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ANL SZ Framework Design Principles
• Error bounded (point-wise, PSNR)

• Multi-stages, Multi-algorithms, Multi-strategies (space, time)

• Prediction based : allowing customization of predictor
• Block based to allow for random access decompression
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Figure 2. Design of error-controlled quantization based on linear scaling
of the error bound.
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Figure 3. Distribution produced by error-bounded uniform quantization
encoder on ATM data sets of (a) relative error bound = 10�3 and (b)
relative error bound = 10�4 with 255 quantization intervals (m = 8).

Huffman coding algorithm in details, but it’s worth to note
that, Huffman coding algorithm implemented in all the
lossless compressors on the market can only deal with the
source byte by byte, which means the total number of the
symbols is up to 256 (28), however, in our case, we don’t
limit m to be no greater than 8, which means, if m is larger
than 8, there are more than 256 quantization codes need
to be compressed using Huffman coding technique. Thus,
in our compression, we implement a high-efficient Huffman
coding algorithm that can handle a source with any number
of quantization codes.

Algorithm 1 in Figure 4 outlines our proposed compres-
sion algorithm. Note that the input data is a d-dimensional
floating-point array of the size n(1)⇥n(2)⇥· · ·⇥n(d), where
n(1) is the size of the lowest dimension and n(d) is the size
of the highest dimension. In our algorithm, we compress the
data from low dimension to high dimension.

B. Adaptive Scheme for Number of Quantization Intervals
In the previous subsection IV-A, our proposed com-

pression algorithm will encode the predictable data with
its corresponding quantization code and then use variable-
length encoding to reduce the data size. While there is still
a question left - how many quantization intervals should we
use?

Figure 4. Proposed lossy compression algorithm using Multi-layer
Prediction Model and AEQVE

Generally, if the data is predictable, we will use a m�bit
code to encode it, otherwise, the data will be stored after
a reduction of binary-representation analysis proposed in
[9]. However, even binary-representation analysis can reduce
the data size to a certain extent, storing the unpredictable
data has much more overhead than the predictable data.
Therefore, we should select a value for the number of
quantization intervals as small as possible but can provide a
sufficient prediction hitting rate. Note that prediction hitting
rate depends on the error bound as shown in Figure 5. If the
error bound is too low, e.g., ebrel = 10�7, the compression
is close to lossless, and it’s hard to achieve a very high
prediction hitting rate. So we only focus our research on a
reasonable range of error bounds, e.g., ebrel � 10�6.

Now we introduce our adaptive scheme for the number
of quantization intervals used in the compression algorithm.
Figure 5 shows the prediction hitting rate with different
relative error bounds using different numbers of quantization
intervals on 2D ATM data sets and 3D Hurricane data sets.
It indicates that the prediction hitting rate will suddenly de-
scend at a certain error bound from over 90% to a relatively
low value, for example, if using 512 quantization intervals,
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● Lorenzo (1-layer non-linear prediction)
● extended Lorenzo (2-layer prediction)
● Linear-regression based prediction
● Tri-cubic interpolation
● pattern-aware prediction
● …...

• Current version: SZ 2.1.11     
(Previous versions: SZ 1.1, SZ 1.4)
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SZ Applications Cosmology 

Climate/Weather

Molecular 
Dynamics

Light 
Source 
X-ray

Quantum 
Chemisty

Deep 
Learning

SZ

Vector FieldsSeismology
Wave Fields

• Integrated into multiple 
scientific applications

• Evaluated/used by 20+ 
institutes/universities.

• 2000+ downloads/year
• Integrated in Spack.
• 40+ papers documenting 

each progress, 
optimization, application

SZ compressor: 
szcompressor.org
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SZ Use-cases

SZ 
Lossy 

Compression

Reducing 
storage footprint

Reducing I/O time
for HPC simulations

Reducing memory
footprint

Reducing
Communication cost

Reducing data stream indensity Eliminating recomputation cost

Publication: 
IJHPCA2017

ECP apps: HACC, NWCHEMeX

ECP apps: HACC, NYX 

ECP apps: EXAFEL

ECP apps: GAMESS

ECP apps: GAMESS
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SZ Software Ecosystem
Repository of reference scientific dataset 
for compression benchmarking

Standard tools to assess compression 
quality

Data compression 
strategies

Simplifying I/O and accelerating 
throughput

The items in blue are developed/focused in our team.



Success story: Cosmology simulation 
ECP HACC
N-body problem with domain decomposition, medium/long-range force solver (particle-mesh 
method), short-range force solver (particle-particle/particle-mesh algorithm).

Preferred error controls:
• Point wise max error (Relative) bound
• Absolute (position), Relative (Velocity)

Particle dataset: 6 x 1D array (x, y, z, vx, vy ,vz)
Very hard to compress

SZ 2.0: CR ~5 
(~6bits/value) at 
10-3 error bound

Halo Mass Distribution

Power Sepctrum
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Success story: Quantum Chemistry
ECP GAMESS
• Two-Electron Integrals in Quantum Chemistry

The goal is to obtain the wavefunction of a 
chemical system by solving the Schrödinger 
equation.

We customized an efficient error-bounded 
compressor for GAMESS two-electron integrals 
dataset and successfully integrated it into 
GAMESS Fortran code

CR: 17 at 10^-11
1.5X end-to-end overall execution performance 
gain is observed.



GPU performance
cuSZ: cuda based SZ , kSZ: kokkos based SZ

Key techniques: dual-quantization/prediction, Huffman on GPU

Compression Performance on GPU: 

- Overall: HACC (A100): 66.7GB/s, NYX (A100): 66.9GB/s, QMCPack (A100): 62.6GB/s

- Fastest Huffman encoding implementation on GPU: 135GB/s~175GB/s on A100.
J. Tian, S. Di, S. Di, K. Zhao, C. Rivera, M. Hickman, R. Underwood, S. Jin, X. Liang, J. Calhoun, D. Tao, and F. Cappello, "cuSZ: An Efficient GPU Based Error-
Bounded Lossy Compression Framework for Scientific Data”, PACT 2020.

J. Tian, C. Rivera, S. Di, J. Chen, X. Liang, F. Cappello, , “Revisiting Huffman Coding: Toward Extreme Performance on Modern GPU Architectures.”, IPDPS 2021.



SZ as a community software
Core-group:
• (Lead) Argonne National 

Laboratory 
Dr. Franck Cappello, Dr. 
Sheng Di, Dr. Ali Murat Gok

• Washington State University 
Dr. Dingwen Tao, Jiannan 
Tian, Cody Rivera, Sian Jin, 
Chengming Zhang

• University of California, 
Riverside
Kai Zhao, Sihuan Li, Jinyang 
Liu

• Clemson Univerity
Dr. Jon Calhoun, Robert 
Underwood

• Missouri University of 
Science and Technology
Dr. Xin Liang

Other Contributors:
Dr. Martin Herbordt, Dr. Qingqing 
Xiong, Dr. Wen Xia, Xiangyu Zou

https://www.anl.gov/profile/franck-cappello
https://www.mcs.anl.gov/~shdi/
https://www.anl.gov/profile/ali-murat-gok
https://www.dingwentao.com/
http://jonccal.people.clemson.edu/
https://www.cs.ucr.edu/~xlian007/
http://people.bu.edu/herbordt/
https://www.linkedin.com/in/qingqing-xiong
https://cswxia.github.io/
http://zouxy.info/about/
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