
ECP-RPT-ST-0002-2020–Public

ECP Software Technology Capability Assessment Report–Public

Michael A. Heroux, Director ECP ST
Lois Curfman McInnes, Deputy Director ECP ST
Rajeev Thakur, Programming Models & Runtimes Lead
Jeffrey S. Vetter, Development Tools Lead
Sherry Li, Mathematical Libraries Lead
James Ahrens, Data & Visualization Lead
Todd Munson, Software Ecosystem & Delivery Lead
Kathryn Mohror, NNSA ST Lead

November 19, 2020

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange representatives, and International Nuclear Information System representatives
from the following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or
any agency thereof.

ECP-RPT-ST-0002-2020–Public

ECP Software Technology Capability Assessment Report–Public
Office of Advanced Scientific Computing Research

Office of Science
US Department of Energy

Office of Advanced Simulation and Computing
National Nuclear Security Administration

US Department of Energy

November 19, 2020

Exascale Computing Project (ECP) iii ECP-RPT-ST-0002-2020–Public

REVISION LOG

Version Date Description

1.0 July 1, 2018 ECP ST Capability Assessment Report

1.5 February 1, 2019 Second release

2.0 February 1, 2020 Third release

2.5 November 19, 2020 Fourth release

Exascale Computing Project (ECP) iv ECP-RPT-ST-0002-2020–Public

EXECUTIVE SUMMARY

The Exascale Computing Project (ECP) Software Technology (ST) Focus Area is responsible for developing
critical software capabilities that will enable successful execution of ECP applications, and for providing
key components of a productive and sustainable Exascale computing ecosystem that will position the US
Department of Energy (DOE) and the broader high performance (HPC) community with a firm foundation
for future extreme-scale computing capabilities.

This ECP ST Capability Assessment Report (CAR) provides an overview and assessment of current ECP
ST capabilities and activities, giving stakeholders and the broader HPC community information that can be
used to assess ECP ST progress and plan their own efforts accordingly. ECP ST leaders commit to updating
this document on regular basis (every six to 12 months). Highlights from this version of the report are
presented here.

What is new in CAR V2.5: CAR V2.5 contains the following updates relative to CAR V2.0.

• We highlight the progress with the Extreme-scale Scientific Software Stack (E4S) efforts. In particular,
we discuss how E4S has emerged as a new first-class entity in the HPC ecosystem, enabling new
conversations with users, facilities, vendors, other US agencies and international partners. We also
highlight the development of the E4S DocPortal and Version 1.0 of E4S community policies, and E4S
Spack build caches.

• The two-page summaries of each ECP L4 projects have been updated to reflect recent progress and
next steps. See Section 4.

• The Extreme-scale Scientific Software Stack (E4S) is further described. The third release, which is also
the first major public release Version 1.0, was November 18, 2019. E4S is the primary integration and
delivery vehicle for ECP ST capabilities. See Section 2.1.1.

• The ECP ST SDK effort has further refined its groupings. See Section 2.1.2.

The Exascale Computing Project Software Technology (ECP ST) focus area represents the key bridge
between Exascale systems and the scientists developing applications that will run on those platforms. ECP
ST efforts contribute to approximately 70 software products (Section 2.1.3) in six technical areas (Table 1).
Since the publishing of CAR V2.0, we continue to evolve the product dictionary of official product names,
which enables more rigorous mapping of ECP ST deliverables to stakeholders (Section 2.1.4).

Programming Models & Runtimes: In addition to developing key enhancements to MPI and OpenMP
for scalable systems with accelerated node architectures, we are working on performance portability layers
(Kokkos and RAJA) and participating in OpenMP and OpenACC software design and development that
will enable applications to write much of their source code without the need to provide vendor-specific
implementations for each exascale system. We anticipate that one legacy of ECP ST efforts will be a software
stack that supports Intel and AMD accelerators in addition to Nvidia. See Section 4.1.

Development Tools: We are enhancing existing widely used compilers (LLVM) and performance tools
for next-generation platforms. Compilers are critical for heterogeneous architectures, and LLVM is the most
popular compiler for heterogeneous systems. As node architectures become more complicated and concurrency
even more necessary, compilers must generate optimized code for many architectures, and the impediments
to performance and scalability become even harder to diagnose and fix. Development tools provide essential
insight into these performance challenges and code transformation and support capabilities that help software
teams generate efficient code, utilize new memory systems and more. See Section 4.2.

Mathematical Libraries: High-performance scalable math libraries have enabled parallel execution
of many applications for decades. ECP ST is providing the next generation of these libraries to address
needs for latency hiding, improved vectorization, threading and strong scaling. In addition, we are addressing
new demands for system-wide scalability including improved support for coupled systems and ensemble
calculations. See Section 4.3. The math libraries teams are also spearheading the software development kit
(SDK) initiative that is a pillar of the ECP ST software delivery strategy (Section 2.1.2).

Data & Visualization: ECP ST has a large collection of data management and visualization products
that provide essential capabilities for compressing, analyzing, moving and managing data. These tools are

Exascale Computing Project (ECP) v ECP-RPT-ST-0002-2020–Public

becoming even more important as the volume of simulation data we produce grows faster than our ability to
capture and interpret it. See Section 4.4.

SW Ecosystem & Delivery: This technical area of ECP ST provides important enabling technologies
such as Spack [1], a from-source build and package manager, container environments for high-performance
computers, and a toolkit of reusable components for scientific workflow management systems. This area also
provides the critical resources and staffing that will enable ECP ST to perform continuous integration testing,
and product releases. Finally, this area engages with software and system vendors, and DOE facilities staff to
assure coordinated planning and support of ECP ST products. See Section 4.5.

NNSA ST: This technical area brings into one L3 area all of the NNSA-funded work in ECP ST for
easier coordination with other project work at the NNSA labs. Introducing this L3 enables continued
integrated planning with the rest of ECP ST while permitting flexible coordination within the NNSA labs.
See Section 4.6.

ECP ST Software Delivery mechanisms: ECP ST delivers software capabilities to users via several
mechanisms (Section 3). Almost all products are delivered via source code to at least some of their users.
Each of the major DOE computing facilities provides direct support of some users for about 20 ECP ST
products. About 10 products are available via vendor software stack and via binary distributions such as
Linux distributions.

ECP ST Project Overviews: A significant portion of this report includes 2-page synopses of each
ECP ST project (Section 4), including a project overview, key challenges, solution strategy, recent progress
and next steps.

Project organization: ECP ST has established a tailored project management structure using capability
integration goals, milestones, regular project-wide video meetings, monthly and quarterly reporting, and an
annual review process. This structure supports project-wide communication, and coordinated planning and
development that enables 35 projects and more than 250 contributors to create the ECP ST software stack.

How to navigate this document: The size of the ECP ST CAR is large. However, it is organized in a
hierarchical fashion that should permit rapid navigation for readers who are interested in specific information
as follows:

• General Overview of ECP ST: Sections 1 through 3 provide an introduction and general overview of
ECP Software Technology.

• Section 4 is dedicated to the L3 Technical areas. Each subsection includes an overview of the L3 area
followed by two-page overview, status and plans for each product supported by ECP ST.

– Programming Models & Runtimes: Section 4.1.

– Development Tools: Section 4.2.

– Mathematical Libraries: Section 4.3.

– Data & Visualization: Section 4.4.

– SW Ecosystem & Delivery: Section 4.5.

– NNSA ST: Section 4.6.

Exascale Computing Project (ECP) vi ECP-RPT-ST-0002-2020–Public

TABLE OF CONTENTS

EXECUTIVE SUMMARY v

LIST OF FIGURES x

LIST OF TABLES xv

1 Introduction 1
1.1 Background . 1
1.2 ECP ST Project WBS changes . 4

2 ECP Software Technology Planning, Execution, Tracking and Assessment 4
2.1 ECP Software Technology Architecture and Design . 4

2.1.1 The Extreme-scale Scientific Software Stack (E4S) . 9
2.1.2 Software Development Kits . 11
2.1.3 ECP ST Product Dictionary . 14
2.1.4 ECP Product Dependency Management . 14

2.2 ECP ST Planning and Tracking . 15
2.2.1 ECP ST P6 Activity Issues . 15
2.2.2 Key Performance Parameter (KPP) 3 . 15
2.2.3 ECP ST Software Delivery . 20
2.2.4 ECP ST Software Lifecycle . 22

3 ECP ST Deliverables 23
3.1 ECP ST Development Projects . 23
3.2 Standards Committees . 23
3.3 Contributions to External Software Products . 26

4 ECP ST Technical Areas 28
4.1 WBS 2.3.1 Programming Models & Runtimes . 29

4.1.1 Scope and Requirements . 29
4.1.2 Assumptions and Feasibility . 29
4.1.3 Objectives . 29
4.1.4 Plan . 29
4.1.5 Risks and Mitigation Strategies . 30
4.1.6 Future Trends . 30
4.1.7 WBS 2.3.1.01 Programming Models & Runtimes Software Development Kits 32
4.1.8 WBS 2.3.1.07 Exascale MPI . 33
4.1.9 WBS 2.3.1.08 Legion . 35
4.1.10 WBS 2.3.1.09 Distributed Tasking at Exascale: PaRSEC 37
4.1.11 WBS 2.3.1.14 GASNet-EX . 40
4.1.12 WBS 2.3.1.14 UPC++ . 42
4.1.13 WBS 2.3.1.16 SICM . 44
4.1.14 WBS 2.3.1.17 Open MPI for Exascale (OMPI-X) . 46
4.1.15 WBS 2.3.1.18 RAJA/Kokkos . 49
4.1.16 WBS 2.3.1.19 Argo: Low-Level Resource Management for the OS and Runtime . . . 52

4.2 WBS 2.3.2 Development Tools . 60
4.2.1 Scope and Requirements . 60
4.2.2 Assumptions and Feasibility . 60
4.2.3 Objectives . 60
4.2.4 Plan . 61
4.2.5 Risk and Mitigation Strategies . 61
4.2.6 Future Trends . 61

Exascale Computing Project (ECP) vii ECP-RPT-ST-0002-2020–Public

4.2.7 WBS 2.3.2.01 Development Tools Software Development Kits 62
4.2.8 WBS 2.3.2.06 Exa-PAPI . 64
4.2.9 WBS 2.3.2.08 HPCToolkit . 66
4.2.10 WBS 2.3.2.10 PROTEAS-TUNE: Programming Toolchain for Emerging Architectures

and Systems . 68
4.2.11 WBS 2.3.2.10 PROTEAS-TUNE: LLVM . 69
4.2.12 WBS 2.3.2.10 PROTEAS-TUNE - Clacc: OpenACC in Clang and LLVM 71
4.2.13 WBS 2.3.2.10 PROTEAS-TUNE - LLVM-DOE: Creating and Maintaining a DOE

Fork of LLVM . 73
4.2.14 WBS 2.3.2.10 PROTEAS-TUNE - FLACC and MLIR: Creating and Maintaining

OpenACC in LLVM/Flang . 74
4.2.15 WBS 2.3.2.10 PROTEAS-TUNE: Autotuning . 75
4.2.16 WBS 2.3.2.10 PROTEAS-TUNE - Bricks . 78
4.2.17 WBS 2.3.2.10 PROTEAS-TUNE - TAU Performance System 79
4.2.18 WBS 2.3.2.10 PROTEAS-TUNE - PAPYRUS: Parallel Aggregate Persistent Storage 81
4.2.19 SOLLVE . 83
4.2.20 WBS 2.3.2.11 Argobots: Flexible, High-Performance Lightweight Threading 84
4.2.21 WBS 2.3.2.11 BOLT: Lightning Fast OpenMP . 86
4.2.22 WBS 2.3.2.12 Flang . 89

4.3 WBS 2.3.3 Mathematical Libraries . 91
4.3.1 Scope and Requirements . 91
4.3.2 Assumptions and Feasibility . 91
4.3.3 Objectives . 91
4.3.4 Plan . 92
4.3.5 Risks and Mitigations Strategies . 92
4.3.6 Future Trends . 93
4.3.7 WBS 2.3.3.01 xSDK . 94
4.3.8 WBS 2.3.3.01 xSDK Sub-project: multiprecision . 96
4.3.9 WBS 2.3.3.06 PETSc-TAO . 98
4.3.10 WBS 2.3.3.07 STRUMPACK-SuperLU . 100
4.3.11 WBS 2.3.3.07 Sub-project: FFTX . 102
4.3.12 WBS 2.3.3.12 Sub-project: SUNDIALS . 104
4.3.13 WBS 2.3.3.12 Sub-project: hypre . 106
4.3.14 WBS 2.3.3.13 CLOVER . 108
4.3.15 WBS 2.3.3.13 CLOVER Sub-project FFT-ECP . 109
4.3.16 WBS 2.3.3.13 CLOVER Sub-project Kokkos Kernels 111
4.3.17 WBS 2.3.3.13 CLOVER Sub-project PEEKS . 112
4.3.18 WBS 2.3.3.13 CLOVER Sub-project SLATE . 114
4.3.19 WBS 2.3.3.14 ALExa . 117

4.4 WBS 2.3.4 Data & Visualization . 121
4.4.1 Scope and Requirements . 121
4.4.2 Assumptions and Feasibility . 122
4.4.3 Objectives . 122
4.4.4 Plan . 123
4.4.5 Risks and Mitigations Strategies . 123
4.4.6 Future Trends . 124
4.4.7 WBS 2.3.4.01 Data & Visualization Software Development Kits 127
4.4.8 WBS 2.3.4.09 ADIOS . 132
4.4.9 WBS 2.3.4.10 DataLib . 134
4.4.10 WBS 2.3.4.13 ECP/VTK-m . 137
4.4.11 WBS 2.3.4.14 VeloC: Very Low Overhead Checkpointing System 139
4.4.12 WBS 2.3.4.14 ECP SZ: Fast, Effective, Parallel Error-bounded Exascale Lossy Com-

pression for Scientific Data . 141
4.4.13 WBS 2.3.4.15 ExaHDF5 . 143

Exascale Computing Project (ECP) viii ECP-RPT-ST-0002-2020–Public

4.4.14 WBS 2.3.4.15 UnifyCR – A file system for burst buffers 145
4.4.15 WBS 2.3.4.16 ALPINE . 147
4.4.16 WBS 2.3.4.16 ZFP: Compressed Floating-Point Arrays 149

4.5 WBS 2.3.5 SW Ecosystem & Delivery . 152
4.5.1 Scope and Requirements . 152
4.5.2 Assumptions and Feasibility . 152
4.5.3 Objectives . 153
4.5.4 Plan . 153
4.5.5 Risks and Mitigation Strategies . 153
4.5.6 Future Trends . 154
4.5.7 WBS 2.3.5.01 Software Development Kits . 155
4.5.8 WBS 2.3.5.09 Software Packaging Technologies . 158
4.5.9 WBS 2.3.5.10 ExaWorks . 160

4.6 WBS 2.3.6 NNSA ST . 162
4.6.1 Scope and Requirements . 162
4.6.2 Objectives . 162
4.6.3 Plan . 162
4.6.4 Risks and Mitigation Strategies . 162
4.6.5 WBS 2.3.6.01 LANL ATDM Software Technologies 164
4.6.6 WBS 2.3.6.02 LLNL ATDM Software Technologies 170
4.6.7 WBS 2.3.6.03 SNL ATDM Software Technologies . 179

