
Presenter

Dr. Anthony Castaldo

PAPI BOF
Performance Application Programming Interface

Introduction

Methodology

GPU Tuning

PAPI
SUPPORTED ARCHITECTURES:

•AMD up to Zen1, Zen2, power for Fam17h

(Zen3 in progress)

•AMD GPUs MI50, MI60, MI100, power, temperature, fan

•ARM Cortex A8, A9, A15, ARM64, ARM uncore-support

•CRAY: Gemini and Aries interconnects, power/energy

•IBM Blue Gene Series, Q: 5D-Torus, I/O system, EMON power/energy

•IBM Power Series, PCP for POWER9-nest,

power monitoring & capping on POWER9

•Intel Sandy|Ivy Bridge, Haswell, Broadwell, Skylake,

Kaby-, Cascade-, Ice-lake, KNC, KNL, KNM

•Intel RAPL (power/energy), power capping

•Intel GPUs Gen9

•InfiniBand

•Lustre FS

•NVIDIA Tesla, Kepler, Maxwell, Pascal, Volta,

Turing, Ampere: support for multiple GPUs

•NVIDIA: support for NVLink

•NVIDIA NVML (power/energy); power capping

•Virtual Environments: VMware, KVM

•Software-defined Event (SDE) Support

Advantages of PAPI
• PAPI is a library that provides a consistent interface (and methodology) for

hardware performance counters, found across the system: i. e., CPUs, GPUs, on-

/off-chip Memory, Interconnects, I/O, File System, Energy/Power, etc.

• It is effectively a universal translator that handles 30+ APIs with one simple API.

• PAPI is supported – The team keeps up with changes to the APIs, new APIs, and

we communicate with vendors to address issues with their API, or if possible to

circumvent such issues. PAPI supports our users, we are active in our group and

answer questions and help solve problems.

• PAPI strives to minimize overhead, so SW engineers can see, in near real time,

the relationship between SW performance and HW events across the entire

compute system.

• PAPI is a live open-source project, still being developed to support new hardware

and devices as they are introduced. The repository is updated frequently, and we

are developing new interfaces to analysis and graphing packages, and with SDE,

new interfaces to libraries so they can report on their performance.

PAPI
Structure

PAPI
Component:

. . .

PAPI
PORTABLE LAYER

Applications / 3rd Party Tools

Low-Level API

High-Level API

Libraries / Apps

SDE API

PAPI
SDE LAYER

PAPI Component:
SDEs

Library Interface

Registered Library
SDEs

Developer API

PAPI currently has >30 Components
.

PAPI Component:
GPUs

PAPI Component:
NETWORKs

PAPI Component:
I/O systems

PAPI Component:
Power / Energy

OS + Kernel Ext.

Performance Counter
Hardware

PAPI Component:
CPUs

Developer APIDeveloper API

Installing the PAPI Library
• Download PAPI. ~$ git clone https://bitbucket.org/icl/papi.git

• Configure PAPI. ~/papi/src$./configure --with-components=“…“
“…” is a list of components desired, separated by spaces. See
~/papi/src/components, each subdirectory has a README.md
explain the component. Many components require an env variable
PAPI_[comp_name]_ROOT exported before this ./configure.

• Build PAPI. ~/papi/src$ make

• Verify PAPI. ~/papi/src$ utils/papi_component_avail

• Identify Events. ~/papi/src$ utils/papi_native_avail >native_avail.txt

• Instrument your code to use PAPI, and your Makefile to identify
include file directories and library directories.
-L~/papi/src -ldl -lpapi

5

PAPI Simple Methodology (1 of 2)
• Include “papi.h”. // in papi/src.

• Initialize PAPI. // Only once in the program.

PAPI_library_init(PAPI_VER_CURRENT);

• Create: one or more event sets (one per component).

PAPI_create_eventset(&EventSet);

• Add events by name to the event sets.

char eventname[]="rocm:::SQ_INSTS_GDS:device=0";

PAPI_add_named_event(EventSet, eventname);

• Start the event sets. For kernels, keep PAPI_start() as close to the kernel start as possible.

