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§ Answer #1: A new, efficient number format for small vectors and tensors
— Alternative to IEEE 754/SSE/AVX/tensor core registers, bfloats, posits, flexpoint, …

§ Answer #2: An implementation of multidimensional arrays with user-specifiable 
memory footprint or accuracy
— Alternative to std::vector, Eigen/GSL/Kokkos/NumPy arrays, …

§ Answer #3: A fast, streaming compressor for large floating-point & integer arrays
— Alternative to gzip, bzip2, blosc, fpzip, JPEG, …

What is ZFP?
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§ ZFP compactly represents small vectors and tensors of real values
— Encodes d-dimensional block of 4d values as variable-length bit string

— Fixed-length code obtained via bit string truncation
• Analogous to float approximation 1/5 = 0.001100110011… ≈ 0.0011
• May incur round-off error
• “Common” blocks have shorter codes ⟹ less or no round-off error

— H/W friendly encoder: integer additions and bitwise operations

— Replaces IEEE 754 as number format for numerical computations
• Usually orders of magnitude more accurate than IEEE 754

ZFP is a compressed number format for multi-dimensional 
floating-point arrays
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§ ZFP provides C++ classes for multi-dimensional arrays
— Read & write random access at block granularity

• Block decomposition is transparent to user

— User specifies memory footprint or error tolerance

— Conventional API: C++ operator overloading hides complexity of (de)compression
• double a[n] Û std::vector<double> a(n) Û zfp::array<double> a(n, bits_per_value)
• C, experimental NumPy APIs are also available

ZFP multi-dimensional arrays offer in-memory compressed 
storage with high-speed read and write access
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ZFP’S C++ compressed arrays can replace STL vectors and
C arrays with minimal code changes

// example using STL vectors

std::vector<double> u(nx * ny, 0.0);
u[x0 + nx*y0] = 1;
for (double t = 0; t < tfinal; t += dt) {

std::vector<double> du(nx * ny, 0.0);
for (int y = 1; y < ny - 1; y++)

for (int x = 1; x < nx - 1; x++) {
double uxx = (u[(x-1)+nx*y] - 2*u[x+nx*y] + u[(x+1)+nx*y]) / dxx;
double uyy = (u[x+nx*(y-1)] - 2*u[x+nx*y] + u[x+nx*(y+1)]) / dyy;
du[x + nx*y] = k * dt * (uxx + uyy);

}
for (int i = 0; i < u.size(); i++)

u[i] += du[i];
}

// example using ZFP arrays

zfp::array2<double> u(nx, ny, bits_per_value);
u(x0, y0) = 1;
for (double t = 0; t < tfinal; t += dt) {

zfp::array2<double> du(nx, ny, bits_per_value);
for (int y = 1; y < ny - 1; y++)

for (int x = 1; x < nx - 1; x++) {
double uxx = (u(x-1, y) - 2*u(x, y) + u(x+1, y)) / dxx;
double uyy = (u(x, y-1) - 2*u(x, y) + u(x, y+1)) / dyy;
du(x, y) = k * dt * (uxx + uyy);

}
for (int i = 0; i < u.size(); i++)

u[i] += du[i];
}

required changes
optional changes for improved readability
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§ ZFP also supports streaming compression for I/O, communication, storage
— Supports absolute and relative error tolerances and lossless compression

— Serial, OpenMP, CUDA, HIP, and FPGA implementations
• Up to 160 GB/s parallel throughput

— C, C++, Python, Fortran bindings
• 3rd party Julia & Rust bindings available

— I/O & viz support: ADIOS, Conduit, HDF5, Intel IPP, OpenZGY, Silo, TTK, VTK-m, …

§ ZFP has other nice properties
— Supports spatially adaptive compression

— Supports progressive reconstruction (aka. SNR scalability)

— Resilient to data corruption

ZFP supports fast, parallel (de)compression of whole arrays
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ZFP GPU compression achieves up to 160 GB/s throughput
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ZFP improves accuracy in finite difference computations using 
less storage than IEEE 754 and POSITS
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Contrary to conventional floating-point, finite-difference 
accuracy using ZFP with grid resolution

O(h215/64) compression error

O(h8) truncation error

O(h−1) roundoff error
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We have developed rigorous error bounds for ZFP, both for 
static data and in iterative methods
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ZFP variable-rate C++ arrays allocate bits where needed

16 bits/value8 bits/value 32 bits/value 64 bits/value
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ZFP adaptive arrays improve accuracy in PDE solution over IEEE
by 6 orders of magnitude using less storage
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ZFP’s variable-rate arrays improve accuracy per bit stored and 
in some applications reduce time to solution
fixed-rate read-write
1.00 bits/value
3.01 hours

variable-rate read-write
0.74 bits/value
2.31 hours

variable-rate read-only
0.68 bits/value
2.29 hours

uncompressed
32.00 bits/value
2.44 hours
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