5 Conclusion 184

Exascale Computing Project (ECP) ix ECP-RPT-ST-0002-2020–Public

LIST OF FIGURES

1 The ECP Work Breakdown Structure through Level 3 (L3) as of December 5, 2019. Under
Software Technology, WBS 2.3.6 consolidates ATDM contributions to ECP into a new L3 area. 3

2 The FY20 ECP ST WBS structure as of November 18, 2020, includes two new L4 subprojects:
2.3.5.10 ExaWorks, a workflow components project, and 2.3.3.15 Sake, a new solver effort that
provides funding for Trilinos porting to Frontier and Aurora platforms. 5

3 Project remapping summary from Phase 1 (through November 2017) to Phase 2 (November
2017 – September 30, 2019) to Phase 3 (After October 1, 2019) 6

4 ECP ST before November 2017 reorganization. This conceptually layout emerged from several
years of Exascale planning, conducted primarily within the DOE Office of Advanced Scientific
Computing Research (ASCR). After a significant restructuring of ECP that removed much of
the facilities activities and reduced the project timeline from 10 to seven years, and a growing
awareness of what risks had diminished, this diagram no longer represented ECP ST efforts
accurately. 7

5 ECP ST after November 2017 reorganization. This diagram more accurately reflects the
priorities and efforts of ECP ST given the new ECP project scope and the demands that we
foresee. 7

6 ECP ST after October 2019 reorganization. This diagram reflects the further consolidation of
NNSA open source contributions to enable more flexible management of NNSA ST contributions. 8

7 ECP ST Leadership Team as of November 2020. Jonathan Carter, previous Deputy Director of
ECP ST, became Associate Lab Director of the Computing Sciences Area at Lawrence Berkeley
National Laboratory. His departure led to naming of Lois Curfman McInnes, previously
the L3 Lead of Math Libraries, as Deputy Director of ECP ST, and Sherry Li as the new
Math Libraries L3 Lead. Rob Neely was also promoted at LLNL, leading to Kathryn Mohror
becoming the L3 Lead of NNSA ST. 8

8 Using Spack [2], E4S builds a comprehensive software stack. As ECP ST efforts proceed, we
will use E4S for continuous integration testing, providing developers with rapid feedback on
regression errors and providing user facilities with a stable software base as we prepare for
Exascale platforms. This diagram shows how E4S builds ECP products via an SDK target (the
math libraries SDK called xSDK in this example). The SDK target then builds all product that
are part of the SDK (see Figure 13 for SDK groupings), first defining and building external
software products. Green-labeled products are part of the SDK. The blue label indicates
expected system tools, in this case a particular version of Python. Black-labeled products are
expected to be previously installed into the environment (a common requirement and easily
satisfied). Using this approach, a user who is interested in only SUNDIALS (a particular math
library) can be assured that the SUNDIALS build will be possible since it is a portion of what
E4S builds and tests. 10

9 Version 1 of the E4S Community Policies. These policies will serve as membership criteria for
E4S member packages. The E4S Community Policy effort has heavily leveraged the existing
xSDK Community Policies [3]. 12

10 The Extreme-scale Scientific Software Stack (E4S) provides a complete Linux-based software
stack that is suitable for many scientific workloads, tutorial and development environments. At
the same time, it is an open software architecture that can expand to include any additional
and compatible Spack-enabled software capabilities. Since Spack packages are available for
many products and easily created for others, E4S is practically expandable to include almost
any robust Linux-based product. Furthermore, E4S capabilities are available as subtrees of
the full build: E4S is not monolithic. 13

11 Using Spack build cache features, E4S builds can be accelerated by use of cached binaries for
any build signature that Spack has already seen. Between September 2019 and September
2020, more than 21,000 binaries were added to the cache. 13

12 E4S now supports Google Cloud Platform in addition to Amazon AWS. 14

Exascale Computing Project (ECP) x ECP-RPT-ST-0002-2020–Public

13 The above graphic shows the breakdown of ECP ST products into 6 SDKs (the first six
columns). The rightmost column lists products that are not part of an SDK, but are part of
Ecosystem group that will also be delivered as part of E4S. The colors denoted in the key
map all of the ST products to the ST technical area they are part of. For example, the xSDK
consists of products that are in the Math Libraries Technical area, plus TuckerMPI which is in
the Ecosystem and Delivery technical area. Section 4.5.7 provides an update on the progress
in defining SDK groupings. 15

14 This figure shows a screenshot from the top of the ECP Confluence wiki page containing
the ECP ST Product Dictionary. The Product Dictionary structure contains primary and
secondary products. Client (consumer) dependencies are stated against the primary product
names only, enabling unambiguous mapping of AD-on-ST and ST-on-ST dependencies. 16

15 These screen shots are from the ECP Confluence Product Dictionary Table. The table is
actively managed to include primary and secondary products to which ECP ST team contribute
and upon which ECP ST clients depend. Presently the Product Dictionary contains 70 primary
products. Secondary products are listed under the primary product with the primary product
as a prefix. For example, AID is the second listed primary product in this figure. STAT,
Archer and FLIT are component subproducts. MPI (not shown) is another primary product.
MPICH and OpenMPI are two robust MPI implementations and are listed as MPI subproducts. 16

16 Using Jira, ECP manages its AD, ST, HI, vendor and facilities dependencies. This figure shows
a dashboard snapshot along with an edit panel that support creation and management of a
consumer-on-producer dependency. 17

17 This query result from the ECP Jira Dependency database lists all consumers of capabilities
from the PETSc/TAO product. By selecting the details of one of the dependency issues, one
can further see how critical the dependency is and see any custom information peculiar to the
particular dependency. 17

18 ECP ST uses a custom Jira issue type called P6 Activity. Each L4 subproject creates a series
of these issues extending to the end of ECP. Except for the current fiscal year, a single P6
Activity issue describes expected deliverables as a planning package. Six months prior to the
start of a fiscal year, the planning package is replaced with 4–6 issues spanning the coming year.
Eight weeks prior to the start of an activity, full details about staffing, completion criteria and
more are added to the issue. 18

19 ECP has four key performance parameters (KPPs). ECP ST is the primary owner (with ECP
AD co-design subprojects) of KPP-3. 19

20 The ECP ST software stack is delivered to the user community through several
channels. Key channels are via source code, increasingly using SDKs, direct to Facilities
in collaboration with ECP HI, via binary distributions from containers and HPC vendors.
Increasingly, E4S is the primary pathway for delivering ECP ST capabilities. E4S provides
testing, a documentation portal and quality commitments via community policies. 22

21 ECP ST product planning, executing, testing and assessment are governed by
the combination of P6 Activities for hierarchical planning (Figure 18) and KPP-3
for measuring capability integrations (Table 3). This figure shows how the entire
lifecycle of ECP ST feature development is captured by these two elements. . . . 23

22 ECP ST staff are involved in a variety of official and de facto standards committees. Involvement
in standards efforts is essential to assuring the sustainability of our products and to assure
that emerging Exascale requirements are addressed by these standards. 26

23 ECP ST is composed of 6 Level-3 Technical Areas. The first four areas are organized around
functionality development themes. The fifth is focused on technology for packaging and delivery
of capabilities. The sixth is organized around per-lab open source development at the three
DOE NNSA laboratories, LANL, LLNL and SNL. 28

24 Major MPICH milestones completed in fiscal year 2020 . 34
25 PaRSEC architecture based on a modular framework where each component can be dynamically

activated as needed. 37
26 Time to solution and Performance as a function of the number of V100 GPUs on Summit, for

the molecule C65H132 . 38

Exascale Computing Project (ECP) xi ECP-RPT-ST-0002-2020–Public

27 Comparison of DPLASMA and SLATE Cholesky factorization over PaRSEC with SLATE and
ScaLAPACK on 64 nodes 12 cores each . 38

28 Performance using GPUs of native ScaLAPACK, ScaLAPACK over DPLASMA and native
DPLASMA for GEMM and POTRF. 39

29 Selected GASNet-EX vs. MPI RMA Performance Results . 41
30 Weak scaling of distributed hash table insertion on the KNL partition of NERSC’s Cori

platform. The dotted line represents one node. 43
31 Partitioned communications enables increased concurrency in communication operations which

can be carried out by multiple threads or tasks. 47
32 ReInit reduces application recovery time. 47
33 UMap Handler architecture . 55
34 Envisioned PowerStack . 56
35 FLOPs validation on Broadwell, Skylake, and POWER9. 65
36 (a) HPCToolkit’s hpcviewer showing a detailed attribution of GPU performance metrics in a

profile of Quicksilver. (b) HPCToolkit’s hpctraceviewer showing CPU and GPU trace lines
for Nyx. 67

37 Y-TUNE Solution Approach. 77
38 Bricks can be used to map memory onto regions that minimize ghost zone packing and MPI

message count (2D example). 78
39 TAU was used to collect profiles and traces of ECP proxy applications like miniFE (trace

shown in Vampir), observing OpenMP parallel regions, loops and synchronization without
application instrumentation. 80

40 TAU was used to collect profiles and traces of OpenACC benchmarks (303.stencil trace
shown in Vampir), observing OpenACC regions and device offload events without application
instrumentation. 81

41 SOLLVE thrust area updates . 84
42 Argobots execution model . 86
43 MPI+Threads interoperability of BOLT. OpenMP threads and tasks in BOLT interact MPI

implementations via the Argobots layer. 88
44 xSDK packages and interoperabilities represented in version v.0.1.0 of the xsdk-examples test

suite. A→B indicates that A uses functionalities of B . 95
45 Evolution of the machine balance of processors over different hardware generations. 96
46 The improved PETSc/TAO architecture enables users to utilize a variety of programming

models for GPUs independently of PETSc’s internal programming model. 99
47 SuperLU symbolic factorization: GPU speedup over CPU, 13 matrices 101
48 Illustration of SUNDIALS’ hybrid, OpenMP + GPU approach to integrating the many small

ODE systems that arise in the PELE and Nyx applications. In this example, three distinct
groups, formed by grouping the independent ODE systems arising in AMR grid cells, of ODE
systems are integrated with CVODE. The groups, each defining a larger ODE system, are
distributed across CPU threads with OpenMP. On each thread, a distinct and independent
CVODE instance solves the larger ODE system. CVODE launches GPU kernels in streams,
allowing some threads to operate simultaneously. 105

49 Weak scaling study for AMG-PCG applied to a 3D 27pt diffusion problem on Lassen with
8M grid points per node comparing total run times (setup and solve) on GPUs with the new
mm-ext+i interpolation (GPU), and on CPUs using ext+i interpolation (CPU), and adding
aggressive coarsening with multipass interpolation on the first level (opt-CPU) 107

50 Weak scaling study for AMG-PCG applied to a system of coupled Poisson problems with
3 variables per grid point on Lassen with 8M grid points (24M dofs) per node comparing
CPU (dashed) and GPU (solid) total run times with (red) and without (blue) aggressive
coarsening on the first level. Here CPU and GPU runs use mm-ext+e interpolation and
two-stage mm-ext+e interpolation when using aggressive coarsening. 107

Exascale Computing Project (ECP) xii ECP-RPT-ST-0002-2020–Public

51 Left: the heFFTe software stack. Right: 3D FFT computational pipeline in heFFTe with: 1)
Flexible API for application-specific input and output, including bricks/pencils/etc.; 2)
Efficient packing/unpacking and MPI communication routines; 3) Efficient 1D/2D/3D FFTs
on the node. 109

52 Left: heFFTe acceleration of 10243 FFT on 4 Summit nodes. Note: nodal computations are
accelerated 43×. Right: heFFTe strong scalability on 10243 FFT on up to 256 nodes (×6
V100 GPUs; double complex arithmetic; starting and ending with bricks; performance assumes
5N3log2N

3 flops). 110
53 Time-to-solution performance of anisotropic flow problems of different sizes on different

hardware architectures: standard ILU(0) vs. new ParILUT. 114
54 SLATE in the ECP software stack. 115
55 ArborX progress on halo finding algorithm on Nvidia Volta. The baseline is a serial implemen-

tation of CosmoTools. Numbers indicate speedup compared to the baseline. The solid lines
show improvements that were already merged. Dashed lines show improvements that are in
active development. 119

56 The resulting neutrino and antineutrino distributions in a deleptonization wave simulation
using sparse grid opacities, which require only 6% of the memory used in the dense approach,
with relative L2 error less than 1%. 120

57 A notional diagram of DOE facility storage resources. Not all systems have each role filled,
and often additional network connections exist to accelerate specific data flows. 125

58 An example of using ADIOS to support ECP science. This sketch represents the demonstration
at the February 2018 ECP Meeting, which featured WDM Fusion, CODAR, ADIOS, and
other joint ECP activities. Note that all of the green arrows in the figure represent data
communication or storage handled by the ADIOS infrastructure. 133

59 Examples of recent progress in VTK-m include (from left to right) optimized structured grid
contouring, contouring of extended cell types, and representation of an extruded cell set. . . 138

60 VeloC: Architecture . 140
61 cuSZ: Design Overview . 142
62 An overview of asynchronous I/O as a HDF5 VOL connector 144
63 Using UnifyFS Using UnifyFS from an MPI application is as easy as using the parallel file

system. Simply change the file path to point to the UnifyFS mount point /unifyfs, and then
perform I/O as normal. 145

64 UnifyFS Overview. Users can give commands in their batch scripts to launch UnifyFS
within their allocation. UnifyFS works transparently with POSIX I/O, common I/O libraries,
and VeloC. Once file operations are intercepted by UnifyFS, they are handled with specialized
optimizations to ensure high performance. 146

65 The ALPINE statistical feature detection algorithm is used to identify bubbles in situ in an
MFiX-Exa fluidized bed simulation. The raw particle data is converted to a particle density
field. A threshold is applied to the density field to create a feature similarity field, separating
the bubbles from uninteresting regions. Saving only the statistical representation allows greater
temporal resolution while significantly reducing output data size. A preliminary study shows a
factor of 300 reduction in data size compared to the raw particle fields. The statistical bubble
representation becomes the input to a post hoc Cinema-based workflow to track bubbles and
explore bubble dynamics. 149

66 112:1 zfp compression of sw4 seismic displacement data to 80µm accuracy. 151
67 WDMapp documentation for how to use the E4S WDMapp Docker container to speed up

WDMapp installation by leveraging the E4S Spack build cache. 156
68 Two examples of policy feedback received from the ECP ST development community. Comments

commonly touched on issues such as appropriateness, both broadly and to specific types of
software found within ST, as well as clarity and feasibility. 157

69 ExaWorks Toolkit . 161
70 Productivity features such as Dynamic Control Replication scales well across

multi-GPU systems in unstructured mesh computations. 166

Exascale Computing Project (ECP) xiii ECP-RPT-ST-0002-2020–Public

71 New Legion features such as Tracing will improve strong scaling in unstructured
mesh computations. 167

72 A screenshot of an ECP Nyx simulation in the new jupyter notebook-based cinemasci module. 169
73 AMR implementation in MFEM allows many applications to benefit from non-conforming

adaptivity, without significant changes in their codes. 172
74 STAT, Archer, NINJA, and FliT: a continuum of debugging tools for exascale. 174
75 Spack build pipelines at facilities will provide HPC-native binary builds for users. 175
76 The MFEM team has developed High-Order ↔ Low-Order Transformations and GPU support

for many linear algebra and finite element operations . 175
77 Status of RAJA, Umpire, and CHAI support for exascale platforms. 176
78 Kokkos Execution and Memory Abstractions . 181

