
1 Exascale Computing Project

VeloC-SZ Project
Franck Cappello: lead PI Kathryn Mohror, co-PI

Argonne Lawrence Livermore
National Laboratory National Laboratory

• VeloC: Very Low Overhead Transparent
Multilevel Checkpoint/Restart
Bogdan Nicolae: ANL

• SZ: Fast, Effective, Parallel Error-bounded
Exascale Lossy Compression for Scientific Data
Sheng Di: ANL

2 Exascale Computing Project

VELOC: Very Low Overhead
Checkpointing System

Bogdan Nicolae, Greg Kosinovsky, Adam Moody, Kathryn
Mohror, Franck Cappello

Argonne National Laboratory
Lawrence Livermore National Laboratory

3 Exascale Computing Project

● Defensive:
− Fault tolerance based on checkpoint-

restart

● Administrative:
− Suspend-resume (e.g. make room for

higher priority jobs)
− Migration
− Debugging

● Productive:
− Share and reuse datasets between

workflow tasks (e.g., simulation +
analytics)

− Revisit previous intermediate datasets
(e.g. adjoint computations)

− Provenance tracking

Use Cases of Checkpointing

4 Exascale Computing Project

● High Performance and Scalability
● Hides complexity of interaction

with deep storage stacks
● Configurable multi-level resilience:

○ L1: Local write
○ L2: Partner replication, XOR encoding,

RS encoding
○ L3: Optimized transfer to external

storage

● Configurable mode of operation:
○ Synchronous mode: resilience engine

runs in application process
○ Asynchronous mode: resilience engine

in separate backend process (VeloC
does not die if app dies due to
software failures)

● Easily extensible:
○ Custom modules can be added for

additional post-processing in the
engine (e.g. compression)

VELOC: Overview

Web: https://veloc.readthedocs.io

5 Exascale Computing Project

Lightweight Memory-Based API
After:Before:

● Critical state: Dynamically protect
and unprotect, checkpoint later - no
need to remember (or have a
pointer to) all required data
structures at checkpoint time

● Convenience: No need to worry
about how to serialize critical data
structures

● Performance: VELOC decides
when and how to serialize

6 Exascale Computing Project

Use case: Multi-iteration computation checkpointing particles
Integration goals:

● Isolate checkpointing code in a single place for easier
maintenance

● Easy way to switch checkpointing on/off
● Modular architecture to share critical data used for

checkpoints with other in-situ plugins (e.g., analytics,
post-processing, etc.)

Progress since last year:
● New VELOC control plane to minimize dependencies on

external libraries (previously based on Boost, now UNIX
sockets alternative available)

● New deployment model to simplify running HACC with
VELOC (eliminates wrapper scripts and the need to launch
the backend beforehand)

● Refactored VELOC plugin to minimize initialization
overhead (since backend is launched by VELOC at
initialization)

● Demonstrated performance and scalability at full scale on
Summit compared with GIO (optimized blocking I/O
library)

Next steps:
● Integration with object-based storage (DAOS)
● We have a draft paper discussing the root causes (CPU,

Memory, different I/O strategies) of the interferences,
which is the starting

Large-scale performance
projection for HACC

from 128 and 768 node
measurements on

Theta (Lustre max BW: 210
GB/s)

Note*: checkpointing 1 file
per process is

embarrassingly parallel in
L1 with VeloC

1TB/s

80TB/sGB/s

Approach
VeloC L1: Ram

Ckpt overhead
(blocking)

Async interference
(next step slowdown)

GIO: 1024 nodes 11.2s (539 GB/s) N/A

VELOC: 1024 nodes 0.5s (67 TB/s) 5s → needs interference
mitigation

GIO: 4096 nodes 90s (200GB/s) N/A

VELOC: 4096 nodes 0.081 (224 TB/s) 6s→ needs interference
mitigation

Summit: 1024 and 4096 nodes (¼ and full machine size) using
6144 and 24576 GPUs (HACC team provided use cases)

FOM* run

Apps: ECP ExaSky

*FOM: Figure Of Merit

7 Exascale Computing Project

Use case:
● Checkpoint Gauge Field Vector and RNG at end

of each trajectory
Integration Goal:

● Use VeloC within the CPS (Columbia Physics
System, C++):

● Make it available as a branch of the CPS code
Solution:

● One contiguous memory region holds the
majority of critical data and needs to be
protected, which warrants the use of the
memory-based mode

● Currently ignoring some smaller data
structures, for which original checkpointing
mechanism is used

● Integration performed by CPS team
Next Steps:

● Leverage native serialization support for
complex C++ data structures

● This will enable full checkpointing support with
VELOC

Results:
● Theta: small-scale run on 2, 4, 8 nodes

○ Benefits: up to 6x reduction of ckpt overhead
● Summit: large-scale run on 128, 256, 512 nodes

○ Benefits: better scalability (2x more nodes => 2x
increase in difference between sync and async)

Apps: ECP LatticeQCD

8 Exascale Computing Project

Use case: Master-worker model
• Resilience: master needs to

checkpoint one file
• Checkpoint: 1-10 GB, highly

irregular, needs serialization of
complex data structures, tends to
increase with number of workers
and time

Integration Goal:
• Seamless transition from custom

checkpointing mechanism to VeloC
• Add transparent support for

asynchronous checkpointing
Work in progress:
• Currently relies on existing

serialization mechanisms (Boost)
• VELOC goal: Improve serialization

performance
• Switch to memory-based mode

Comparison of serialization
techniques:

• New modern C++ libraries
have been proposed
recently

• Up to an order of
magnitude improvement

• VELOC has generic
support (mix and match
any libraries as desired)

Serialization is a significant
bottleneck (low throughput per
node), reduces effectiveness of
async I/O

PFS

VELOC-Async

VELOC-Sync

1 node

Boost is not
performing well

Apps: ECP EXAALT

9 Exascale Computing Project

• CANDLE: Cancer Deep Learning
Framework

• Pattern relevant for checkpointing:
○ Split up the training data into

subsets, iteratively train on most
remaining subsets

○ Weight sharing from one subset
to the next (incremental learning)

○ Multiple variations with common
ancestors: need to efficiently
replicate a partially trained model

○ Allows for investigations into data
quality and learning patterns

• Runs at large scale on the
Summit supercomputer

• Solution: Low-overhead
checkpointing and cloning of
partially trained models

More info: J. Wozniak, H. Yoo, J. Mohd-Yusof, B. Nicolae, N. Collier, J. Ozik, T Brettin,
R. Stevens. 2020. High-bypass Learning: Automated Detection of Tumor Cells That
Significantly Impact Drug Response. In MLHPC’20: 6th Workshop on Machine
Learning in HPC Environments (held in conjunction with SC 2020).

Apps: ECP CANDLE

Results: 5x-10x less blocking and runtime
overhead, scales well for data-parallel training

10 Exascale Computing Project

Thanks
This research was supported by the
Exascale Computing Project (17-SC-20-SC),
a joint project of the U.S. Department of Energy’s Office
of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem,
including software, applications, and hardware
technology, to support the nation’s exascale computing
imperative.

Web: https://veloc.readthedocs.io

https://veloc.readthedocs.io