For cumulative counters, PAPI_start() will zero them.

PAPI_start(EventSet);

• Read each event and process values.

long long values[1]={0};

PAPI_read(EventSet, values);

• Stop the event set (with an optional final read); use NULL for 2nd arg to skip read.

PAPI_stop(EventSet, values);

6

PAPI Simple Methodology (2 of 2)
Optionally, for a stopped event set, it can be edited before restarting, to perhaps read

different counters for a new stage of the application.

• Add more events by name.

PAPI_add_named_event(EventSet, new_eventname);

• Delete events by name.

PAPI_remove_named_event(EventSet, eventname);

• Delete all events in an event set.

PAPI_cleanup_eventset(EventSet);

After edits, PAPI_start() the event set again, and PAPI_read() as often as desired.

When done with an event set, it can be destroyed:

PAPI_destroy_eventset(&EventSet); // Notice we pass the address.

And finally, when done with PAPI, Shut it down, to clean up all memory allocations:

PAPI_shutdown(); // Returns no value.

7

Output – rocm_smi
8

Output – NVML
9

Finding Optimal Power Settings

• Powercapping is potentially an energy saver if runtime effects are

tolerable. In some apps, reduced power has very little runtime effect.

• Runtime increases are not always proportional to the reduced

power. A 20% power reduction may barely affect the runtime of one

app, or may increase the runtime of another app by 30%.

• The minimum Total Joules expended is NOT always at the lowest

power. In dense GEMM experiments, I often find the minimum in the

upper half of the range, not in the low end.

• You should do a survey, running your kernel across the range of

power caps, at perhaps 10 or 20 settings, and computing the total

Joules expended at each cap.

10

Output – Cuda
11

These are final samples, over the course of each square

sgemm run, in this case the cycles active, and the elapsed

cycles. We can use these to plot the ratio of active to elapsed.

Output – Cuda
12

Output – Cuda
13

Output – Cuda
14

Output – Cuda
15

Output – Cuda
16

Output – Cuda
17

Output – Cuda
18

Output – Cuda
19

ROCM:::L2CacheHit:device=0
20

ROCM:::TCC_HIT_sum:device=0
21

ROCM:::TCC_MISS_sum:device=0
22

Spot TCC Hit Rate: TCC_HIT / (TCC_HIT+TCC_MISS) 23

Spot TCC Hit Rate: TCC_HIT / (TCC_HIT+TCC_MISS) 24

Questions?

Contacts
Presenter: Anthony Castaldo TonyCastaldo@icl.utk.edu

Repository: https://bitbucket.org/icl/papi.git

We aim to answer our help line. For assistance with PAPI, email

ptools-perfapi@icl.utk.edu

To read historical Q&A, join the PAPI User Google group by going to

<https://groups.google.com/a/icl.utk.edu/forum/#!forum/ptools-perfapi>

ROCM:::GPUBusy:device=0
26

GPUBusy = 100*GRBM_GUI_ACTIVE/GRBM_COUNT

ROCM:::GRBM_COUNT:device=0
27

GPUBusy = 100*GRBM_GUI_ACTIVE/GRBM_COUNT

ROCM:::GRBM_GUI_ACTIVE:device=0
28

GPUBusy = 100*GRBM_GUI_ACTIVE/GRBM_COUNT

Constructed Spot GPU_Busy
29

GPUBusy = 100*GRBM_GUI_ACTIVE/GRBM_COUNT

(Graph Average 99.3%)

Constructed Spot GPU_Busy
30

GPUBusy = 100*GRBM_GUI_ACTIVE/GRBM_COUNT

(Graph Average 89.3%, Main section 99.3%)

ROCM:::MEM_UNIT_BUSY:device=0
31

ROCM:::SQ_WAIT_INST_LDS:device=0
32

ROCM:::SQ_INSTS_VALU:device=0
33