Exascale Computing Project (ECP) xiv ECP-RPT-ST-0002-2020–Public

LIST OF TABLES

1 ECP ST Work Breakdown Structure (WBS), Technical Area, and description of scope. 2
2 Software Development Kits (SDKs) provide an aggregation of software products that have

complementary or similar attributes. ECP ST uses SDKs to better assure product interoper-
ability and compatibility. SDKs are also essential aggregation points for coordinated planning
and testing. SDKs are an integral element of ECP ST [4]. Section 4.5.7 describes the six SDK
groupings and the current status of the SDK effort. 11

3 Integration Goal Scoring: A point is accrued when a client integrates and sustainably uses a
product’s capabilities. Scores are assessed annually. 19

4 Key metric values: These values are determined by the L4 sub-project team when defining
their KPP-3 issue. 20

5 Each integration score will have an associated weight depending on the potential impact if
integration targets are not met. 20

6 Programming Models and Runtimes Projects (18 total). 24
7 Development Tools Projects (22 total). 24
8 Mathematical Libraries Projects (18 total). 25
9 Visualization and Data Projects (26 total). 25
10 Software Delivery and Ecosystems Projects (2 total). 26
11 External products to which ECP ST activities contribute. Participation in requirements,

analysis, design and prototyping activities for third-party products is some of the most effective
software work we can do. 27

12 Storage system specifications for current platforms. 126
13 Projected storage specifications for upcoming platforms. 126

Exascale Computing Project (ECP) xv ECP-RPT-ST-0002-2020–Public

1. INTRODUCTION

The Exascale Computing Project Software Technology (ECP ST) focus area represents the key bridge between
Exascale systems and the scientists developing applications that will run on those platforms. ECP offers
a unique opportunity to build a coherent set of software (often referred to as the “software stack”) that
will allow application developers to maximize their ability to write highly parallel applications, targeting
multiple Exascale architectures with runtime environments that will provide high performance and resilience.
But applications are only useful if they can provide scientific insight, and the unprecedented data produced
by these applications require a complete analysis workflow that includes new technology to scalably collect,
reduce, organize, curate, and analyze the data into actionable decisions. This requires approaching scientific
computing in a holistic manner, encompassing the entire user workflow—from conception of a problem, setting
up the problem with validated inputs, performing high-fidelity simulations, to the application of uncertainty
quantification to the final analysis. The software stack plan defined here aims to address all of these needs by
extending current technologies to Exascale where possible, by performing the research required to conceive
of new approaches necessary to address unique problems where current approaches will not suffice, and by
deploying high-quality and robust software products on the platforms developed in the Exascale systems
project. The ECP ST portfolio has established a set of interdependent projects that will allow for the research,
development, and delivery of a comprehensive software stack, as summarized in Table 1.

ECP ST is developing a software stack to meet the needs of a broad set of Exascale applications. The
current software portfolio covers many projects spanning the areas of programming models and runtimes,
development tools, mathematical libraries and frameworks, data management, analysis and visualization, and
software delivery. The ECP software stack was developed bottom up based on application requirements and
the existing software stack at DOE HPC Facilities. The portfolio comprises projects selected in two different
ways:

1. Thirty projects funded by the DOE Office of Science (ASCR). This scope of work was selected in
October 2016 via an RFI and RFP process, considering prioritized requirements. The initial collection
of loosely coupled projects has been re-organized twice and is now in a form that should serve us well
as we move to the more formal execution phases of the project.

2. Three DOE NNSA/ASC funded projects that are part of the Advanced Technology Development
and Mitigation (ATDM) program, which is in its sixth year (started in FY14). These projects are
focused on longer term research to address the shift in computing technology to extreme, heterogeneous
architectures and to advance the capabilities of NNSA/ASC simulation codes.

Since the initial selection process, ECP ST has reorganized efforts as described in Section 1.2.

1.1 BACKGROUND

Historically, the software used on supercomputers has come from three sources: computer system vendors,
DOE laboratories, and academia. Traditionally, vendors have supplied system software: operating system,
compilers, runtime, and system-management software. The basic system software is typically augmented by
software developed by the DOE HPC facilities to fill gaps or to improve management of the systems. An
observation is that it is common for system software to break or not perform well when there is a jump in the
scale of the system.

Mathematical libraries and tools for supercomputers have traditionally been developed at DOE laboratories
and universities and ported to the new computer architectures when they are deployed. Vendors also play a role
in this space by optimizing the implementations of commonly-used libraries and tools for their architectures,
while retaining the interfaces defined by the broader community. This approach enables compile and link
time replacement to improve performance on a specific platform by using the vendor versions. Math libraries
and tools have been remarkably robust and have supplied some of the most impactful improvements in
application performance and productivity. The challenges have been the constant adapting and tuning to
rapidly changing architectures.

Programming paradigms and the associated programming environments that include compilers, debuggers,
message passing, and associated runtimes have traditionally been developed by vendors, DOE laboratories,
and universities. The same can be said for file system and storage software. An observation is that the vendor

Exascale Computing Project (ECP) 1 ECP-RPT-ST-0002-2020–Public

WBS 2.3.1 Programming
Models and
Runtimes

Cross-platform, production-ready programming infrastructure to
support development and scaling of mission-critical software at
both the node and full-system levels.

WBS 2.3.2 Development
Tools

A suite of tools and supporting unified infrastructure aimed at
improving developer productivity across the software stack. This
scope includes debuggers, profilers, and the supporting compiler
infrastructure, with a particular emphasis on LLVM [5] as a
delivery and deployment vehicle.

WBS 2.3.3 Mathematical
Libraries

Mathematical libraries and frameworks that (i) interoperate with
the ECP software stack; (ii) are incorporated into ECP applica-
tions; and (iii) provide scalable, resilient numerical algorithms
that facilitate efficient simulations on Exascale computers.

WBS 2.3.4 Data and
Visualization

Production infrastructure necessary to manage, share, and facili-
tate analysis and visualization of data in support of mission-critical
codes. Data analytics and visualization software that supports sci-
entific discovery and understanding, despite changes in hardware
architecture and the size, scale, and complexity of simulation and
performance data produced by Exascale platforms.

WBS 2.3.5 Software
Ecosystem and

Delivery

Development and coordination of Software Development Kits
(SDKs), the Extreme-scale Scientific Software Stack (E4S) across
all of ECP ST projects. Development of capabilities in Spack [1] in
collaboration with NNSA’s primary sponsorship. Development of
SuperContainers [6] and coordination of container-based workflows
across DOE computing facilities.

WBS 2.3.6 NNSA ST Development and enhancement of open source software capabilities
that are primarily developed at Lawrence Livermore, Los Alamos
and Sandia National Laboratories. Funds for engaging open
science application and software teams in the use and enhancement
of these products.

Table 1: ECP ST Work Breakdown Structure (WBS), Technical Area, and
description of scope.

Exascale Computing Project (ECP) 2 ECP-RPT-ST-0002-2020–Public

Figure 1: The ECP Work Breakdown Structure through Level 3 (L3) as of
December 5, 2019. Under Software Technology, WBS 2.3.6 consolidates ATDM
contributions to ECP into a new L3 area.

is ultimately responsible for providing a programming environment and file system with the supercomputer,
but there is often a struggle to get the vendors to support software developed by others or to invest in new
ideas that have few or no users yet. Another observation is that file-system software plays a key role in overall
system resilience, and the difficulty of making the file-system software resilient has grown non-linearly with
the scale and complexity of the supercomputers.

In addition to the lessons learned from traditional approaches, Exascale computers pose unique software
challenges including the following.

• Extreme parallelism: Experience has shown that software breaks at each shift in scale. Exascale
systems are predicted to have a billion-way concurrency almost exclusively from discrete accelerator
devices, similar to today’s GPUs. An alternate approach using many cores with vector units is also
competitive, but still requires the same approximate amount of parallelism. Because clock speeds have
essentially stalled, the 1000-fold increase in potential performance going from Petascale to Exascale is
entirely from concurrency improvements.

• Data movement in a deep memory hierarchy: Data movement has been identified as a key
impediment to performance and power consumption. Exascale system designs are increasing the types
and layers of memory, which further challenges the software to increase data locality and reuse, while
reducing data movement.

• Discrete memory and execution spaces: The node architectures of Exascale systems include host
CPUs and discrete device accelerators. Programming for these systems requires coordinated transfer of
data and work between the host and device. While some of this transfer can be managed implicitly, for
the most performance-sensitive phases, the programmer typically must manage host-device coordination
explicitly. Much of the software transformation effort will be focused on this issue.

In addition to the software challenges imposed by the scale of Exascale computers, the following additional
requirements push ECP away from the historical approaches for getting the needed software for DOE
supercomputers.

Exascale Computing Project (ECP) 3 ECP-RPT-ST-0002-2020–Public

• 2021 acceleration: ECP has a goal of accelerating the development of the U.S. Exascale systems
and enabling the first deployment by 2021. This means that the software needs to be ready sooner,
and the approach of just waiting until it is ready will not work. A concerted plan that accelerates the
development of the highest priority and most impactful software is needed.

• Productivity: Traditional supercomputer software requires a great deal of expertise to use. ECP
has a goal of making Exascale computing accessible to a wider science community than previous
supercomputers have been. This requires the development of software that improves productivity and
ease of use.

• Diversity: There is a strong push to make software run across diverse Exascale systems. Accelerator
devices from Nvidia have been available for many years and specific host-device programming and
execution applications have been successfully ported to these platforms. Exascale platforms will continue
to have this kind of execution model, but with different programming and runtime software stacks.
Writing high-performance, portable code for these platforms will be challenging.

• Analytics and machine learning: Future DOE supercomputers will need to solve emerging data
science and machine learning problems in addition to the traditional modeling and simulation applications.
This will require the development of scalable, parallel analytics and machine learning software for
scientific applications, much of which does not exist today.

The next section describes the approach employed by ECP ST to address the Exascale challenges.

1.2 ECP ST PROJECT WBS CHANGES

The initial organization of ECP ST was based on discussions that occurred over several years of Exascale
planning within DOE, especially the DOE Office of Advanced Scientific Computing Research (ASCR). Figure 4
shows the conceptual diagram of this first phase. The 66 ECP ST projects were mapped into 8 technical
areas, in some cases arbitrating where a project should go based on its primary type of work, even if other
work was present in the project. In November 2017, ECP ST was reorganized into 5 technical areas, primarily
through merging a few smaller areas, and the number of projects was reduced to 56 (then 55 due to further
merging in SW Ecosystem & Delivery). Figure 5 shows the diagram of the second phase of ECP ST. In
Section 2, we describe the organization, planning, execution, tracking and assessment processes that will put
ECP ST in a good position for success in the CD-2 phase of the project.

2. ECP SOFTWARE TECHNOLOGY PLANNING, EXECUTION,
TRACKING AND ASSESSMENT

During the past two years, ECP ST has introduced the Extreme-scale Scientific Software Stack (E4S) and
Software Development Kits (SDKs). We have established new approaches for project planning, execution,
tracking and assessment using a tailored earned value management system that enables iterative and
incremental refinement to its planning process. We have also revised our key performance parameter (KPP-3,
the third of ECP’s four KPPs) to be solely focused on measuring capability integration into client environments.
We have developed and used an assessment process that has led to significant changes in the number and
scope of L4 subprojects.

2.1 ECP SOFTWARE TECHNOLOGY ARCHITECTURE AND DESIGN

ECP is taking an approach of codesign across all its principal technical areas: applications development (AD),
software technology (ST), and hardware & integration (HI). For ECP ST, this means its requirements are
based on input from other areas, and there is a tight integration of the software products both within the
software stack as well as with applications and the evolving hardware.

The portfolio of projects in ECP ST is intended to address the Exascale challenges and requirements
described above. We note that ECP is not developing the entire software stack for an Exascale system. For
example, we expect vendors to provide the core software that comes with the system (in many cases, by
leveraging ECP and other open-source efforts). Examples of vendor-provided software include operating

Exascale Computing Project (ECP) 4 ECP-RPT-ST-0002-2020–Public

Figure 2: The FY20 ECP ST WBS structure as of November 18, 2020, includes
two new L4 subprojects: 2.3.5.10 ExaWorks, a workflow components project, and
2.3.3.15 Sake, a new solver effort that provides funding for Trilinos porting to
Frontier and Aurora platforms.

Exascale Computing Project (ECP) 5 ECP-RPT-ST-0002-2020–Public

• Phase 1: 66 total L4 subprojects

– 35 projects funded by the DOE Office of Science that were selected in late 2016 via an RFI
and RFP process, considering prioritized requirements of applications and DOE facilities.
These projects started work in January–March 2017 depending on when the contracts were
awarded.

– 31 ongoing DOE NNSA funded projects that are part of the Advanced Technology Development
and Mitigation (ATDM) program. The ATDM program started in FY14. These projects
are focused on longer term research to address the shift in computing technology to extreme,
heterogeneous architectures and to advance the capabilities of NNSA simulation codes.

• Phase 2: 55 total L4 subprojects

– 41 ASCR-funded projects. Added 2 SW Ecosystem & Delivery projects and 4 SDK projects.

– 15 ATDM projects: Combined the previous 31 ATDM projects into one project per technical
area per lab. ATDM projects are generally more vertically integrated and would not perfectly
map to any proposed ECP ST technical structure. Minimizing the number of ATDM projects
within the ECP WBS structure reduces complexity of ATDM to ECP coordination and gives
ATDM flexibility in revising its portfolio without disruption to the ECP-ATDM mapping.

• Phase 3a: 33 total L4 subprojects. Fewer, larger and more uniform-sized projects

– Starting with FY2020, ECP ST has further consolidated L4 projects to foster additional
synergies and amortize project overheads as ECP heads into Critical Decision Phase 2 [7],
where more rigor in planning and execution are needed.

– 5 L3s to 6: New NNSA ST L3

– 40 ST SC-funded L4 subprojects to 30.

∗ Programming Models & Runtimes– 13 to 9, Development Tools- 6 to 6, Mathematical
Libraries- 7 to 6, Data & Visualization- 10 to 7, SW Ecosystem & Delivery- 4 to 3.

∗ Includes 2 new L4 subprojects in SW Ecosystem & Delivery.

– 15 ST NNSA-funded projects transferred to new NNSA ST L3. Consolidated from 15 to 3 L4
subprojects.

– No more small subprojects.

– Figure 2 show the overall structure.

• Phase 3b: 35 total L4 subprojects. Add two new L4 subprojects.

– New L4 subproject called ExaWorks. Focuses on providing an underlying component archi-
tecture for workflow management systems, led by a team of workflow experts who would
leverage the new substrate in their own workflow products.

– New L4 subproject called Sake. This project was created in response to a need for Trilinos
funding to port to Aurora and Frontier. At the same time, Trilinos-related activities in the
CLOVER project, specifically Kokkos Kernels, were merged with the new Trilinos funding to
create a more holistic project, independent of CLOVER.

– Figure 2 show the overall structure.

Figure 3: Project remapping summary from Phase 1 (through November 2017)
to Phase 2 (November 2017 – September 30, 2019) to Phase 3 (After October 1,
2019)

Exascale Computing Project (ECP) 6 ECP-RPT-ST-0002-2020–Public

Figure 4: ECP ST before November 2017 reorganization. This conceptually
layout emerged from several years of Exascale planning, conducted primarily
within the DOE Office of Advanced Scientific Computing Research (ASCR). After
a significant restructuring of ECP that removed much of the facilities activities
and reduced the project timeline from 10 to seven years, and a growing awareness
of what risks had diminished, this diagram no longer represented ECP ST efforts
accurately.

