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unifyrs

& Whatis UnifyFs?

Simply put, it’s a file system for
burSt bUfferS int main(int argc, char **argv) {

void checkpoint(void) {

MPI Init(argc, argv); int rank;
Our goal is to make using burst for (t = @; t < TIMESTEPS; t++) { MPI_cComm_rank(MPT_COMM WORLD, &rank);
buffers on exascale systems as easy - do work . * D
as writing to the parallel file system File = “Junifyfe/shared. ckpt’s
: checkpoint();
and orders of magnitude faster } File *fs = fopen(file, “w”);

MPI_Finalize(); if (rank == @)
fwrite(header, ..., fs);
return 8;  The only required
change is to use long offset = header_size +
/unifyfs instead b teine Sy
of /pfs fseek(fs, offset, SEEK SET);
fwrite(state, ..., fs);
fclose(fs);
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. UnifyFS targets local burst buffers because they are fast and scalable
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* UnifyFS (v0.9.1) scaling tests on Summit

* All writes using burst buffer (no file data stored in
memory for these runs) 10000

* Write performance is equal to the cumulative _ ,
. BN UnifyFS write
theoretical throughput of the node-local burst 000 | UnifyFS read
buffer Burst buffer opt.

* Read performance takes advantage of caching
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. UnifyFS makes sharing files on node-local burst buffers easy and fast

* Sharing files on node-local burst buffers is not natively supported

5 § § ®§ 8§ 8§ § ©
Junifyfs

* UnifyFS makes sharing files easy
* UnifyFS presents a shared namespace across distributed storage
* Used directly by applications or indirectly via higher level libraries like VeloC, MPI-10, HDF5, PnetCDF, ADIOS, etc.

* UnifyFS is fast
* Tailored for specific HPC workloads, e.g., checkpoint/restart, visualization output, loose coupling through files
* Each UnifyFS instance exists only within a single job, no contention with other jobs on the system
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. Writing data to the parallel file system is expensive

Compute Nodes

AN ‘ L

Network contention
N\ /

|/O Nodes

Contention from other
clusters for file system

Contention for shared file
system resources

General purpose file
system semantics
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unifyes - UnNifyFS is designed to work completely in user space for a single
. user’s job

# Job Script Integration

unifyfs start -mount=/unifyfs Batch Job Manager
# run applications and tasks...

unifyfs terminate

Dynamic File System for

Each Job

HPC Application
(N-1, N-N Checkpointing, Collective I/O with Scientific 1/O Libraries)

Checkpoint/Restart Lib: Scientific 1/0O Lib: HDF5,
SCR. VeloC MPI-IO. ... Standard POSIX I/O
User level I/O interception Fast data writes to node local storage

. ot et Transfer API to move data to/from
Data visible globally after “lamination :
parallel file system
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. We need you!

Our goal is to provide easy, portable, and fast
support for burst buffers for ECP applications

We need early users
What features are most important to you

Available on github:
https://github.com/LLNL/UnifyFS

MIT license

Documentation and user support
User Guide: http://unifyfs.readthedocs.io
unifyfs@exascaleproject.org

User Guide

« Overview
o High Level Design
« Definitions
o Job
o Run or Job Step
« Assumptions
o Application Behavior
o Consistency Model
o File System Behavior
o System Characteristics
« Build & 1/0 Interception

o UnifyFS Build Configuration Options

o How to Build UnifyFS
o 1/O Interception
« Mounting UnifyFS
o Mounting
o Unmounting
« UnifyFS Configuration
o unifyfs.conf
o Environment Variables
o Command Line Options
« Starting & Stopping in g 1~k

les Locations 100

the Examo

Arst buffers

£ main(int argc, char **argv) {
Init(argc, argv);

= 0; t < TIMESTEPS; t++) {

/* do work ... */

checkpoint();
1
J

MPI_Finalize();

'retur'n 95 The only required
1 change is to use
/unifyfs instead

of /pfs

Read Bandwidth
B Original metadata strategy
Optimized metadata strategy for node local data access

Optimized metadata strategy for process local data access

void checkpoint(void) {
int rank;

MPI_Comm_rank(MPI_COMM WORLD, &rank);

AL file = “/pnls [sharad ¢k

ckpt”;

file = “/unifyfs/shared.
File *fs = fopen(file, “w”);

if (rank == @)
fwrite(header, ..., fs);

long offset = header_size +

rank*state size;
fseek(fs, offset, SEEK SET);
fwrite(state, ..., fs);
fclose(fs);
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