E\(’C\\P =% VeloC-SZ Project

Franck Cappello: lead PI Kathryn Mohror, co-PI
Argonne Lawrence Livermore
National Laboratory National Laboratory

- VeloC: Very Low Overhead Transparent
Multilevel Checkpoint/Restart

Bogdan Nicolae: ANL

. SZ: Fast, Effective, Parallel Error-bounded
Exascale Lossy Compression for Scientific Data

Sheng Di: ANL

-
\\ I) EXASCALE
) COMPUTING
PROJECT

1 Exascale Computing Project \(

VELOC: Very Low Overhead
Checkpointing System

Bogdan Nicolae, Greg Kosinovsky, Adam Moody, Kathryn
Mohror, Franck Cappello

Argonne National Laboratory
Lawrence Livermore National Laboratory

PPPPPPP

2 Exascale Computing Project \\u

Use Cases of Checkpointing

e Defensive:

- Fault tolerance based on checkpoint-
restart

e Administrative:
- Suspend-resume (e.g. make room for
higher priority jobs)
- Migration
- Debugging

e Productive:

- Share and reuse datasets between
workflow tasks (e.g., simulation +
analytics)

- Reuvisit previous intermediate datasets
(e.g. adjoint computations)

- Provenance tracking

-y \
\ EXASCALE
[r—) COMPUTING

PROJECT

3 Exascale Computing Project \\~

VELOC: Overview

NODE 1
A | Asynchronous .
2 mode 5
VeloC
Backend

A
Veloc Engine

Post- Partner

processing | | Replication
request -

—_ Erasure
4amm———i Coding

Completior} Optimized
notificationi Transfer

Checkpoint
Decision
Making

Local
Checkpoint
and
Recovery

Local 3 Resource-
Recovery aware
Phase 1 optimal

: recovery

Synchronous mode

4 Exascale Computing Project

—_
Web: https://veloc.readthedocs.io — \\ EXASCALE
J— \(\) P COMPUTING

High Performance and Scalability
Hides complexity of interaction
with deep storage stacks
Configurable multi-level resilience:

o L1: Local write

o L2: Partner replication, XOR encoding,
RS encoding

o L3: Optimized transfer to external
storage

Configurable mode of operation:

o Synchronous mode: resilience engine
runs in application process

o Asynchronous mode: resilience engine
in separate backend process (VeloC
does not die if app dies due to
software failures)

Easily extensible:

o Custom modules can be added for
additional post-processing in the
engine (e.g. compression)

PROJECT

(g

Lightweight Memory-Based API

Before:

MPI_Init(&argc, &argv),
// further initialization code
// allocate two critical double arrays of size M
h = (double *) malloc(sizeof(double *) * M * nbLines);
g = (double *) malloc(sizeof(double *) * M * nbLines);
// set the number of iterations to @
i=20;
while (i < n) {
/1 iteratively compute the heat distribution

// increment the number of iterations
ikt

}
MPI_Finalize();

e Critical state: Dynamically protect
and unprotect, checkpoint later - no
need to remember (or have a
pointer to) all required data
structures at checkpoint time

e Convenience: No need to worry
about how to serialize critical data
structures

e Performance: VELOC decides
when and how to serialize

5 Exascale Computing Project

After:

MPI_Init(&argc, &argv),
VELOC_Init(MPI_COMM_WORLD, argv([2]); // (1): init
// further initialization code
// allocate two critical double arrays of size M
h = (double *) malloc(sizeof(double *) * M * nbLines);
g = (double *) malloc(sizeof(double *) * M * nbLines);
// (2): protect
VELOC_Mem_protect(@, &i, 1, sizeof(int));
VELOC_Mem_protect(1l, h, M * nbLines, sizeof(double));
VELOC_Mem_protect(2, g, M * nbLines, sizeof(double));
/1 (3): check for previous checkpoint version
int v = VELOC_Restart_test("heatdis", 0);
/1 (4): restore memory content if previous version found
if (v > 0) {
printf("Previous checkpoint found at iteration %d, initiating r
// v can be any version, independent of what VELOC_Restart_test
assert(VELOC_Restart("heatdis", v) == VELOC_SUCCESS);
} else
i=0;
while (i < n) {
// iteratively compute the heat distribution
// (5): checkpoint every K iterations
if (i % K == 0)
assert(VELOC_Checkpoint("heatdis", i) == VELOC_SUCCESS);
// increment the number of iterations
-+
}
VELOC_Finalize(@); // (6): finalize
MPI_Finalize();