Figure 5: ECP ST after November 2017 reorganization. This diagram more
accurately reflects the priorities and efforts of ECP ST given the new ECP project
scope and the demands that we foresee.

Exascale Computing Project (ECP) 7 ECP-RPT-ST-0002-2020–Public

Figure 6: ECP ST after October 2019 reorganization. This diagram reflects the
further consolidation of NNSA open source contributions to enable more flexible
management of NNSA ST contributions.

Figure 7: ECP ST Leadership Team as of November 2020. Jonathan Carter,
previous Deputy Director of ECP ST, became Associate Lab Director of the Com-
puting Sciences Area at Lawrence Berkeley National Laboratory. His departure
led to naming of Lois Curfman McInnes, previously the L3 Lead of Math Libraries,
as Deputy Director of ECP ST, and Sherry Li as the new Math Libraries L3 Lead.
Rob Neely was also promoted at LLNL, leading to Kathryn Mohror becoming
the L3 Lead of NNSA ST.

Exascale Computing Project (ECP) 8 ECP-RPT-ST-0002-2020–Public

system, file system, compilers for C, C++, Fortran, etc. (increasingly derived from the LLVM community
ecosystem to which ECP contributes), basic math libraries, system monitoring tools, scheduler, debuggers,
vendor’s performance tools, MPI (based on ECP-funded projects), OpenMP (with features from ECP-funded
project), and data-centric stack components. ECP develops other, mostly higher-level software that is needed
by applications and is not vendor specific. ECP-funded software activities are concerned with extreme
scalability, exposing additional parallelism, unique requirements of Exascale hardware, and performance-
critical components. Other software that aids in developer productivity is needed and may come from
third-party open-source efforts.

The ST portfolio includes both ASCR and NNSA ATDM funded efforts. The MOU established between
DOE-SC and NNSA has formalized this effort. Whenever possible, ASCR and ATDM efforts are treated
uniformly in ECP ST planning and assessment activities.

ST is also planning to increase integration within the ST portfolio through increased use of software
components and application composition vs. monolithic application design. An important transition that
ECP can accelerate is the increased development and delivery of reusable scientific software components
and libraries. While math and scientific libraries have long been a successful element of the scientific
software community, their use can be expanded to include other algorithms and software capabilities, so that
applications can be considered more an aggregate composition of reusable components than a monolithic
code that uses libraries tangentially.

To accelerate this transition, we need a greater commitment on the part of software component developers
to provide reliable and portable software that users can consider to be part of the software ecosystem in much
the same way users depend on MPI and compilers. At the same time, we must expect application developers
to participate as clients and users of reusable components, using capabilities from components, transitioning
away from (or keeping as a backup option) their own custom capabilities.

2.1.1 The Extreme-scale Scientific Software Stack (E4S)

In October 2020, ECP ST released version 1.2 of the Extreme-scale Scientific Software Stack, E4S (http:
//e4s.io). E4S contains a collection of the software products to which ECP ST contributes. E4S is the
primary conduit for providing easy access to ECP ST capabilities for ECP and the broader community. E4S
is also the ECP ST vehicle for regression and integration testing across DOE pre-Exascale and Exascale
systems.

E4S has the following key features:

• The E4S suite is a large and growing effort to build and test a comprehensive scientific
software ecosystem: In November 2018, E4S V0.1 contained 25 ECP products. Two years later, E4S
V1.2, the fifth E4S release, contained 67 ECP ST products and numerous additional products needed
for a complete software environment. Eventually E4S will contain all open source products to which
ECP contributes, and all related products needed for a holistic environment.

• E4S is not an ECP-specific software suite: The products in E4S represent a holistic collection
of capabilities that contain the ever-growing SDK collections sponsored by ECP and all additional
underlying software required to use ECP ST capabilities. Furthermore, we expect the E4S effort to live
beyond the timespan of ECP, becoming a critical element of the scientific software ecosystem.

• E4S is partitionable: E4S products are built and tested together using a tree-based hierarchical
build process. Because we build and test the entire E4S tree, users can build any subtree of interest,
without building the whole stack (see Figure 8).

• E4S uses Spack: The Spack [2] meta-build tool invokes the native build process of each product,
enabling quick integration of new products, including non-ECP products.

• E4S is available via containers: In addition to a build-from-source capability using Spack, E4S
maintains several container environments (Docker, Singularity, Shifter, CharlieCloud) that provides
the lowest barrier to use. Container distributions dramatically reduce installation costs and provide a
ready-made environment for tutorials that leverage E4S capabilities. For example, E4S containers now
support custom images for ECP applications such as WDMapp and Pantheon.

Exascale Computing Project (ECP) 9 ECP-RPT-ST-0002-2020–Public

http://e4s.io
http://e4s.io

Figure 8: Using Spack [2], E4S builds a comprehensive software stack. As ECP
ST efforts proceed, we will use E4S for continuous integration testing, providing
developers with rapid feedback on regression errors and providing user facilities
with a stable software base as we prepare for Exascale platforms. This diagram
shows how E4S builds ECP products via an SDK target (the math libraries SDK
called xSDK in this example). The SDK target then builds all product that are
part of the SDK (see Figure 13 for SDK groupings), first defining and building
external software products. Green-labeled products are part of the SDK. The
blue label indicates expected system tools, in this case a particular version of
Python. Black-labeled products are expected to be previously installed into the
environment (a common requirement and easily satisfied). Using this approach,
a user who is interested in only SUNDIALS (a particular math library) can be
assured that the SUNDIALS build will be possible since it is a portion of what
E4S builds and tests.

Exascale Computing Project (ECP) 10 ECP-RPT-ST-0002-2020–Public

1. Domain scope: Each SDK will be composed of packages whose capabilities are within a natural
functionality domain. Packages within an SDK provide similar capabilities that can enable
leveraging of common requirements, design, testing and similar activities. Packages may have a
tight complementary such that ready composability is valuable to the user.

2. Interaction models: How packages within an SDK interact with each other. Interactions include
common data infrastructure, or seamless integration of other data infrastructures; access to
capabilities from one package for use in another.

3. Community policies: Expectations for how package teams will conduct activities, the services
they provide, software standards they follow, and other practices that can be commonly expected
from a package in the SDK.

4. Meta-build system: Robust tools and processes to build (from source), install and test the SDK
with compatible versions of each package. This system sits on top of the existing build, install and
test capabilities for each package.

5. Coordinated plans: Development plans for each package will include efforts to improve SDK
capabilities and lead to better integration and interoperability.

6. Community outreach: Efforts to reach out to the user and client communities will include
explicit focus on SDK as product suite.

Table 2: Software Development Kits (SDKs) provide an aggregation of software
products that have complementary or similar attributes. ECP ST uses SDKs to
better assure product interoperability and compatibility. SDKs are also essential
aggregation points for coordinated planning and testing. SDKs are an integral
element of ECP ST [4]. Section 4.5.7 describes the six SDK groupings and the
current status of the SDK effort.

• E4S distribution: E4S products are available at http://e4s.io.

• E4S developer community resources: Developers interested in participating in E4S can visit the
E4S-Project GitHub community at https://github.com/E4S-Project.

The first set of E4S Community Policies [8] was adopted in October 2020 (see Figure 9). These Policies
are membership criteria for a product to become an E4S member package. The purpose of the Community
Policies is to establish baseline software quality and practice expectations to help address sustainability and
interoperability challenges for the Software Technologies software ecosystem. While a package does not have
to demonstrate compatibility with the policies as a condition of inclusion in E4S releases, compatibility is
necessary for member package designation.

The E4S effort is described in further detail in Sections 4.5, especially Section 2.1.2.

2.1.2 Software Development Kits

One opportunity for a large software ecosystem project such as ECP ST is to foster increased collaboration,
integration and interoperability among its funded efforts. Part of ECP ST design is the creation of software
development kits (SDKs). SDKs are collections of related software products (called packages) where
coordination across package teams will improve usability and practices and foster community growth among
teams that develop similar and complementary capabilities. SDKs have the following attributes:

ECP ST SDKs As part of the delivery of ECP ST capabilities, we will establish and grow a collection
of SDKs. The new layer of aggregation that SDKs represent are important for improving all aspects of
product development and delivery. The communities that will emerge from SDK efforts will lead to better
collaboration and higher quality products. Established community policies will provide a means to grow

Exascale Computing Project (ECP) 11 ECP-RPT-ST-0002-2020–Public

http://e4s.io
https://github.com/E4S-Project

Figure 9: Version 1 of the E4S Community Policies. These policies will serve
as membership criteria for E4S member packages. The E4S Community Policy
effort has heavily leveraged the existing xSDK Community Policies [3].

Exascale Computing Project (ECP) 12 ECP-RPT-ST-0002-2020–Public

Figure 10: The Extreme-scale Scientific Software Stack (E4S) provides a com-
plete Linux-based software stack that is suitable for many scientific workloads,
tutorial and development environments. At the same time, it is an open soft-
ware architecture that can expand to include any additional and compatible
Spack-enabled software capabilities. Since Spack packages are available for many
products and easily created for others, E4S is practically expandable to include al-
most any robust Linux-based product. Furthermore, E4S capabilities are available
as subtrees of the full build: E4S is not monolithic.

Figure 11: Using Spack build cache features, E4S builds can be accelerated
by use of cached binaries for any build signature that Spack has already seen.
Between September 2019 and September 2020, more than 21,000 binaries were
added to the cache.

Exascale Computing Project (ECP) 13 ECP-RPT-ST-0002-2020–Public

Figure 12: E4S now supports Google Cloud Platform in addition to Amazon
AWS.

SDKs beyond ECP to include any relevant external effort. The meta-build systems (based on Spack) will
play an important role in managing the complexity of building the ECP ST software stack, by providing a
new layer where versioning, consistency and build options management can be addressed at a mid-scope,
below the global build of ECP ST products. Each ECP ST L3 (five of them) has funds for an SDK project
from which we have identified a total of six SDKs and an at-large collection of remaining products that will
be delivered outside of the SDK grouping. Section 4.5.7 provides an update on the progress in defining SDK
groupings. For visibility, we provide the same diagram in Figure 13.

2.1.3 ECP ST Product Dictionary

In the past year, ECP has initiated an effort to explicitly manage ECP ST products and their dependencies
(see Section 2.1.4). In order to eliminate ambiguities, we first need a product dictionary: an official list of
publicly-name products to which ECP ST teams contribute their capabilities and upon which ECP ST clients
depend. The ECP Product Dictionary is single, managed table. It presently contains 70 primary products
along with subproducts that are either components within a product or particular implementations if a
standard API. Two special primary products are the Facilities stack and Vendor stack. Having these stacks
on the list enables ST teams to indicate that their capabilities are being delivered to ecosystems outside of
ECP.

Figure 14 describes the policy for ECP ST teams to add and manage their contributions to the Product
Dictionary. Figure 15 shows a snapshot of the beginning and end of the current ECP ST Product Dictionary,
which is maintained on the ECP Confluence wiki.

2.1.4 ECP Product Dependency Management

Given the ECP ST Product Dictionary, and a similar dictionary for ECP AD and Co-Design products, ECP as
a project has created a dependency database that enabled creation and characterization of product-to-product
dependencies. ECP manages these dependencies in a Jira database using a custom Jira issue type, Dependency.
The dependency database provides an important tool for understanding and managing ECP activities. The
dependency information is valuable both within and outside the project. Figure

Exascale Computing Project (ECP) 14 ECP-RPT-ST-0002-2020–Public

Figure 13: The above graphic shows the breakdown of ECP ST products into 6
SDKs (the first six columns). The rightmost column lists products that are not
part of an SDK, but are part of Ecosystem group that will also be delivered as
part of E4S. The colors denoted in the key map all of the ST products to the
ST technical area they are part of. For example, the xSDK consists of products
that are in the Math Libraries Technical area, plus TuckerMPI which is in the
Ecosystem and Delivery technical area. Section 4.5.7 provides an update on the
progress in defining SDK groupings.

2.2 ECP ST PLANNING AND TRACKING

While ECP is an official 413.3b federal construction project using an earned value management (EVM)
structure, we are permitted to tailor the planning process in order to obtain the flexibility needed for a
software project whose requirements are emerging as the project proceeds. In this section, we describe how
ECP ST plans it activities using the Jira project management tool. We first discuss P6 Activities (similar to
milestones) and then discuss the key performance parameter (KPP-3) associated with ECP ST.

2.2.1 ECP ST P6 Activity Issues

ECP ST uses a custom Jira issue type called P6 Activity. Each L4 subproject creates a series of P6 Activity
issues extending to the end of ECP (Q3FY23). Except for the current fiscal year, a single P6 Activity issue
describes expected deliverables as a planning package. Six months prior to the start of a fiscal year, the
planning package for the coming year is replaced with 4–6 issues spanning the year with baseline start and
end dates, an estimate of the percent annual budget and a high-level description. Eight weeks prior to the
start of an activity, full details about staffing, completion criteria and more are added to the issue. Figure 18
show the steps in diagram form.

Cost, scope and schedule for ECP ST is tracked and managed by monitoring progress of the collection of
P6 Activities. Value is accrued when a P6 Activity issue is marked Done in the Jira database. Schedule and
cost performance indices are derived from the status of our P6 Activities. Schedule, cost and scope changes
against the plan are managed via a formal project change request (PCR) process.

2.2.2 Key Performance Parameter (KPP) 3

ECP has four Key Performance Parameters (KPPs). Figure 19 shows the KPP definitions. KPP-3 is focused
on a productive and sustainable software ecosystem. ECP ST is the primary owner of this KPP (along with

Exascale Computing Project (ECP) 15 ECP-RPT-ST-0002-2020–Public

Figure 14: This figure shows a screenshot from the top of the ECP Confluence
wiki page containing the ECP ST Product Dictionary. The Product Dictionary
structure contains primary and secondary products. Client (consumer) dependen-
cies are stated against the primary product names only, enabling unambiguous
mapping of AD-on-ST and ST-on-ST dependencies.

Figure 15: These screen shots are from the ECP Confluence Product Dictionary
Table. The table is actively managed to include primary and secondary products
to which ECP ST team contribute and upon which ECP ST clients depend.
Presently the Product Dictionary contains 70 primary products. Secondary
products are listed under the primary product with the primary product as a
prefix. For example, AID is the second listed primary product in this figure.
STAT, Archer and FLIT are component subproducts. MPI (not shown) is another
primary product. MPICH and OpenMPI are two robust MPI implementations
and are listed as MPI subproducts.

Exascale Computing Project (ECP) 16 ECP-RPT-ST-0002-2020–Public

Figure 16: Using Jira, ECP manages its AD, ST, HI, vendor and facilities
dependencies. This figure shows a dashboard snapshot along with an edit panel
that support creation and management of a consumer-on-producer dependency.

Figure 17: This query result from the ECP Jira Dependency database lists all
consumers of capabilities from the PETSc/TAO product. By selecting the details
of one of the dependency issues, one can further see how critical the dependency
is and see any custom information peculiar to the particular dependency.

Exascale Computing Project (ECP) 17 ECP-RPT-ST-0002-2020–Public

Figure 18: ECP ST uses a custom Jira issue type called P6 Activity. Each L4
subproject creates a series of these issues extending to the end of ECP. Except for
the current fiscal year, a single P6 Activity issue describes expected deliverables
as a planning package. Six months prior to the start of a fiscal year, the planning
package is replaced with 4–6 issues spanning the coming year. Eight weeks prior
to the start of an activity, full details about staffing, completion criteria and more
are added to the issue.

co-design projects in ECP AD). The focus of KPP-3 is defining and tracking capability integrations of ST
products into client environment, as described in this section.

