DatalL.ib: e
Data Libraries and Services

COMPUTING
PROSEGH

Pl Rob Ross (ANL)

Co-Pls: Galen Shipman (LANL)
Wei-keng Liao (Northwestern)

Jerome Soumagne (The HDF Group)

March 30, 2021

‘”"" \ U.S. DEPARTMENT OF Office of
7 EN ERGY Science

T VA [=35
U TN~

The DatalLib Team

" Wei-keng Liag

Argonne b
ELCP 2 Los Alamos

DataLib Strategy

User-level storage and I/O for ECP codes on upcoming DOE platforms

Members responsible for some of the most successful storage and I/O
software in the DOE complex.

Our software:
— Darshan. Lightweight |/O characterization for HPC codes
— ROMIO and Parallel netCDF. Standards-based |I/O for HPC
— Mochi. Customized data services for DOE science
— Datalib HDFS5 VOL. Accelerated 1/O for HDF5 users

This talk will briefly introduce each of these tools.

Darshan

Lightweight I/O characterization for
HPC codes

* Darshan is a tool for observing application I/O patterns
on production HPC platforms, typically installed by
facility operators and enabled by default.

 Who uses Darshan?

— Facilities looking to gain greater insight into their users’ I/O
behavior

— Application teams looking to understand I/O bottlenecks

— Performance engineers helping teams maximize 1/O
productivity

e What’s new?

— HDF5, Parallel netCDF, and DAOS modules provide greater
detail on these interfaces

— New python analysis tools help understand results

Operation counts Avg. per-process |/O time
104_
= POSIX 4.0
s MPIHIO Ind.
g == MPI-IO Coll. 3.5 1
4 102 B H5F
E H5D 3.0 1
T T T oy 2.5 | — | App
read write open stat seek sync 2 = HDF5
Q
Access sizes £ 20 e L
104_ N POSIX
m POSIX 1.5 -
s MPI-IO
§) E HDF5 1.0 1
w 1071
I 0.5
— —————— 0.0
SF SRS S
Q - 270N Y AN
vy \9‘{-,\9 V> bs‘“\’o@\p RS

Darshan data provides a view of |/O
behavior at multiple levels. In this MACSio
example we can see that significant time is
spent in HDF5 and MPI-10. If performance
tuning were undertaken, those two layers
would be the initial focus.

E\(C\\)F’ https://www.mcs.anl.qov/research/projects/darshan/

https://www.mcs.anl.gov/research/projects/darshan/

ROMIO and Parallel netCDF
Standards-based I/O for HPC

« ROMIO is an implementation of the I/O part
of the MPI standard, included in MPICH and
many vendor-supplied MPI implementations.

« Parallel netCDF is a portable API and format
for storing and sharing scientific data,
modeled after the netCDF-3 interface.

e Who uses ROMIO and PnetCDF?

— End users and /O library writers employ
ROMIO as a portable I/O interface for “low
level” file system access.

— End users employ PnetCDF as an efficient and
descriptive scientific data format.

e What’s new?

— Numerous performance optimizations for
current and future platforms.

o \
\ EXASCALE
/ COMPUTING
\ PROJECT

Application Data Structures

Double temp

ze[s

%024
Float surface_pressure
512

T
5

12

CFRUECETTS)

netCDF File "checkpoint07.nc"

Variable "temp" {
type = NC_DOUBLE,
dims = {1024, 1024, 26},
start offset = 65536,
attributes = {"Units" = "K"}}

Variable "surface_pressure" {
type = NC_FLOAT,
dims = {512, 512},
start offset = 218103808,
attributes = {"Units" = "Pa"}}

< Data for "temp" >

< Data for "surface_pressure" >

/\/

netCDF header describes
the contents of the file:
typed, multi-dimensional
variables and attributes

on variables or the dataset
itself.

Data for variables is stored
in contiguous blocks,
encoded in a portable binary
format according to the
variable's type.

Libraries such as Parallel netCDF, HDF5, netCDF-4, and
ADIOS provide mechanisms to not only store data but to
describe the structure of that data and to capture

significant provenance.

While these libraries can sometimes exhibit lower
performance than more “bare metal” use of file systems,
we strongly encourage science teams to consider these
libraries as a way to improve their productivity and the

portability of their data.

https://parallel-netcdf.qgithub.io/

https://www.mcs.anl.gov/projects/romio/

https://parallel-netcdf.github.io/
https://www.mcs.anl.gov/projects/romio/

Mochi
Customized data services for DOE
science

* Mochi provides a toolkit for building high-performance
data services for use on HPC platforms, and ECP
computer scientists are using Mochi to build services for

ECP application teams.

 Who uses Mochi?

— Computer scientists use Mochi to develop customized data
services.

— End users benefit from the specialization of these services
in terms of ease of use and performance.

e What’s new?

— The Bedrock component enables easier configuration of
multi-component deployments on single nodes.

- SSG improvements have made group membership more
robust.

Particle
Simulation

#

Analysis of
Experimental Data

Machine Learning
Ensemble

= e

(e.g. VPIC) (e.g. CANDLE) (e.g. art Framework)

small writes &
indexed queries

caching large,
write-once objects

bulk ingest &
iterative access

\ 7 \ 4
NP o , PN S/ !
~ - > \ =
1 e~ yS < I’4 v

Mochi components and microservices

Mochi has been used to develop a number of
services, including ones to store and index
particle data, to manage learning data, and to
provide fast access to high-energy physics
detector data during analysis.

Within ECP, Mochi is also helping enable
Unify, Chimbuko, DataSpaces, and Proactive
Data Containers.

https://www.mcs.anl.gov/research/projects/mochi/

https://www.mcs.anl.gov/research/projects/mochi/

DataLib HDF5 Plug-in
Accelerated I/O for HDF5 users

 HDF5 is a popular choice for storing and
retrieving scientific data. Our plug-in (called a
VOL) will accelerate I/O for many codes.

 Who could use our HDF5 VOL?

— When complete, any HDF5 user could switch to our
VOL with few or no code changes.

— Accelerated HDF5 will open up HDF5 use to teams
who have found performance inadequate in the
past.

e What’s new?

— Initial implementation being performance tuned
using sample ECP use cases.

— Performance tuning has already resulted in rates
competitive with Parallel netCDF!

_—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

E3SM F case high-resolution (ne120) case study performed on
Cori @ NERSC, using Lustre stripe count = 64, stripe size = 8
MiB, running 1024 MPI processes, 32 Haswell nodes

First Latest
_ PnetdF | prototype

File size (GiB) 14.08 91.09 22.32
Effective bandwidth (MiB/s) 745.54 62.39 1074.11
Initialization time (sec) 0.07 0.1 0.21
:ér;feg‘t’ss?ggc‘)"’”te 0.37 10.05 1.74
22; flushing the data 18.9 565 563
2’Si;nce) flushing the metadata 0.01 21263 57
Metadata overhead (MiB) 0 76.64 8.24
End-to-end time (sec) 19.35 231.23 13.43