A~
\ EXASCALE
[r—) COMPUTING
\\ PROJECT
o

Apps: ECP ExaSky

Large-scale performance

100000

T
sync m—

. . . - . projection for HACC G =
. _ 10 {/@sync-ram g=Y!
Use casc? Multi-iteration computation checkpointing particles from 128 and 768 node 80TB/s
Integration goals: 2 1000 |]
o . _ _ measurements on 8 TB/s
* Isolate checkpointing code in a single place for easier rpata (Lustre max BW: 210 iow)]
maintenance GB/s) £ w.
e Easy way to switch checkpointing on/off Note*: checkpointing 1 file i
e Modular architecture to share critical data used for per process is
checkpoints with other in-situ plugins (e.g., analytics, embarrassingly parallel in ‘ 128 34 768 2088 409

post-processing, etc.)
Progress since last year:

e New VELOC control plane to minimize dependencies on
external libraries (previously based on Boost, now UNIX
sockets alternative available)

e New deployment model to simplify running HACC with
VELOC (eliminates wrapper scripts and the need to launch
the backend beforehand)

e Refactored VELOC plugin to minimize initialization
overhead (since backend is launched by VELOC at
initialization)

e Demonstrated performance and scalability at full scale on
Summit compared with GIO (optimized blocking I/O
library)

Next steps:

e Integration with object-based storage (DAOS)

e We have a draft paper discussing the root causes (CPU,
Memory, different |/O strategies) of the interferences,
which is the starting

6 Exascale Computing Project

Number of nodes

L1 with VeloC

Summit: 1024 and 4096 nodes (% and full machine size) using
6144 and 24576 GPUs (HACC team provided use cases)

Approach
VeloC L1: Ram

Ckpt overhead
(blocking)

Async interference
(next step slowdown)

GIO: 1024 nodes 11.2s (539 GB/s) N/A

VELOC: 1024 nodes | 0.5s (67 TB/s) 5s — needs interference

mitigation

GIO: 4096 nodes 90s (200GB/s) N/A

VELOC: 4096 nodes | 0.081 (224 TB/s) 6s— needs interference

FOM* run mitigation
f;\\
*FOM: Figure Of Merit = (\)|—J COMPUTING
\\ PROJECT

Apps: ECP LatticeQCD

Use case:

® Checkpoint Gauge Field Vector and RNG at end
of each trajectory
Integration Goal:
® Use VeloC within the CPS (Columbia Physics
System, C++):
e Make it available as a branch of the CPS code
Solution:
® One contiguous memory region holds the
majority of critical data and needs to be
protected, which warrants the use of the
memory-based mode
® Currently ignoring some smaller data
structures, for which original checkpointing
mechanism is used
® Integration performed by CPS team

Next Steps:

e Leverage native serialization support for
complex C++ data structures

e This will enable full checkpointing support with
VELOC

7 Exascale Computing Project

460 T T N
Sync I
440 I VeloC-Async I 7

420
400
380
360

340

Runtime with checkpointing (s)

320
300
280
128/768 256/1536 512/3072
Number of nodes/GPUs

Results:
® Theta: small-scale run on 2, 4, 8 nodes
O Benefits: up to 6x reduction of ckpt overhead
e Summit: large-scale run on 128, 256, 512 nodes