First, we define terms:

• Capability: Any significant product functionality, including existing features adapted to the pre-
exascale and exascale environments, that can be integrated into a client environment.

• Integration Goal: A statement of impact on the ECP ecosystem where a software capability is used
in a consequential and sustainable way by a client in pre-exascale environments first, then in exascale
environments. Integration goals are product focused. A project that contributes to more than one
product will have a KPP-3 Jira issue for each of its products.

• Integration Score: The number of successful capability integrations into a client environment.

• Sustainable: For the purposes of KPP-3, sustainable means that the capability is integrated in a way
that reasonably assures future use of the capability beyond the end of ECP. For libraries, this would
generally mean that library usage is made from source code in the main repository and use of the library
is tested regularly as a part of the client code regular regression testing. For tools, sustainable would
generally mean the tool is available as needed in the exascale environment. For prototype capabilities
that are incorporated into vendor and community software, the impact of the prototype is still visible
to a subject matter expert.

Defining an Integration Goal Integration goals are defined per product within each project. The goal
statement will include:

• The name of the product to which the project contributes. The product must be listed in the ECP ST
Product Dictionary.

• A description of the target clients into whose environments the product capabilities will be integrated.
Specific clients can be listed, but are not necessary. Clients must be part of ECP, or otherwise part of
the exascale systems ecosystem such as a vendor or facility partner.

Exascale Computing Project (ECP) 18 ECP-RPT-ST-0002-2020–Public

Figure 19: ECP has four key performance parameters (KPPs). ECP ST is the
primary owner (with ECP AD co-design subprojects) of KPP-3.

• A general description of the nature of the integration, addressing what it means to be successfully
integrated.

Integration Score Capability Integration Description

1 point per capability
sustainably integrated by
a client, per exascale
platform used.

Complete, sustainable integration
of a significant product capability
into a client environment in a
pre-exascale environment
(tentative score) and in an
exascale environment (confirmed
score).

Client acknowledges benefit from product
capability use and considers it part of
their workflow. Integration is sustainable
with documentation and testing.
Integration of product capability into
main product repo and SDK/E4S
environments is completed.

Table 3: Integration Goal Scoring: A point is accrued when a client integrates
and sustainably uses a product’s capabilities. Scores are assessed annually.

Demonstration and recording of progress toward integration goal All artifacts and evidence of
progress will be captured in the Jira KPP-3 issue associated with a product integration goal as progress
is made. All integration scores are tentative until the capability is available and demonstrated in exascale
environments. Table 4 summarizes the defined values.

Assessment process While progress is recorded as it is achieved, progress assessment is done annually,
including input from external subject matter experts (SMEs). ECP leadership and SMEs will review
integration score evidence, confirming or adjusting integration scores. Note: Assessment can result in a
reduced integration score from a previous year if a client has stopped using a capability that was previously
used.

Transition from tentative to confirmed integration score Each integration score is tentative until
the capability is available and demonstrated to be effective in the exascale environments. Demonstration can
be achieved by a variety of means such that ECP Leadership and SMEs are reasonably certain the capability
positively impacts the client in exascale environments. At this point the integration score becomes confirmed.
Typically, the transition from tentative to confirmed would be a low-cost independent demonstration, or
accomplished within the client’s environment as the client is conducting its own assessments. Note: The
planned exascale system (El Capitan) that can support National Security applications will not be available

Exascale Computing Project (ECP) 19 ECP-RPT-ST-0002-2020–Public

Value Definition Description

Present The current integration score.
This is always an indication of the progress the team has
made. The present value is assessed annually.

Passing

The minimum integration score
required for the product to be
counted as part of ECP ST
progress toward KPP-3.

The passing score is between 4 and 8 for each integration
goal, 4 for larger integration efforts, 8 for smaller ones.
This is equivalent to accomplishing one to two capability
integration per year per product.

Stretch

The maximum reasonably
achievable integration score for a
product if capability integrations
are successful with all potential
ECP clients.

The stretch value allows us to see the overall integration
potential.

Table 4: Key metric values: These values are determined by the L4 sub-project
team when defining their KPP-3 issue.

until the end of FY23. Integration of ST products into National Security Applications will be considered for
transition from tentative to confirmed when either a) evidence of integration is provided during FY20-22 ASC
L1 and L2 milestones related to ECP/ATDM National Security application readiness for exascale platforms,
and/or b) integration is demonstrated on the El Capitan early access systems, and exercises capabilities
similar to those anticipated to be important to effectively using El Capitan. For KPP-3 capability integrations
targeted at El Capitan, we will use the best available confirmation process in FY23. KPP-3 weighted scoring

Impact Level Weight Comments

High 2
The score for integration goals associated with high impact products will
be added to the KPP-3 score with a weight of 2.

Normal 1 Most KPP-3 Jira issues will have a weight of one.

Risk-Mitigating 0.5
Some KPP-3 Jira issues are associated with products that help us plan for
the potential risks if high impact products don’t deliver as expected.

Shared 0.5
Some projects receive funding from both NNSA and SC, e.g.
RAJA/Kokkos. For these projects, the score is balanced to reflect dual
contributions.

Table 5: Each integration score will have an associated weight depending on
the potential impact if integration targets are not met.

The KPP-3 score is the weighted sum of all integration goals that have an integration score that meets or
exceeds its passing value. The KPP-3 score will initially be tentative. The KPP-3 score is not officially met
until the weighted sum of confirmed integration scores exceeds 50% of the total possible points.

2.2.3 ECP ST Software Delivery

An essential activity for, and the ultimate purpose of, ECP ST is the delivery of a software stack that enables
productive and sustainable Exascale computing capabilities for target ECP applications and platforms,
and the broader high-performance computing community. The ECP ST Software Ecosystem and Delivery
sub-element (WBS 2.3.5) and the SDKs in each other sub-element provide the means by which ECP ST will
deliver its capabilities.

ECP ST Delivery and HI Deployment Providing the ECP ST software stack to ECP applications
requires coordination between ECP ST and ECP HI. The focus areas have a complementary arrangement
where ECP ST delivers its products and ECP HI deploys them. Specifically:

• ST delivers software. ECP ST products are delivered directly to application teams, to vendors and to
facilities. ECP ST designs and implements products to run on DOE computing facilities platforms and
make products available as source code via GitHub, GitLab or some other accessible repository.

Exascale Computing Project (ECP) 20 ECP-RPT-ST-0002-2020–Public

• HI facilitates efforts to deploy ST (and other) software on Facilities platforms by installing it where
users expect to find it. This could be in /usr/local/bin or similar directory, or available via “module
load”.

Separating the concerns of delivery and deployment is essential because these activities require different
skill sets. Furthermore, ECP ST delivers its capabilities to an audience that is beyond the scope of specific
Facilities’ platforms. This broad scope is essential for the sustainability of ECP ST products, expanding the
user and developer communities needed for vitality. In addition, ECP HI, the computer system vendors and
other parties provide deployable software outside the scope of ECP ST, therefore having the critical mass of
skills to deploy the entire software stack.

ECP ST Delivery Strategy ECP ST delivers it software products as source code, primarily in repositories
found on GitHub, Gitlab installations or similar platforms. Clients such as ECP HI, OpenHPC and application
developers with direct repository access then take the source and build, install and test our software. The
delivery strategy is outlined in Figure 20.

Users access ECP ST products using these basic mechanisms:

• Build from source code: The vast majority of ECP ST products reach at least some of their user
base via direct source code download from the product repository. In some cases, the user will download
a single compressed file containing product source, then expand the file to expose the collection of
source and build files. Increasingly, users will fork a new copy of an online repository. After obtaining
the source, the user executes a configuration process that detects local compilers and libraries and then
builds the product. This kind of access can represent a barrier for some users, since the user needs to
build the product and can encounter a variety of challenges in that process, such as an incompatible
compiler or a missing third-party library that must first be installed. However, building from source
can be a preferred approach for users who want control over compiler settings, or want to adapt how
the product is used, for example, turning on or off optional features, or creating adaptations that
extend product capabilities. For example, large library frameworks such as PETSc and Trilinos have
many tunable features that can benefit from the user building from source code. Furthermore, these
frameworks support user-defined functional extensions that are easier to support when the user builds
the product from source. ECP ST is leveraging and contributing to the development of Spack [1]. Via
meta-data stored in a Spack package defined for each product, Spack leverages a product’s native build
environment, along with knowledge about its dependencies, to build the product and dependencies
from source. Spack plays a central role in ECP ST software development and delivery processes by
supporting turnkey builds of the ECP ST software stack for the purposes of continuous integration
testing, installation and seamless multi-product builds.

• DOE computing facilities: Each DOE computing facility (ALCF, OLCF, NERSC, LLNL and ACES
[LANL/SNL]) provides pre-built versions of 17 to 20 ECP ST products (although the exact mix of
products varies somewhat at each site). Many of these products are what users would consider to
be part of the core system capabilities, including compilers, e.g., Flang (Section 4.2.22) and LLVM
(Section 4.2.19), and parallel programming environments such as MPICH (Section 4.1.8), OpenMPI
(Section 4.1.14) and OpenMP (Section 4.2.21). Development tools such as PAPI (Section 4.2.8) and
TAU (Section 4.2.17) are often part of this suite, if not already included in the vendor stack. Math
and data libraries such as PETSc (Section 4.3.9), Trilinos (Section 4.3.17), HDF5 (Section 4.4.13)
and others are also available in some facilities software installations. We anticipate and hope for
increased collaboration with facilities via the ECP Hardware & Integration (HI) Focus Area. We are
also encouraged by multi-lab efforts such as the Tri-Lab Operating System Stack (TOSS) [9] that are
focused on improving uniformity of software stacks across facilities.

• Vendor stacks: Computer system vendors leverage DOE investments in compilers, tools and libraries.
Of particular note are the wide use of MPICH(Section 4.1.8) as software base for most HPC vendor
MPI implementations and the requirements, analysis, design and prototyping that ECP ST teams
provide. Section 3.3 describes some of these efforts.

Exascale Computing Project (ECP) 21 ECP-RPT-ST-0002-2020–Public

Figure 20: The ECP ST software stack is delivered to the user commu-
nity through several channels. Key channels are via source code, increasingly
using SDKs, direct to Facilities in collaboration with ECP HI, via binary distribu-
tions from containers and HPC vendors. Increasingly, E4S is the primary pathway
for delivering ECP ST capabilities. E4S provides testing, a documentation portal
and quality commitments via community policies.

• Binary distributions: Approximately 10 ECP ST products are available via binary distributions
such as common Linux distributions, in particular via OpenHPC[10]. ECP ST intends to foster growth
of availability via binary distributions as an important way to increase the size of the user community
and improve product sustainability via this broader user base.

• Container and Cloud environments: E4S is available via an increasing number of container and
cloud environments (Docker, Shifter, Singularity and CharlieCloud, AWS and Google Cloud)¿

2.2.4 ECP ST Software Lifecycle

We complete Section 2 with a discussion of the ECP ST Software Lifecycle as shown in Figure 21. From
inception as P6 Activity planning packages that are refined annually and given detailed information just
prior to starting the activity to the successful integration of a capability into the client environment, ECP ST
features are governed by this lifecycle. Of course, each product team conducts its own integrated planning
that incorporates other funding sources and stakeholders, but the ECP ST Lifecycle intersects the product
lifecycle for capabilities that ECP funds.

Exascale Computing Project (ECP) 22 ECP-RPT-ST-0002-2020–Public

Figure 21: ECP ST product planning, executing, testing and assess-
ment are governed by the combination of P6 Activities for hierarchical
planning (Figure 18) and KPP-3 for measuring capability integrations
(Table 3). This figure shows how the entire lifecycle of ECP ST feature
development is captured by these two elements.

3. ECP ST DELIVERABLES

ECP ST contributes to the HPC software
ecosystem through direct product devel-
opment, contributions to industry and de
facto standards, and shaping the require-
ments, design and prototyping of products
delivery by vendors and other third parties.

ECP ST efforts contribute to the HPC software
ecosystem in a variety of ways. Most tangible are the
contributions to software products, many of which
are already widely deployed and being transformed
for use with Exascale systems. However, ECP ST
contributes to industry and de facto standards ef-
forts. Finally, some ECP ST efforts contribute to the
upstream processes of requirements, analysis, design
and prototyping that informs the implementation
of vendor and other third-party software products.
While they do not receive the most attention, these
upstream efforts are very impactful and low cost,
without a product to support.

3.1 ECP ST DEVELOPMENT PROJECTS

ECP ST efforts support development in the following software projects in five technical areas (Table 1). In
each table is a list of related projects, a URL (if available) and an estimate of deployment scope.

3.2 STANDARDS COMMITTEES

An important activity for ECP ST staff is participation in standards efforts. In many instances, our software
will not be sustainable if it is not tightly connected to a standard. At the same time, any standard has to
take into account the emerging requirements that Exascale platforms need in order to achieve performance
and portability. Figure 22 summarized ECP ST staff involvement in the major standards efforts that impact
ECP.

Exascale Computing Project (ECP) 23 ECP-RPT-ST-0002-2020–Public

Product Website Deployment Scope
GASNet-EX https://gasnet.lbl.gov Broad
Kokkos https://github.com/kokkos Broad
MPICH http://www.mpich.org Broad
OpenMPI https://www.open-mpi.org Broad
RAJA https://github.com/LLNL/RAJA Broad
CHAI https://github.com/LLNL/CHAI Moderate
Intel GEOPM https://geopm.github.io Moderate
Legion http://legion.stanford.edu Moderate
Qthreads https://github.com/Qthreads Moderate
Umpire https://github.com/LLNL/Umpire Moderate
UPC++ https://upcxx.lbl.gov Moderate
UMap https://github.com/LLNL/umap Moderate
Variorum https://github.com/LLNL/variorum Moderate
BOLT https://github.com/pmodels/bolt Experimental
Argobots https://github.com/pmodels/argobots Experimental
PaRSEC http://icl.utk.edu/parsec Experimental
AML https://xgitlab.cels.anl.gov/argo/aml Experimental
PowerSlurm https://github.com/tpatki/power-slurm Experimental

Table 6: Programming Models and Runtimes Projects (18 total).

Product Website Deployment Scope
Caliper https://github.com/llnl/caliper Broad
Dyninst Binary Tools Suite http://www.paradyn.org Broad
Flang/LLVM Fortran compiler http://www.flang-compiler.org Broad
HPCToolkit http://hpctoolkit.org Broad
LLVM http://llvm.org/ Broad
PAPI http://icl.utk.edu/exa-papi Broad
SCR https://github.com/llnl/scr Broad
STAT https://github.com/LLNL/STAT Broad
Tau http://www.cs.uoregon.edu/research/tau Broad
LLVM OpenMP compiler https://github.com/SOLLVE Moderate
OpenMP V & V Suite https://bitbucket.org/crpl_cisc/sollve_vv/src Moderate
mpiFileUtils https://github.com/hpc/mpifileutils Moderate
openarc https://ft.ornl.gov/research/openarc Moderate
Papyrus https://csmd.ornl.gov/project/papyrus Moderate
Program DB Toolkit (PDT) https://www.cs.uoregon.edu/research/pdt Moderate
PRUNERS Toolset https://github.com/PRUNERS/PRUNERS-Toolset Moderate
TriBITS https://tribits.org Moderate
Gotcha http://github.com/llnl/gotcha Experimental
Kitsune https://github.com/lanl/kitsune Experimental
QUO https://github.com/lanl/libquo Experimental
SICM Experimental
SuRF Experimental

Table 7: Development Tools Projects (22 total).

