0E-03 3.9E-03 7.8E-03 1.6E-02 3.1E-02 6.3E-02 1.3E-01

L 2
er

ro
r i

n 
u x

step size h

finite differences over 3D field
32-bit float 28-bit zfp



LLNL-PRES-820872
10

We have developed rigorous error bounds for ZFP, both for 
static data and in iterative methods

truncation error

zfp error bound

observed zfp error

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

0 500 1000 1500 2000 2500 3000

er
ro

r

time step

2D Diffusion

truncation error

observed zfp error

zfp error bound

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

0 100 200 300 400 500 600 700 800 900 1000

er
ro

r

time step

1D Lax-Wendroff

Work by Alyson Fox and James Diffenderfer



LLNL-PRES-820872
11

ZFP variable-rate C++ arrays allocate bits where needed

16 bits/value8 bits/value 32 bits/value 64 bits/value



LLNL-PRES-820872
12

ZFP adaptive arrays improve accuracy in PDE solution over IEEE
by 6 orders of magnitude using less storage



LLNL-PRES-820872
13

ZFP’s variable-rate arrays improve accuracy per bit stored and 
in some applications reduce time to solution
fixed-rate read-write
1.00 bits/value
3.01 hours

variable-rate read-write
0.74 bits/value
2.31 hours

variable-rate read-only
0.68 bits/value
2.29 hours

uncompressed
32.00 bits/value
2.44 hours



Acknowledgment
This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s 
Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, 
including software, applications, and hardware technology, to support the nation’s exascale computing imperative. 

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the 
United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, 
expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or 
Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for 
advertising or product endorsement purposes.