O Benefits: better scalability (2x more nodes => 2x
increase in difference between sync and async)

EXASCALE

[r—) P COMPUTING
\ PROJECT
g

Apps: ECP EXAALT

Use case: Master-worker model .
. el L T Persistent Database
o Resilience: master needs to NES o
- y cache
checkpoint one file
e Checkpoint: 1-10 GB, highly eI S

memory memory

irregular, needs serialization of cache .

complex data structures, tends to “
Worker Worker ‘ Worker Worker

increase with number of workers
MD MD \Y[»} MD

: Engine: Engine: Engine: Engine:

and time

Integration Goal: Quantum [Quantum [l Quantum [l Quantum
.. Engine: Engine: Engine: Engine:
« Seamless transition from custom warre W e B oare W ocaTTe

checkpointing mechanism to VeloC

Manager

Manager

Throughput (MB/s)

1 node
12 | | |

1l i -
ol VELOC-Async ,
9L : VELOC-Sync |
B PFS T
7 _
6 | | |

0 I 2 3 4

Checkpoint size (GB)

Serialization is a significant
bottleneck (low throughput per
node), reduces effectiveness of
async 1/O

14 I T I I I
« Add transparent support for Serialization ()
L. 12 - Deserialization =
asynchronous checkpointing
. . 10 (] Boostis not
. . 4. Q
e Currently relies on existing £ 5
T . . [
serialization mechanisms (Boost) A
« VELOC goal: Improve serialization 2
performance 0

« Switch to memory-based mode

Technique

8 Exascale Computing Project

Comparison of serialization
techniques:

e New modern C++ libraries
have been proposed
recently

e Up to an order of
magnitude improvement

e VELOC has generic
support (mix and match
any libraries as desired)

fob
rs Ur A~
—y
\\ EXRASCALE
Jr— ()P COMPUTING
\\ PROJECT
~

Apps: ECP CANDLE

 CANDLE: Cancer Deep Learning
Framework » »

 Pattern relevant for checkpointing:
o Split up the training data into
subsets, iteratively train on most Stage 1 Stage 2 Stage 3
remaining subsets
o Weight sharing from one subset

to the next (incremental learning) : =1 s
o Multiple variations with common sp R TS ==l
ancestors: need to efficiently ;: ;12 §
replicate a partially trained model =, Ni & N - §
o Allows for investigations into data ~ ++ N 1| N 05 \:
quality and learning patterns 0 - 0 “ h
° Runs at Iarge Scale On the (b) Bf\llr)njlh;e.rof node's‘(256threads?frnode) Nu.mberofnodes.(256threadsp.einode)
cking phase (lower is better). (¢) Runtime overhead (lower is better).

Summit supercomputer
« Solution: Low-overhead | |

checkpointing and cloning of Results: 5x-10x less blocking and runtime

partially trained models overhead, scales well for data-parallel training

More info: J. Wozniak, H. Yoo, J. Mohd-Yusof, B. Nicolae, N. Collier, J. Ozik, T Brettin,

R. Stevens. 2020. High-bypass Learning: Automated Detection of Tumor Cells That

Significantly Impact Drug Response. In MLHPC’20: 6th Workshop on Machine .
Learning in HPC Environments (held in conjunction with SC 2020). -~

\\ ,
EXASCALE
\) I—) COMPUTING

PROJECT

9 Exascale Computing Project \(

Thanks

This research was supported by the
Exascale Computing Project (17-SC-20-SC),
a joint project of the U.S. Department of Energy’s Office

of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem,

including software, applications, and hardware
technology, to support the nation’s exascale computing
imperative.

& 72

V/ "’ ’)'”
— ﬁ“‘/

Office of \/ o8
%) ENERGY |22 NS

mArgonne°

NATIONAL LABORATORY

-_—
\\ EXASCALE
) COMPUTING
PROJECT

https://veloc.readthedocs.io

