The MVAPICH2 Project: Latest Status and Future Plans

Dhabaleswar K (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
History of MVAPICH

• A long time ago, in a galaxy far, far away…. (actually… 21 years ago), there existed…
• MPICH
 – High performance and widely portable implementation of MPI standard
 – From ANL
• MVICH
 – Implementation of MPICH ADI-2 for VIA
 – VIA – Virtual Interface Architecture (precursor to InfiniBand)
 – From LBL
• VAPI
 – Verbs level API
 – Initial InfiniBand API from IB Vendors (older version of OFED/IB verbs)

MPICH + MVICH + VAPI = MVAPICH
Overview of the MVAPICH2 Project

- High Performance open-source MPI Library
- Support for multiple interconnects
 - InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), and AWS EFA
- Support for multiple platforms
 - x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)
- Started in 2001, first open-source version demonstrated at SC ’02
- Supports the latest MPI-3.1 standard
- http://mvapich.cse.ohio-state.edu
- Additional optimized versions for different systems/environments:
 - MVAPICH2-X (Advanced MPI + PGAS), since 2011
 - MVAPICH2-GDR with support for NVIDIA GPGPUs, since 2014
 - MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
 - MVAPICH2-Virt with virtualization support, since 2015
 - MVAPICH2-EA with support for Energy-Awareness, since 2015
 - MVAPICH2-Azure for Azure HPC IB instances, since 2019
 - MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019
- Tools:
 - OSU MPI Micro-Benchmarks (OMB), since 2003
 - OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

- Used by more than 3,150 organizations in 89 countries
- More than 1.28 Million downloads from the OSU site directly
- Empowering many TOP500 clusters (Nov ’20 ranking)
 - 4th, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China
 - 9th, 448, 448 cores (Frontera) at TACC
 - 14th, 391,680 cores (ABCI) in Japan
 - 21st, 570,020 cores (Nurion) in South Korea and many others
- Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)
- Partner in the 9th ranked TACC Frontera system
- Empowering Top500 systems for more than 16 years
MVAPICH2 Release Timeline and Downloads

Number of Downloads

Timeline

MV 0.9.4
MV2 0.9.0
MV2 0.9.8
MV2 1.0
MV 1.0
MV2 1.0.3
MV1.1
MV2 1.1
MV21.4
MV21.5
MV2 1.6
MV2 1.7
MV2 1.8
MV2 1.9
MV2-GDR 2.0b
MV2-MIC 2.0
MV2-Azure 2.3.2
MV2-AWS 2.3
MV2 Virt 2.2
MV2-GDR 2.3.5
MV2-X 2.3
OSU INAM 0.9.6
MV2-Azure 2.3.2
MV2 Virt 2.2
MV2 2.3.5
MV2-GDR 2.3.5
MV2-AWS 2.3
Architecture of MVAPICH2 Software Family (HPC and DL)

High Performance Parallel Programming Models

- Message Passing Interface (MPI)
- PGAS (UPC, OpenSHMEM, CAF, UPC++)
- Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

- Point-to-point Primitives
- Collectives Algorithms
- Job Startup
- Energy-Awareness
- Remote Memory Access
- I/O and File Systems
- Fault Tolerance
- Virtualization
- Active Messages
- Introspection & Analysis

Support for Modern Networking Technology (InfiniBand, iWARP, RoCE, Omni-Path, Elastic Fabric Adapter)

Transport Protocols
- RC
- SRD
- UD
- DC

Modern Features
- UMR
- ODP
- SR-IOV
- Multi Rail

Support for Modern Multi-/Many-core Architectures (Intel-Xeon, OpenPOWER, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Mechanisms
- Shared Memory
- CMA
- IVSHMEM
- XPMEM

Modern Features
- Optane*
- NVLink
- CAPI*

* Upcoming
MVAPICH2 Software Family

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI with IB, iWARP, Omni-Path, and RoCE</td>
<td>MVAPICH2</td>
</tr>
<tr>
<td>Advanced MPI Features/Support, OSU INAM, PGAS and MPI+PGAS with IB, Omni-Path, and RoCE</td>
<td>MVAPICH2-X</td>
</tr>
<tr>
<td>MPI with IB, RoCE & GPU and Support for Deep/Machine Learning</td>
<td>MVAPICH2-GDR</td>
</tr>
<tr>
<td>HPC Cloud with MPI & IB</td>
<td>MVAPICH2-Virt</td>
</tr>
<tr>
<td>Energy-aware MPI with IB, iWARP and RoCE</td>
<td>MVAPICH2-EA</td>
</tr>
<tr>
<td>MPI Energy Monitoring Tool</td>
<td>OEMT</td>
</tr>
<tr>
<td>InfiniBand Network Analysis and Monitoring</td>
<td>OSU INAM</td>
</tr>
<tr>
<td>Microbenchmarks for Measuring MPI and PGAS Performance</td>
<td>OMB</td>
</tr>
</tbody>
</table>
MVAPICH2 – Basic MPI