Exascale Computing Project (ECP) 24 ECP-RPT-ST-0002-2020–Public

https://gasnet.lbl.gov
https://github.com/kokkos
http://www.mpich.org
https://www.open-mpi.org
https://github.com/LLNL/RAJA
https://github.com/LLNL/CHAI
https://geopm.github.io
http://legion.stanford.edu
https://github.com/Qthreads
https://github.com/LLNL/Umpire
https://upcxx.lbl.gov
https://github.com/LLNL/umap
https://github.com/LLNL/variorum
https://github.com/pmodels/bolt
https://github.com/pmodels/argobots
http://icl.utk.edu/parsec
https://xgitlab.cels.anl.gov/argo/aml
https://github.com/tpatki/power-slurm
https://github.com/llnl/caliper
http://www.paradyn.org
http://www.flang-compiler.org
http://hpctoolkit.org
http://llvm.org/
http://icl.utk.edu/exa-papi
https://github.com/llnl/scr
https://github.com/LLNL/STAT
http://www.cs.uoregon.edu/research/tau
https://github.com/SOLLVE
https://bitbucket.org/crpl_cisc/sollve_vv/src
https://github.com/hpc/mpifileutils
https://ft.ornl.gov/research/openarc
https://csmd.ornl.gov/project/papyrus
https://www.cs.uoregon.edu/research/pdt
https://github.com/PRUNERS/PRUNERS-Toolset
https://tribits.org
http://github.com/llnl/gotcha
https://github.com/lanl/kitsune
https://github.com/lanl/libquo

Product Website Deployment Scope
hypre http://www.llnl.gov/casc/hypre Broad
Kokkoskernels https://github.com/kokkos/kokkos-kernels Broad
MFEM http://mfem.org/ Broad
PETSc/TAO http://www.mcs.anl.gov/petsc Broad
SLATE http://icl.utk.edu/slate Broad
SUNDIALS https://computing.llnl.gov/sundials Broad
SuperLU https://portal.nersc.gov/project/sparse/superlu Broad
Trilinos https://github.com/trilinos/Trilinos Broad
DTK https://github.com/ORNL-CEES/DataTransferKit Moderate
FleCSI http://www.flecsi.org Moderate
MAGMA-sparse https://bitbucket.org/icl/magma Moderate
STRUMPACK http://portal.nersc.gov/project/sparse/strumpack Moderate
xSDK https://xsdk.info Moderate
FFTX https://github.com/spiralgen/fftx Experimental
ForTrilinos https://trilinos.github.io/ForTrilinos Experimental
libEnsemble https://github.com/Libensemble/libensemble Experimental
Tasmanian http://tasmanian.ornl.gov Experimental
ArborX https://github.com/arborx/ArborX Experimental

Table 8: Mathematical Libraries Projects (18 total).

Product Website Deployment Scope
Catalyst (ALPINE) https://www.paraview.org/in-situ Broad
Darshan http://www.mcs.anl.gov/research/projects/darshan Broad
HDF5 https://www.hdfgroup.org/downloads Broad
IOSS https://github.com/gsjaardema/seacas Broad
Parallel netCDF http://cucis.ece.northwestern.edu/projects/PnetCDF Broad
ParaView (ALPINE) https://www.paraview.org Broad
ROMIO http://www.mcs.anl.gov/projects/romio Broad
VeloC https://veloc.readthedocs.io Broad
VisIt (ALPINE) https://wci.llnl.gov/simulation/computer-codes/visit Broad
VTK-m http://m.vtk.org Broad
ADIOS https://github.com/ornladios/ADIOS2 Moderate
ASCENT (ALPINE) https://github.com/Alpine-DAV/ascent Moderate
In Situ Algorithms (ALPINE) https://github.com/Alpine-DAV/algorithms Moderate
Cinema https://github.com/cinemascience Moderate
zfp https://github.com/LLNL/zfp Moderate
SZ https://github.com/szcompressor/SZ Moderate
C2C Experimental
FAODEL https://github.com/faodel/faodel Experimental
GUFI https://github.com/mar-file-system/GUFI Experimental
HXHIM http://github.com/hpc/hxhim.git Experimental
MarFS https://github.com/mar-file-system/marfs Experimental
Mercury http://www.mcs.anl.gov/research/projects/mochi Experimental
ROVER Experimental
Siboka Experimental
UnifyFS https://github.com/LLNL/UnifyFS Experimental

Table 9: Visualization and Data Projects (26 total).

Exascale Computing Project (ECP) 25 ECP-RPT-ST-0002-2020–Public

http://www.llnl.gov/casc/hypre
https://github.com/kokkos/kokkos-kernels
http://mfem.org/
http://www.mcs.anl.gov/petsc
http://icl.utk.edu/slate
https://computing.llnl.gov/sundials
https://portal.nersc.gov/project/sparse/superlu
https://github.com/trilinos/Trilinos
https://github.com/ORNL-CEES/DataTransferKit
http://www.flecsi.org
https://bitbucket.org/icl/magma
http://portal.nersc.gov/project/sparse/strumpack
https://xsdk.info
https://github.com/spiralgen/fftx
https://trilinos.github.io/ForTrilinos
https://github.com/Libensemble/libensemble
http://tasmanian.ornl.gov
https://github.com/arborx/ArborX
https://www.paraview.org/in-situ
http://www.mcs.anl.gov/research/projects/darshan
https://www.hdfgroup.org/downloads
https://github.com/gsjaardema/seacas
http://cucis.ece.northwestern.edu/projects/PnetCDF
https://www.paraview.org
http://www.mcs.anl.gov/projects/romio
https://veloc.readthedocs.io
https://wci.llnl.gov/simulation/computer-codes/visit
http://m.vtk.org
https://github.com/ornladios/ADIOS2
https://github.com/Alpine-DAV/ascent
https://github.com/Alpine-DAV/algorithms
https://github.com/cinemascience
https://github.com/LLNL/zfp
https://github.com/szcompressor/SZ
https://github.com/faodel/faodel
https://github.com/mar-file-system/GUFI
http://github.com/hpc/hxhim.git
https://github.com/mar-file-system/marfs
http://www.mcs.anl.gov/research/projects/mochi
https://github.com/LLNL/UnifyFS

Product Website Deployment Scope
Spack https://github.com/spack/spack Broad
E4S https://e4s.io Moderate

Table 10: Software Delivery and Ecosystems Projects (2 total).

ECP ST staff are heavily involved in MPI and OpenMP standards efforts. ECP ST staff hold several
key leadership positions and have heavy involvement in all aspects. ECP ST staff also play a critical role
in C++ standards efforts. While DOE staff have only recently engaged in C++ standards, our efforts are
essential to getting HPC requirements considered, especially by contributing working code that demonstrates
requirements and design. ECP ST sponsors the newest open source Fortran compiler Flang 4.2.22, a front
end for LLVM. This compiler is a rapidly emerging and essential part of the HPC ecosystem. In particular,
while ARM processors are not explicitly part of the pre-Exascale ecosystem, they are emerging as a strong
contender in the future. Flang is the Fortran compiler for ARM-based systems. ECP ST involvement in
other committees, including the de facto also provide valuable leverage and improved uniformity for HPC
software. Lastly, we mention the Visualization Toolkit (VTK) Architecture Review Board (ARB). While this
is only a single instance, we intend to explore the ARB model as part of our SDK efforts.

Figure 22: ECP ST staff are involved in a variety of official and de facto
standards committees. Involvement in standards efforts is essential to assuring the
sustainability of our products and to assure that emerging Exascale requirements
are addressed by these standards.

3.3 CONTRIBUTIONS TO EXTERNAL SOFTWARE PRODUCTS

While much of ECP ST efforts and focus are on the product that we develop and support, it is important to
note that some of our important work, and certainly some of our most sustainable and highly leveraged work,
is done by providing requirements, analysis, design and prototype capabilities for vendor and other third
party software. Many software studies have shown that 70 to 80% of the cost of a successful software product
goes into post-delivery maintenance. Our effort summarized in Table 11 expressly eliminate this large cost
for DOE because the product is developed and supported outside of DOE.

Exascale Computing Project (ECP) 26 ECP-RPT-ST-0002-2020–Public

https://github.com/spack/spack
https://e4s.io

Product Contribution

Kokkos and RAJA
ECP efforts to provide portable on-node parallel programming and
execution environments have led to new features in C++ standards

MPI Forum

ECP ST staff maintain several chapters of the MPI Forum, effort
that require a constant involvement with the other authors, as well
as participation to the online discussions related to the chapter and
regular attendance of the MPI Forum face-to-face activities.

Flang

ECP funds development of the new open source Fortran compiler
front end called Flang. Flang provides Fortran language support
for LLVM backends, in a similar way as Clang provides support for
C and C++.

All Development
Toolswork

Starting in FY20, our Development Tools efforts are organized
around delivering capabilities into the LLVM ecosystem.

SWIG (www.swig.org)
The ECP ST ForTrilinos efforts contributes the capability to
generate automatic Fortran bindings from C++ code.

TotalView debugger

ECP ST staff are engaged in co-design of OMPD, the new
debugging interface for OpenMP programs, along with RogueWave
engineers. This effort helps RogueWave improve their main
debugging product, TotalView, by making it aware and compatible
with recent advances in OpenMP debugging.

LLVM
An ECP ST staff member is co-leading design discussions around
the parallel IR and loop-optimization infrastructure.

SLATE
ECP ST math libraries efforts inform the design, implementation,
and optimization of dense numerical linear algebra routines on
most vendor platforms

Cray MPICH MPI-IO

As part of the ExaHDF5 ECP project, the ALCF worked with
Cray MPI-IO developers to merge the upstream ROMIO code into
the downstream proprietary Cray MPICH MPI-IO, leveraging
Cray’s extensive suite of IO performance tests and further tuning
the algorithm. Cray is currently targeting its deployment in an
experimental release.

OpenHPC
An ECP ST staff member serves on the OpenHPC Technical
Steering Committee as a Component Development representative.

Table 11: External products to which ECP ST activities contribute. Participa-
tion in requirements, analysis, design and prototyping activities for third-party
products is some of the most effective software work we can do.

Exascale Computing Project (ECP) 27 ECP-RPT-ST-0002-2020–Public

Figure 23: ECP ST is composed of 6 Level-3 Technical Areas. The first four
areas are organized around functionality development themes. The fifth is focused
on technology for packaging and delivery of capabilities. The sixth is organized
around per-lab open source development at the three DOE NNSA laboratories,
LANL, LLNL and SNL.

4. ECP ST TECHNICAL AREAS

ECP ST is composed of six Level-3 Technical Areas (see Figure 23). In this section of the ECP ST Capabilities
Assessment Report we provide an overview of each Level-3 Technical Area and two-page summaries of each
funded project within the technical area. For each L3 area, we discuss scope and requirements, assumptions
and feasibility, objectives, plans, risks and mitigations and future trends. For each Level-4 subproject, we
provide a project overview and summarizes the key challenges, solution strategy, recent progress and next
steps for the project.

Exascale Computing Project (ECP) 28 ECP-RPT-ST-0002-2020–Public

4.1 WBS 2.3.1 PROGRAMMING MODELS & RUNTIMES

End State: A cross-platform, production-ready programming environment that enables and accelerates the
development of mission-critical software at both the node and full-system levels.

4.1.1 Scope and Requirements

A programming model provides the abstract design upon which developers express and coordinate the efficient
parallel execution of their program. A particular model is implemented as a developer-facing interface and a
supporting set of runtime layers. To successfully address the challenges of exascale computing, these software
capabilities must address the challenges of programming at both the node- and full-system levels. These
two targets must be coupled to support multiple complexities expected with exascale systems (e.g., locality
for deep memory hierarchies, affinity for threads of execution, load balancing) and also provide a set of
mechanisms for performance portability across the range of potential and final system designs. Additionally,
there must be mechanisms for the interoperability and composition of multiple implementations (e.g., one
at the system level and one at the node level). This must include abilities such as resource sharing for
workloads that include coupled applications, supporting libraries and frameworks, and capabilities such as in
situ analysis and visualization.

Given the ECP’s timeline, the development of new programming languages and their supporting infras-
tructure is infeasible. We do, however, recognize that the augmentation or extension of the features of existing
and widely used languages (e.g., C/C++ and Fortran) could provide solutions for simplifying certain software
development activities.

4.1.2 Assumptions and Feasibility

The intent of the PMR L3 is to provide a set of programming abstractions and their supporting implementations
that allow programmers to select from options that meet demands for expressiveness, performance, productivity,
compatibility, and portability. It is important to note that, while these goals are obviously desirable, they
must be balanced with an additional awareness that today’s methods and techniques may require changes in
both the application and the overall programming environment and within the supporting software stack.

4.1.3 Objectives

PMR provides the software infrastructure necessary to enable and accelerate the development of HPC
applications that perform well and are correct and robust, while reducing the cost both for initial development
and ongoing porting and maintenance. PMR activities need to reflect the requirements of increasingly complex
application scenarios, usage models, and workflows, while at the same time addressing the hardware challenges
of increased levels of concurrency, data locality, power, and resilience. The software environment will support
programming at multiple levels of abstraction that includes both mainstream as well as alternative approaches
if feasible in ECP’s timeframe.

Both of these approaches must provide a portability path such that a single application code can run
well on multiple types of systems, or multiple generations of systems, with minimal changes. The layers of
the system and programming environment implementation will therefore aim to hide the differences through
compilers, runtime systems, messaging standards, shared-memory standards, and programming abstractions
designed to help developers map algorithms onto the underlying hardware and schedule data motion and
computation with increased automation.

4.1.4 Plan

PMR contains nine L4 projects. To ensure relevance to DOE missions, these efforts leverage and collaborate
with existing activities within the broader HPC community. The PMR area supports the research and
development needed to produce exascale-ready versions of the Message Passing Interface (MPI); Partitioned
Global-Address Space Libraries (UPC++, GASNet); task-based programming models (Legion, PaRSEC);
software for node-level performance portability (Kokkos, RAJA); and libraries for memory, power, and
resource management. Initial efforts focused on identifying the core capabilities needed by the selected
ECP applications and components of the software stack, identifying shortcomings of current approaches,

Exascale Computing Project (ECP) 29 ECP-RPT-ST-0002-2020–Public

establishing performance baselines of existing implementations on available petascale and prototype systems,
and the re-implementation of the lower-level capabilities of relevant libraries and frameworks. These efforts
provided demonstrations of parallel performance of algorithms on pre-exascale, leadership-class machines–at
first on test problems, but eventually in actual applications (in close collaboration with the AD and HI
teams). Initial efforts also informed research into exascale-specific algorithms and requirements that will be
implemented across the software stack. The supported projects targeted and implemented early versions of
their software on CORAL, NERSC and ACES pre-exascale systems–with an ultimate target of production-
ready deployment on the exascale systems. In FY20–23, the focus will be on development and tuning for
the specific architectures of the selected exascale platforms, in addition to tuning specific features that are
critical to ECP applications.

Throughout the effort, the applications teams and other elements of the software stack evaluate and provide
feedback on their functionality, performance, and robustness. Progress towards these goals is documented
quarterly and evaluated annually (or more frequently if needed) based on PMR-centric milestones as well as
joint milestone activities shared across associated software stack activities by Application Development and
Hardware & Integration focus areas.

