- — =P
ACCE I eratin g a p p | lcation

/O with . un ify FS

ECP Community BOF - DAVS
March 30, 2021

B Lawrence Livermore %OAK RIDGE INNCSA
National Laboratory National Laboratory
LLNL: KATHRYN MOHROR (Pl), ADAM MOODY, CAMERON STANAVIGE, TONY HUTTER
ORNL: SARP ORAL (ORNL-PI), HYOGI SIM, FEIYI WANG, MIKE BRIM, SEUNG-HWAN LIM, JENNA DELOZIER

NCSA: CELSO MENDES, CRAIG STEFFEN

LLNL-PRES-821013

unifyrs

& Whatis UnifyFs?

Simply put, it’s a file system for
burSt bUfferS int main(int argc, char **argv) {

void checkpoint(void) {

MPI Init(argc, argv); int rank;
Our goal is to make using burst for (t = @; t < TIMESTEPS; t++) { MPI_cComm_rank(MPT_COMM WORLD, &rank);
buffers on exascale systems as easy - do work . * D
as writing to the parallel file system File = “Junifyfe/shared. ckpt’s
: checkpoint();
and orders of magnitude faster } File *fs = fopen(file, “w”);

MPI_Finalize(); if (rank == @)
fwrite(header, ..., fs);
return 8; The only required
change is to use long offset = header_size +
/unifyfs instead b teine Sy
of /pfs fseek(fs, offset, SEEK SET);
fwrite(state, ..., fs);
fclose(fs);

1
J

LLNL-PRES-821013 https://github.com/LLNL/UnifyFS

unifyrs

. UnifyFS targets local burst buffers because they are fast and scalable

512

1024

* UnifyFS (v0.9.1) scaling tests on Summit

* All writes using burst buffer (no file data stored in
memory for these runs) 10000

* Write performance is equal to the cumulative _ ,
. BN UnifyFS write
theoretical throughput of the node-local burst 000 | UnifyFS read
buffer Burst buffer opt.

* Read performance takes advantage of caching
100 -
1 J
4 8 16 32 64

Bandwidth (GB/s)

128 256
Number of Proceses

LLNL-PRES-821013 https://github.com/LLNL/UnifyFS

unifyrs

. UnifyFS makes sharing files on node-local burst buffers easy and fast

* Sharing files on node-local burst buffers is not natively supported

5 § § ®§ 8§ 8§ § ©
Junifyfs

* UnifyFS makes sharing files easy
* UnifyFS presents a shared namespace across distributed storage
* Used directly by applications or indirectly via higher level libraries like VeloC, MPI-10, HDF5, PnetCDF, ADIOS, etc.

* UnifyFS is fast
* Tailored for specific HPC workloads, e.g., checkpoint/restart, visualization output, loose coupling through files
* Each UnifyFS instance exists only within a single job, no contention with other jobs on the system

LLNL-PRES-821013 https://github.com/LLNL/UnifyFS

unifyrs

. Writing data to the parallel file system is expensive

Compute Nodes

AN ‘ L

Network contention
N\ /

|/O Nodes

Contention from other
clusters for file system

Contention for shared file
system resources

General purpose file
system semantics

o)

LLNL-PRES-821013 https://github.com/LLNL/UnifyFS

Parallel File System

unifyes - UnNifyFS is designed to work completely in user space for a single
. user’s job

Job Script Integration

unifyfs start -mount=/unifyfs Batch Job Manager
run applications and tasks...

unifyfs terminate

Dynamic File System for

Each Job

HPC Application
(N-1, N-N Checkpointing, Collective I/O with Scientific 1/O Libraries)

Checkpoint/Restart Lib: Scientific 1/0O Lib: HDF5,
SCR. VeloC MPI-IO. ... Standard POSIX I/O
User level I/O interception Fast data writes to node local storage

. ot et Transfer API to move data to/from
Data visible globally after “lamination :
parallel file system

LLNL-PRES-821013 https://github.com/LLNL/UnifyFS

unifyrs

. We need you!

Our goal is to provide easy, portable, and fast
support for burst buffers for ECP applications

We need early users
What features are most important to you

Available on github:
https://github.com/LLNL/UnifyFS

MIT license

Documentation and user support
User Guide: http://unifyfs.readthedocs.io
unifyfs@exascaleproject.org

User Guide

« Overview
o High Level Design
« Definitions
o Job
o Run or Job Step
« Assumptions
o Application Behavior
o Consistency Model
o File System Behavior
o System Characteristics
« Build & 1/0 Interception

o UnifyFS Build Configuration Options

o How to Build UnifyFS
o 1/O Interception
« Mounting UnifyFS
o Mounting
o Unmounting
« UnifyFS Configuration
o unifyfs.conf
o Environment Variables
o Command Line Options
« Starting & Stopping in g 1~k

les Locations 100

the Examo

Arst buffers

£ main(int argc, char **argv) {
Init(argc, argv);

= 0; t < TIMESTEPS; t++) {

/* do work ... */

checkpoint();
1
J

MPI_Finalize();

'retur'n 95 The only required
1 change is to use
/unifyfs instead

of /pfs

Read Bandwidth
B Original metadata strategy
Optimized metadata strategy for node local data access

Optimized metadata strategy for process local data access

void checkpoint(void) {
int rank;

MPI_Comm_rank(MPI_COMM WORLD, &rank);

AL file = “/pnls [sharad ¢k

ckpt”;

file = “/unifyfs/shared.
File *fs = fopen(file, “w”);

if (rank == @)
fwrite(header, ..., fs);

long offset = header_size +

rank*state size;
fseek(fs, offset, SEEK SET);
fwrite(state, ..., fs);
fclose(fs);

LLNL-PRES-821013 https://github.com/LLNL/UnifyFS

https://github.com/LLNL/UnifyFS
http://unifyfs.readthedocs.io/
mailto:ecp-unifycr@exascaleproject.org

H Lawrence Livermore %OAK RIDGE

National Laboratory National Laboratory

KVNCSA

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344.

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor
Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore
National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

—

—
| (\ I) This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s
\\) Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem,
S

including software, applications, and hardware technology, to support the nation’s exascale computing imperative.
EXASCALE COMPUTING PROJECT