MPI_Init on Frontera (Small Scale)
- MVAPICH2 2.3.4
- Intel MPI 2020

MPI_Init on Frontera (Large Scale)
- MVAPICH2 2.3.4
- Intel MPI 2020

Intra-node Latency on OpenPOWER
- MVAPICH2 2.3.5
- SpectrumMPI-10.3.1.00 0.2us

Allreduce Latency on OpenPOWER
- 1 Node 40 PPN
- MVAPICH2 2.3.5
- SpectrumMPI-10.3.1.00 3X

MPI_Bcast using Multicast on Frontera
- 2048 Nodes
- Default
- Multicast 2X

MPI_Bcast using Multicast on Frontera
- 32 Bytes
- Default
- Multicast 3X
MVAPICH2-X – Advanced MPI + PGAS + Tools

MPI_Allreduce using SHARP on Frontera (1ppn, 7,861 nodes)

- **MVAPICH2-X**
- **MVAPICH2-X-SHARP**

MPI_Barrier using SHARP on Frontera (1ppn, 7,861 nodes)

- **MVAPICH2-X**
- **MVAPICH2-X-SHARP**

Intra-node Latency on ARM A64FX Oakami

- **MVAPICH2-X**
- **OpenMPI**

Overhead of RC protocol for connection establishment and communication

P3DFFT using BlueField-2 DPU on HPCAC

- **MV2 BF2 HCA**
- **MV2-BFO 1 WPN**
- **MV2-BFO 2 WPN**
- **MV2-BFO 4 WPN**

Execution Time (s)

- **MVAPICH2**
- **MVAPICH2-X**

Number of Processes

- **512**
- **1024**
- **2048**
- **4096**
MVAPICH2-GDR – Optimized MPI for clusters with NVIDIA and AMD GPUs

Best Performance for GPU-based Transfers

TensorFlow Training with MVAPICH2-GDR on Summit

Latency (us)

Message Size (Bytes)

Image per second

Thousands

Time/epoch = 3 seconds

Total Time (90 epochs) = 3 x 90 = 270 sec = 4.5 minutes!

GPU-Based MPI_Allreduce on Summit

Bandwidth (GB/s)

Number of GPUs

ML2-(NO-GDR) MV2-GDR-2.3.5

Best Performance for GPU-based Transfers

TensorFlow Training with MVAPICH2-GDR on Summit

GPU-Based MPI_Allreduce on Summit

ROCm Support for AMD GPUs (Available with MVAPICH2-GDR 2.3.5)

LLNL Corona Cluster - ROCm-4.0.0 (mi50 AMD GPUs)

Intra-Node Point-to-Point Latency

Inter-Node Point-to-Point Latency

Allreduce 128 GPUs (16 Nodes, 8 GPN)

Broadcast 128 GPUs (16 Nodes, 8 GPN)

PyTorch at Scale: Training ResNet-50 on 256 GPUs: LLNL Lassen (10,000 Images/sec faster than NCCL training)
MVAPICH2-X Advanced Support for HPC-Clouds

Performance on Amazon EFA
WRF 3.6 Execution Time

- MVAPICH2-X-AWS 2.3
- Released on 09/24/2020
- Major Features and Enhancements
 - Based on MVAPICH2-X 2.3
 - Support for on Amazon EFA adapter's Scalable Reliable Datagram (SRD)
 - Support for XPMEM based intra-node communication for point-to-point and collectives
 - Enhanced tuning for point-to-point and collective operations
 - Targeted for AWS instances with Amazon Linux 2 AMI and EFA support
 - Tested with c5n & p3d instance types and different Operation Systems

Performance of WRF on Microsoft Azure
WRF 3.6 Execution time

- MVAPICH2-Azure 2.3.3
- Released on 05/20/2020
- Major Features and Enhancements
 - Based on MVAPICH2-2.3.3
 - Enhanced tuning for point-to-point and collective operations
 - Targeted for Azure HB & HC virtual machine instances
 - Tested with Azure HB & HC VM instances

Detailed User Guide: http://mvapich.cse.ohio-state.edu/userguide/mv2-azure/
MVAPICH2 – Future Roadmap and Plans for Exascale

- Update to MPICH 3.3 CH3 channel
 - 2021
- Initial support for the CH4 channel
 - 2021/2022
- Making CH4 channel default
 - 2022/2023
- Performance and Memory scalability toward 1M-10M cores
- Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF …)
 - MPI + Task*
- Enhanced Optimization for GPUs and FPGAs*
- Taking advantage of advanced features of Mellanox InfiniBand
 - Tag Matching*
 - Adapter Memory*
- Enhanced communication schemes for upcoming architectures
 - GenZ*
 - CAPI*
- Extended topology-aware collectives
- Extended Energy-aware designs and Virtualization Support
- Extended Support for MPI Tools Interface (as in MPI 3.0)
- Extended FT support
- Support for * features will be available in future MVAPICH2 Releases
Thank You!

panda@cse.ohio-state.edu
http://web.cse.ohio-state.edu/~panda

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/