4.1.5 Risks and Mitigation Strategies

The mainstream activities of ECP in the area of programming models focus on advancing the capabilities of
MPI and OpenMP. Pushing them as far as possible into the exascale era is key to supporting an evolutionary
path for applications. This is the primary risk mitigation approach for existing application codes. Extensions
to MPI and OpenMP standards require research, and part of the efforts will focus on rolling these findings
into existing standards, which takes time. To further address risks, PMR is exploring alternative approaches
to mitigate the impact of potential limitations of the MPI and OpenMP programming models.

Another risk is the failure of adoption of the software stack by the vendors, which is mitigated by
the specific delivery focus in sub-element SW Ecosystem and Delivery. Past experience has shown that
a combination of laboratory-supported open-source software and vendor-optimized solutions built around
standard APIs that encourage innovation across multiple platforms is a viable approach and is what we
are doing in PMR. We are using close interaction with the vendors early on to encourage adoption of the
software stack, including well-tested practices of including support for key software products or APIs into
large procurements through NRE or other contractual obligations. A mitigation strategy for this approach
involves building a long-lasting open-source community around projects that are supported via laboratory
and university funding.

Creating a coordinated set of software requires strong management to ensure that duplication of effort
is minimized. This is recognized by ECP management, and processes are in place to ensure collaboration
is effective, shortcuts are avoided unless necessary, and an agile approach to development is instituted to
prevent prototypes moving directly to product.

4.1.6 Future Trends

Recently announced exascale system procurements have shown that the trend in exascale compute-node
hardware is toward heterogeneity: Compute nodes of future systems will have a combination of regular CPUs
and accelerators (typically GPUs). Furthermore, the GPUs will not be just from NVIDIA as on existing
systems: One system will have Intel GPUs and another will have AMD GPUs. In other words, there will be
a diversity of GPU architectures, each with their own vendor-preferred way of programming the GPUs. An
additional complication is that although the HPC community has some experience in using NVIDIA GPUs
and the associated CUDA programming model, the community has relatively little experience in programming
Intel or AMD GPUs. These issues lead to challenges for application and software teams in developing exascale
software that is both portable and high performance. Below we outline trends in programming these complex
systems that will help alleviate some of these challenges.

Trends in Internode Programming The presence of accelerator hardware on compute nodes has resulted
in individual compute nodes becoming very powerful. As a result, millions of compute nodes are no longer
needed to build an exascale system. This trend results in a lower burden on the programming system used

Exascale Computing Project (ECP) 30 ECP-RPT-ST-0002-2020–Public

for internode communication. It is widely expected that MPI will continue to serve the purpose of internode
communication on exascale systems and is the least disruptive path for applications, most of which already
use MPI. Nonetheless, improvements are needed in the MPI Standard as well as in MPI implementations in
areas such as hybrid programming (integration with GPUs and GPU memory, integration with the intranode
programming model), overall resilience and robustness, scalability, low-latency communication, optimized
collective algorithms, optimized support for exascale interconnects and lower-level communication paradigms
such as OFI and UCX, and scalable process startup and management. PGAS models, such as UPC++ and
OpenSHMEM, are also available to be used by applications that rely on them and face similar challenges as
MPI on exascale systems. These challenges are being tackled by the MPI and UPC++/GASNet projects in
the PMR area.

Trends in Intranode Programming The main challenge for exascale is in achieving performance and
portability for intranode programming, for which a variety of options exist. Vendor-supported options
include CUDA and OpenACC for NVIDIA GPUs, SYCL/DPC++ for Intel GPUs, and HIP for AMD GPUs.
OpenACC supports accelerator programming via compiler directives. SYCL provides a C++ abstraction on
top of OpenCL, which itself is a portable, lower-level API for programming heterogeneous devices. Intel’s
DPC++ is similar to SYCL with some extensions. HIP from AMD is similar to CUDA; in fact, AMD provides
translation tools to convert CUDA programs to HIP.

Among portable, standard programming models, OpenMP has supported accelerators via the target

directive starting with OpenMP version 4.0 released in July 2013. Subsequent releases of OpenMP (version
4.5 and 5.0) have further improved support for accelerators. OpenMP is supported by vendors on all platforms
and, in theory, could serve as a portable intranode programming model for systems with accelerators. However,
in practice, a lot depends on the quality of the implementation.

Kokkos and RAJA provide another alternative for portable, heterogenous-node programming via C++
abstractions. They are designed to work on complex node architectures with multiple types of execution
resources and multilevel memory hierarchies. Many ECP applications are successfully using Kokkos and
RAJA to write portable parallel code that runs efficiently on GPUs.

We believe these options (and high-quality implementations of them) will meet the needs of applications
in the exascale timeframe.

Exascale Computing Project (ECP) 31 ECP-RPT-ST-0002-2020–Public

4.1.7 WBS 2.3.1.01 Programming Models & Runtimes Software Development Kits

Overview The Programming Models & Runtimes SDK effort is focused on identifying meaningful aggrega-
tions of products in this technical area. SDK efforts are in the early stages of planning and execution. Most
of the work on SDKs has been driven from the SW Ecosystem & Delivery technical area. A description of
the SDK effort can be found in Section 4.5.7.

Exascale Computing Project (ECP) 32 ECP-RPT-ST-0002-2020–Public

4.1.8 WBS 2.3.1.07 Exascale MPI

Overview MPI has been the de facto standard programming model for HPC from the mid 90’s till today, a
period where supercomputing performance increased by six orders of magnitude. The vast majority of DOE’s
parallel scientific applications running on the largest HPC systems use MPI. These application codes represent
billions of dollars of investment. Therefore, MPI must evolve to run as efficiently as possible on Exascale
systems. Our group at Argonne developed a high-performance, production-quality MPI implementation,
called MPICH. The focus areas of the Exascale MPI / MPICH project are: (1) continuous improvement of
the performance and capabilities of the MPICH software to meet the demands of ECP and other broader
DOE applications, (2) coordinate vendor and supercomputing center interactions to ensure efficient solutions
to applications, and (3) be involved in the MPI forum and standardization efforts to ensure continuity of the
work beyond this project.

MPICH team is involved in the formation of the MPI Forum and have been deeply involved in defining
the MPI standard since 1992. MPICH has helped prototype and define the majority of the features in the
MPI standard. As such, MPICH has been one of the most influential pieces of software in accelerating the
adoption of the MPI standard by the HPC community. MPICH has been adopted by leading vendors into
their own derivative implementations. Examples include Intel (for Intel MPI), Cray (for Cray MPI), IBM
(for IBM PE MPI), Mellanox (for MLNX-MPI), Microsoft (for MS-MPI), and Ohio State University (for
MVAPICH). MPICH and its derivatives are exclusively used in 7 of the top 10 supercomputers in the world
today. MPICH is the recipient of a number of awards including an R&D 100 award.

Key Challenges While we believe MPI is a viable programming model at Exascale, both the MPI
standard and MPI implementations have to address the challenges posed by the increased scale, performance
characteristics and evolving architectural features expected in Exascale systems, as well as the capabilities
and requirements of applications targeted at these systems. The key challenges are:

1. Interoperability with intranode programming models having a high thread count [11, 12, 13] (such as
OpenMP, OpenACC and emerging asynchronous task models);

2. Scalability and performance over complex architectures [14, 15, 13, 16] (including high core counts,
processor heterogeneity and heterogeneous memory);

3. Software overheads that are exacerbated by lightweight cores and low-latency networks;

4. Enhanced functionality (extensions to the MPI standard) based on experience with applications and
high-level libraries/frameworks targeted at Exascale; and

5. Topics that become more significant as we move to the next generation of HPC architectures: memory
usage, power, and resilience.

Solution Strategy The Exascale MPI project has the following primary technical thrusts: (1) Perfor-
mance and Scalability (2) Heterogeneity (3) Topology Awareness (4) Fault Tolerance and (5)
MPI+X Hybrid Programming.

Our solution strategy started by addressing performance and scalability aspects in MPICH related to
network address management [17]. Apart from this, we also looked at communication strategies which allow
the MPI library to be as lightweight as possible [18, 19]. Other solutions include investigation and evaluation
of communication relaxation hints, investigation of optimizations to memory scalability in MPICH and
improvements to MPI RMA operations.

Exascale MPI heterogeneity efforts [20, 21, 22] started with the survey on heterogeneous memory archi-
tectures on upcoming DOE machines and how MPICH can take advantage of them [23]. The efforts also
included the investigation of utilizing heterogeneous memory inside the MPI implementation and evaluation
of applications [24]. The heterogeneity efforts further extended to investigating and developing technologies
for GPU integration for the better support of the coming Exascale supercomputers.

Exascale MPI topology awareness efforts [25, 26] originated with the investigation and evaluation of hints
based on topology awareness and optimizations to virtual topology functionality in MPICH [27, 28]. The

Exascale Computing Project (ECP) 33 ECP-RPT-ST-0002-2020–Public

other efforts include investigation of topology-aware collectives and neighborhood collectives in MPICH [29]
and evaluation of the selected ECP applications.

Exascale MPI fault tolerance efforts [30, 13] started with support for handling noncatastrophic errors
in MPI. The second effort included defining the scope of errors in MPI, a prerequisite for user-level failure
mitigation. Other efforts in this direction includes standardizing these efforts in MPI and evaluating application
suitability for fault tolerance.

Exascale MPI+X hybrid programming developed firstly with effort in improving interoperation of MPICH
with threads [31]. Secondly, we developed the work-queue data transfer model for multithreaded MPI
communication [32]. We have included support for interaction of MPICH with user-level thread (ULT)
libraries [33], primarily targeting Argobots and the BOLT runtime [34]. Other issues that are being looked at
include the investigation and evaluation on multiple virtual communication interfaces for multithreaded MPI
communication [35].

Recent Progress The recent release of MPICH 3.4b1 version includes deliverables from the major mile-
stones of FY2020. Figure 24 provides the details of them. In the first milestone, we created the collective
algorithm selection framework which allows MPI to choose different algorithm for collectives operations based
on multiple factors including number of processes, network topology and support of hardware acceleration.
The user of MPICH can provide a configuration file to describe the criteria for choosing different collective
algorithms. We expect the vendors utilizing this capability to provide collective selection strategies that
is optimized for the target supercomputers. The end-user could also generate their own strategies that is
fine-tuned to the characteristic and needs of their applications. In the second milestone, we added the support
for GPU in MPI communication. This allows a buffer in the GPU memory to be used directly in MPI
communication operations. MPICH’s GPU support can utilize the native support of fast GPU communication
in hardware while also provide a fallback mode for more complex MPI communication pattens. We also
created a new high-performance datatype engine that further utilizes GPU for handling non-contiguous
datatype in MPI communication.

Lastly, we made many efforts in participating the standardization of MPI-4 by discussing proposed features
and contributing the feedback for our users back to the MPI forum. This has led to several new features
being accepted by the MPI Forum.

MPI + GPU Improvements for multiple accelerator nodes and native hardware modelsCollective Selection Framework

Selection
Logic

Collective
Selection
Framework

Profiling
Traces

Initialize

MPI_Reduce

MPI_Bcast

MPI_Allreduc
e

…
.

Optimized
Reduce

Optimized
Bcast

Optimized
Allreduce

…
.

CH4

MPI Layer

CH4 Core

Netmods
OFI UCX

Shmmods
POSIX XPMEM

Architecture-
specific

Collectives

Active
Message
Fallback

Abstract Device Interface
(ADI)

MPI Interface
Application

Machine-
independent

Collectives

Derived Datatype
Management (Yaksa)

Group
Management

GPU Support
Fallback

GPU IPC
YaksaDatatype Engine

Vector

Indexed

Struct

MPI Datatypes

…

Datatype
Frontend

CPU
Backend

CUDA
Backend

HIP
Backend

ZE
Backend

CPU

NVIDIA
GPU

AMD
GPU

Intel
GPU

0

2

4

6
1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M

Ti
m

e
(m

se
c)

Number of integers in the Z
dimension

Yaksa H2H Yaksa D2D

Preliminary results for
pack/pnpack noncontiguous
datatypeGPU buffers to leverage
high GPU memory bandwidth.

Figure 24: Major MPICH milestones completed in fiscal year 2020

Next Steps A major focus of the ongoing Exascale MPI efforts is further improvements to the MPI+GPU
support. This includes support for GPU stream triggered MPI operations, optimized support for noncontiguous
data and software evaluations. Another focus of FY2021 is the implementation of new features in MPI-4
standard including persistent collective operations. We will also make effort for improving the MPICH
testing infrastructure by improving the testsuite and promoting integration ECP systems to provide better
test coverage and a close-to-production test environment. This would enhance the readiness of MPICH for
exascale systems.

Exascale Computing Project (ECP) 34 ECP-RPT-ST-0002-2020–Public

4.1.9 WBS 2.3.1.08 Legion

Overview This project focuses on the development, hardening and support of the Legion Programming
System (https://legion.stanford.edu) with a focus on Exascale platforms and workloads that can benefit
from Legion’s features. At a fundamental level our focus is on the key capabilities (e.g. correctness,
performance, scalability) of an alternative programming model for ECP that seeks to expose additional levels
of parallelism in applications. In addition, Legion also enables a separation of concerns of the implementation
of an application from how it is mapped onto a given system architecture.

Our efforts are currently focused on addressing bugs, refactoring the implementation for improved stability,
performance and scaling, extending support for the selected exascale platforms (Aurora and Frontier), and
also expanding the feature set as needed for both application and platform nuances.

The Legion Programming System is freely available with an Apache-based open source license and is
hosted at GitLab:

https://gitlab.com/StanfordLegion/legion

Key Challenges While Legion addresses a number of key challenges in improving system utilization, some
aspects of platform portability, and is becoming more widely used, it is still a new programming system and
therefore there is a cost to rewriting applications. This aspect makes significant adoption a risk within ECP
and additional effort is being taken to improve stability and find unique use cases. aspects of performance
and scaling to match aspects of more mature technologies.

We have focused much of our efforts on emerging use cases that are related to machine learning and
data-centric workloads. These domains are much easier to have a substantial impact as the application codes
rely on external tools (e.g. TensorFlow, Python, etc.) vs. years of established code written in MPI and/or
OpenMP. We are already seeing clear benefits of focusing our efforts in this direction. This has helped us to
increase our overall impact as well focus on areas of adoption across more specialized application needs in
support of machine learning and other data-centric workloads.

Solution Strategy As a collaboration between Los Alamos, Stanford University and R&D efforts at
NVIDIA, SLAC, Facebook, MIT, and others. We are providing the overarching implementation of Legion
that captures the most stable (correct and feature complete) version of the programming system. In addition,
we are actively looking for opportunities to educate the community about Legion and other data-centric and
task-based approaches to programming.

We have continued working with ExaFEL (AD 2.2.4.05) and the CANDLE project (AD 2.2.4.03) to
provide support for Legion. We also provide support and software releases related to the efforts going on
within LANL’s ATDM Programming Models and Runtimes project (part of ST 2.3.6.01), that refine, identify
needs and requirements that are in support of Ristra (LANL’s National Security application AD 2.2.5.01).
Our project includes management of the current repository and quarterly, or more frequent, releases of Legion
to the broader community. We are also supporting approaches that support Legion inter-operation with other
languages and programming systems – e.g. MPI, OpenMP, Kokkos, Fortran, Python.

We have continued our work on improving performance and scaling of training deep learning applications.
In particular, we are working closely with CANDLE’s requirements for ML training and inference on large
DNNs. Our most recent progress is discussed below.

