
Exascale Features in HDF5
Suren Byna

ECP ExaIO project

• Quincey Koziol, Houjun Tang, and Tony Li (Lawrence Berkeley National Laboratory)
• Scot Breitenfeld, John Mainzer, Dana Robinson, Jordan Henderson, Neil Fortner, Jerome Soumagne, 

Richard Warren, Neelam Bagha, and Elena Pourmal (The HDF Group)
• Venkat Vishwanath and Huihuo Zheng (Argonne National Laboratory)
• Michela Becchi and John Ravi (North Caroline State University)

March 30th, 2021



Summary of ECP HDF5 features
• HDF5 Virtual Object Layer (VOL)

• A layer just below the HDF5 API to allow new storage methods
• Asynchronous I/O overlaps I/O operations with compute operations and 

hides I/O latency
• Caching and prefetching to use node-local memory and storage to 

reduce the performance gap between memory and long-term storage
• Subfiling allows writing data to multiple HDF5 files instead of a single 

large file
• Efficient I/O between GPU and storage

• GPU direct storage (GDS) Virtual file driver, and extension to 
asynchronous I/O to move data between GPUs and storage

2



Thanks and contact info

3

• Contacts
– Suren Byna (LBNL) SByna@lbl.gov
– Scot Breitenfeld (The HDF Group) brtnfld@hdfgroup.org
– Quincey Koziol (LBNL - NERSC) koziol@lbl.gov
– Elena Pourmal epourmal@hdfgroup.org

HDF5 User Support:
HDF Helpdesk: help@hdfgroup.org
HDF Forum: https://forum.hdfgroup.org/

HDF5 Community BOF

March 30th (Today) 
@ 3pm ET

mailto:SByna@lbl.gov
mailto:brtnfld@hdfgroup.org
mailto:koziol@lbl.gov
mailto:help@hdfgroup.org
https://forum.hdfgroup.org/


Details about ECP HDF5 features and results

4March 30th, 2021



Virtual Object Layer to open the HDF5 API to other storage models

5

• Virtual Object Layer (VOL) provides an application with the HDF5 data 
model and API, but allows different underlying storage mechanisms

• Enables developers to use HDF5 on novel current and future storage 
systems easily

• Usage: VOL connectors to be used are specified with environment variables

• Several VOL connectors are already available, with more in 
development
– Async I/O, Caching (using deeper memory and storage hierarchy), Data 

Elevator, provenance, etc.
– DAOS VOL for using DAOS system

– ADIOS VOL for writing and reading BP format files, log-structured VOL 
from the DataLib team

Released in HDF5 1.12.x (Current public release)



Hiding I/O latency with asynchronous I/O

6

• Overlaps I/O operations with compute operations and hides 

I/O latency

• Pass-through VOL connector w/background threads, using 
Argobots

• Implicit: transparent by setting environment variable

• Explicit: For applications that want more control of async 
operations

VPIC-IO on Cori BD-CATS-IO on Cori

To be released with HDF5 1.13.0
https://github.com/hpc-io/vol-async



Subfiling to write data to multiple HDF5 files

7

• Writing to single shared file is slow, due to file system lock 
contention

• Subfiling allows applications to write data to multiple small 
files (N procs writing to M files, N >> M)

– Plus a metadata file stitching the small files together

• Sub-filing Virtual File Driver (VFD) and VOL connector with 
I/O concentrators writing files to storage

• Current status
– Initial prototype using “vector I/O” VFD and a subfiling VOL
– Designing “selection I/O” VFD for further optimizations
– Testing and tuning performance with the current prototype
– Exploring caching options (cache VOL as well as UnifyFS) for 

storing intermediate data 0

5

10

15

20

25

30

35

512 1024 2048 4096 8192 16384 32768

W
tit

e t
im

e (
in

 se
co

nd
s)

Number of MPI ranks

Subfiling write performance

Orignial HDF5 write Subfiling write (node-local storage)

Preliminary results on Summit are promising



I/O directly from GPUs

8

• GPUs are becoming workhorses of HPC computing 

• File I/O to move data between GPUs and storage devices 
becomes critical

• HDF5 team efforts (with contingency funding):
– Virtual File Driver (VFD) for NVIDIA’s GPU Direct Storage 

(GDS)
• Performance benefits with larger data sizes
• Integrated in HDF5 (https://github.com/HDFGroup/hdf5/tree/cu_dev)

– Asynchronous data movement between GPUs and CPUs, and 
between CPUs and storage
• Designed a set of benchmarks and ongoing optimizations
• Initial results show significant benefit when overlapping write time 

and transfers between CPU and GPU
• Designing integration with HDF5 using async and cache VOL 

connectors
• More testing on GPUs from more vendors
• Considering RAJA, Kokkos, HIP, Sycl, One API, etc.

https://github.com/HDFGroup/hdf5/tree/cu_dev