Recent Progress We continue to discover and address both performance and scalability issues in the
runtime. In addition, for use cases within ECP, and also a growing set of users outside of ECP, we have
continued to identify and address bugs and other issues (e.g. missing features).

As mentioned above, our we continue to focus on improving training times for CANDLE’s DNN use cases
and also improving developer productivity when using Flexflow (the DNN training layer built on top of
Legion). We are specifically working to make sure the feature set of FlexFlow system provides the necessary
functionality and as part of this we have recently completed a Python layer for FlexFlow that provides
support for the Keras (TensorFlow) interface. This allows TensorFlow programs to be run using FlexFlow
with very minimal changes to the original Python code. FlexFlow is now available as open source under an
Apache License:

Exascale Computing Project (ECP) 35 ECP-RPT-ST-0002-2020–Public

https://legion.stanford.edu
https://gitlab.com/StanfordLegion/legion

https://github.com/flexflow/FlexFlow

We are now starting work on new training networks with CANDLE and also working on providing a
PyTorch compatibility interface to provide the same ability to run widely used Python applications for
machine learning using Flow and Legion as the underlying runtime systems.

Finally, we currently have a start on supporting both AMD and Intel GPUs. After AMD deprecated the
CUDA Driver API in their HIP software layer we had to rewrite a portion of the underlying implementation
to re-establish AMD support. This initial work is complete and Legion applications are running successfully
on currently available AMD GPUs. Similar efforts are underway for Intel systems using the oneAPI interface.
The initial implementation has run into a few issues within Intel’s software stack that we are waiting to be
resolved. We are on target to successfully run on Intel’s stack by late in 2020 or early 2021. We have also
completed an additional lower-level MPI-based transport layer underneath Legion to provide a level of risk
mitigation at the lower levels of the Legion runtime (Realm).

Next Steps Our plans for the next year are to continue focusing on the challenges presented by the
upcoming exascale system architectures and on hardening and improving the overall performance and
scalability of Legion. These efforts will specifically begin to focus on AMD and Intel hardware with an eye
towards performance at the node level (limited by the availability and stability of appropriate hardware
resources).

We will continue to work on the Python interfaces for Legion with a focus on the Keras and PyTorch
features requested by CANDLE. This will include seeking out and improving our outreach. Our regular open
source releases of Legion and FlexFlow will continue. Further work will need to be done to focus on bug fixes,
improving capabilities, improving developer productivity, and addressing performance issues on both existing
and upcoming platforms.

Exascale Computing Project (ECP) 36 ECP-RPT-ST-0002-2020–Public

https://github.com/flexflow/FlexFlow

4.1.10 WBS 2.3.1.09 Distributed Tasking at Exascale: PaRSEC

Overview The PaRSEC Environment provides a software ecosystem composed of a runtime component
to dynamically execute task-based applications on heterogeneous distributed systems, and a productivity
toolbox that comprises a development framework for the support of multiple Domain Specific Languages
(DSLs) and extensions, with debugging, trace collection, and analysis tools. The PaRSEC project team is
dedicated to solving two challenging and interdependent problems facing the ECP developer community:
First, how to create an execution model that enables developers to express as much parallelism as possible
in their applications, so that applications effectively utilize the massive collection of heterogeneous devices
ECP machines will deploy. Second, how to ensure the execution model is flexible and portable enough to
actually provide and sustain a performance benefit by increasing the scientific productivity of the application
developers, not only for the ECP target environments but for the foreseeable future.

Figure 25: PaRSEC architecture based on a modu-
lar framework where each component can be dynami-
cally activated as needed.

PaRSEC is an open source, community-based imple-
mentation of a generic task-based runtime that is freely
available, and used by an increasing number of software
libraries. The project focuses on providing a stable and
efficient infrastructure for quick prototyping of different
approaches to define task-based languages able to exploit
the full range of capabilities of Exascale platforms. With-
out such a project, and based on the current state of
task-based runtimes, potential users will be stuck either
in fixed programming paradigms, or with a particular,
potentially less efficient, mix of programming languages.
The DTE project provides means to maintain a high com-
petitiveness in the field leading to more innovation on
addressing the challenges we are facing toward scalable,
efficient and Exascale-ready programming paradigms.

Key Challenges As Exascale platforms delivery be-
come a closer deadline, an increasing number of aspects

of the hardware and software environment still pose challenges. First and foremost, keeping pace with the
architectural changes on current and future platforms requires changes not only on how we take advantage of
the hardware capabilities, but how we reshape our algorithms and applications to expose enough parallelism
to maximize the use of the underlying hardware. The number of nodes, threads per node, memory hierarchies
and support for increased computational capabilities (accelerators) will continue to increase, while the
currently available programming paradigms are still struggling with parallelism at the node level.

Solution Strategy The approach followed in PaRSEC is to provide a low-level, flexible and dynamic
runtime able not only to schedule tasks at the node level, but to handle data transfers between different
memory (both inter- and intra-nodes), memory hierarchies, heterogeneous architectures with support for
accelerators with a simple programming scheme. The proposed approach envisions a middle-ground solution,
addressing both hardware and software challenges. At the hardware level a team of dedicated developers
extends PaRSEC to map its capabilities to the hardware and to improve its scalability and performance. At
the upper software level the runtime interactions are through Domain Specific Languages with the target
domain scientists in mind, that will facilitate the expression of algorithmic parallelism with familiar constructs
mapped on the exposed low-level capabilities. To facilitate the integration of PaRSEC-driven libraries into
larger and complex applications, PaRSEC natively interoperate with other programming paradigms, including
some target of the ECP PMR support, such as PGAS, MPI, OpenMP and Kokkos. This integration provides
a smooth transition for library developers that embrace the PaRSEC runtime, providing a platform where a
shift to a new programming paradigms can be done in stages of increased complexity [36, 37, 38].

Recent Progress The software release (2020.10) provides many new additions to the low-level task runtime,
supports for a number of hardware capabilities (multi-stream GPU, NVLink, P9 atomic ops, ARM SVE
support), brings significant improvements to the performance and scalability of the runtime, and addresses

Exascale Computing Project (ECP) 37 ECP-RPT-ST-0002-2020–Public

many pending issues. On the software quality side, the PaRSEC runtime has been evaluated and amended to
compile and run on all pre-Exascale platforms (ALCF Mira, Theta; OLCF Summit), as well as some early
platforms based on the new ARM architecture. PaRSEC now includes a Spack definition file to ease the
deployment on future target systems as part of the system software xSDK effort.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120
 0

 40

 80

 120

 160

 200

Pe
rf

o
rm

a
n
ce

 (
T
Fl

o
p

/s
)

Ti
m

e
 (

s)

GPUs
Performance Time

Figure 26: Time to solution and Performance as a
function of the number of V100 GPUs on Summit,
for the molecule C65H132

The PaRSEC team, in collaboration with NWChemEx
project researchers, developed an efficient and portable
tensor product algorithm specifically designed for the com-
putational chemistry domain needs on top of the PaRSEC
runtime. This includes an efficient matrix product op-
eration for hybrid architectures, like Summit, with an
irregularly blocked, block-sparse representation of matri-
ces. Moreover, the requirements on this implementation
were extremely strict, the matrices are rectangular and
extremely large in at least one of their dimensions, such
that none of the input matrices could fit in the aggregated
memory of all GPUs. The algorithm and a deeper analysis
of the results are described in [39].

Figure 26 shows a strong scaling performance evalua-
tion of this algorithm, when applied to the main tensor
product required by the CCSD method to simulate the

electronic structure from first principles. The simulated molecule was C65H132, which is a quasi-1-dimensional
system and small atomic orbital basis, where the sparsity of tensors is maximized while the optimal (from
the data compression perspective) tile size is small. That molecule is representative of applications to 1-d
polymers and quasi-linear molecules (such as some proteins), while the choice of the atomic orbital basis is
representative of medium-precision simulations in chemistry and condensed phase. Such use case stresses the
system and algorithm as it implies a significant sparsity: the largest matrix, while being of square of rank
2, 464, 900, has only a density of 3.1%.

The strong scaling evaluation shows a parallel efficiency of 35%, with a time to solution at 180s on 3 GPUs,
going down to 13s at 118 GPUs. Compared to the state of the art, DBCSR [40] can only run problems that
fit in the GPU memory, preventing us to run the same experiment, but experiments on synthetic problems
that fit in memory show an improvement by a factor two, while TiledArray [41] cannot leverage the GPUs of
Summit without using PaRSEC and would run, on the CPUs of Summit ten times slower.

Figure 27: Comparison of DPLASMA and SLATE
Cholesky factorization over PaRSEC with SLATE
and ScaLAPACK on 64 nodes 12 cores each

An important aspect of the DTE project is to define
and prototype scalable domain specific languages that
enable a productive expression of parallelism for end-user
communities. PaRSEC presents multiple programming
interfaces (Parameterized Task Graphs for maximum par-
allelism, the popular serial task insertion dataflow model
to provide direct access to the runtime). In addition,
the DTE team is in close contact with application teams
to define parallel abstractions that are suitable for their
domain usage. Notably, the PaRSEC team has ongoing
collaboration with the SLATE linear algebra package and
NWChemEx and GAMESS chemistry package teams.

In this context it is interesting to highlight the first step
toward the integration of the PaRSEC framework into the
SLATE (2.3.3.09) in the context of the shared milestone
(STPM11-23). The first prototype of the application ran

in a distributed environment and showed the capability of the SLATE library using a modern fully capable
runtime system. This work involved enhancing the insert task interface available in the ParSEC runtime to
map onto the logic of a SLATE algorithm.

Figure 27 compares different implementation of the Cholesky factorization. On one side we have two
reference implementation for distributed linear algebra, ScaLAPACK and the current version of the SLATE
library (using OpenMP for intra-node parallelism and MPI for communications). On the other side we have

Exascale Computing Project (ECP) 38 ECP-RPT-ST-0002-2020–Public

two DSL expressing the same algorithm but using PaRSEC as the underlying runtime, the Dynamic Task
Discovery (DTD) an approach similar to OpenMP but working on a distributed setting, and a version of the
SLATE library where instead of relying on explicit parallelism (OpenMP) and communications (MPI) it rely
on implicit dependencies management via PaRSEC.

0

100

200

300

400

500

600

700

800

900

 10 20 30 40 50 60 70 80 90 100

P
e
rf
o
rm
a
n
c
e
(T
F
lo
ps
/s
)

Number of nodes

GEMM, Summit
 40 cores 6 GPUs per node, M=N=K=122880

CPU - ScaLAPACK-native
CPU - ScaLAPACK over DPLASMA

CPU - DPLASMA-native
CPU+GPU - ScaLAPACK over DPLASMA

CPU+GPU - DPLASMA-native

0

20

40

60

80

100

120

140

 10 20 30 40 50 60 70 80 90 100

P
e
rf
o
rm
a
n
c
e
(T
F
lo
ps
/s
)

Number of nodes

POTRF, Summit
 40 cores 6 GPUs per node, M=N=K=122880

CPU - ScaLAPACK-native
CPU - ScaLAPACK over DPLASMA

CPU - DPLASMA-native
CPU+GPU - ScaLAPACK over DPLASMA

CPU+GPU - DPLASMA-native

Figure 28: Performance using GPUs of native
ScaLAPACK, ScaLAPACK over DPLASMA and na-
tive DPLASMA for GEMM and POTRF.

In the context of milestone STPM11-81, the PaRSEC
team worked to enable the usage DPLASMA as a replace-
ment for ScaLAPACK. This functionality is provided as an
independent library which contains a wrapped version of
the ScaLAPACK API and hides the PaRSEC API from the
application while it constructs the structures necessary for
the operation with matrices represented on ScaLAPACK
memory layout. Users of applications exploiting ScaLA-
PACK can link against this independent library to run the
wrapped routines over DPLASMA-PaRSEC, while any
other ScaLAPACK function, i.e. that does not have an
equivalent provided by DPLASMA, will use the original
ScaLAPACK implementation. This approach reduces to
a minimum the changes that need to be performed on the
ScaLAPACK application, while enabling the exploitation
of the algorithms implemented on DPLASMA and the
operation over PaRSEC for a better exploitation of the
available hardware resources.

Figure 28 compare the performance of the ScaLAPACK
wrapper extensions against the native DPLASMA and na-
tive ScaLAPACK in their typical usage scenarios (one
process per core for ScaLAPACK), while DPLASMA tests
(native DPLASMA and ScaLAPACK over DPLASMA)
use one thread per core and one process per node on the
experiments using only the CPU and two processes per
node, each exploiting 3 GPUs, are used on the GPU tests.
In all cases, the performance achieved by running ScaLA-
PACK over DPLASMA is more than 90% the performance
of native DPLASMA. For the CPU-only experiments, the

usage of the DPLASMA wrapper introduces a speedup of 1.73x for GEMM (minimum 1.64x, maximum
1.88x) and 1.49x for POTRF (minimum 1.27x, maximum 1.71x) . When exploiting also the GPUs of the
computation nodes, the performance is increased by 16.75x for GEMM (minimum 10.79x, maximum 25.68x)
and by 4.27x for POTRF (minimum 2.77x, maximum 6.70x). The lower performance of the DPLASMA’s
POTRF over GPUs is explained because in the current implementation of this algorithm not all the tasks
are run on GPUs. However, further improvements of DPLASMA algorithms that will be integrated in the
next release of DPLASMA will likely achieved similar performance when used for wrapping the ScaLAPACK
routines. Therefore, enabling applications already using the ScaLAPACK API to improve their usage of the
available hardware resource with very little effort that is translated in important performance benefits.

Next Steps To provide programmers with more supervision over how accelerators are integrated and used
by the runtime, a need to provide finer control of the resource usage by the runtime system has arisen. We are
developing new APIs to allow the programmers to advise the runtime system with respect to data placement,
prefetching, and management of cache. Programming interoperability should not be limited to node-level
programming models but should extend to distributed programming. Execution modes where part of the
application is expressed in native MPI (including communicating tasks) and other parts using PaRSEC DSLs,
running above the task system in a tightly coupled manner, are being developed.

The set of tools that come with the PaRSEC runtime environment to assess performance, find bottlenecks,
improve scheduling and debug the task-based application are being improved to expose the information in a
format compatible with TAU, Score-P and other tools that are already familiar to ECP users.

Exascale Computing Project (ECP) 39 ECP-RPT-ST-0002-2020–Public

4.1.11 WBS 2.3.1.14 GASNet-EX

Overview The Lightweight Communication and Global Address Space Support project (Pagoda) is develop-
ing GASNet-EX [42], a portable high-performance communication layer supporting multiple implementations
of the Partitioned Global Address Space (PGAS) model. GASNet-EX clients include Pagoda’s PGAS
programming interface UPC++ [43, 44] and the Legion Programming System [45, 46] (WBS 2.3.1.08).

GASNet-EX’s low-overhead communication mechanisms are designed to maximize injection rate and
network utilization, tolerate latency through overlap, streamline unpredictable communication events, minimize
synchronization, leverage hardware support for communication involving accelerator memory, and efficiently
support small- to medium-sized messages arising in ECP applications. GASNet-EX enables the ECP
software stack to exploit the best-available communication mechanisms, including novel features still under
development by vendors. The GASNet-EX communications library and the PGAS models built upon it offer
a complementary, yet interoperable, approach to “MPI + X”, enabling developers to focus their effort on
optimizing performance-critical communication.

We are co-designing GASNet-EX with the UPC++ development team with additional input from the
Legion and (non-ECP) Cray Chapel [47, 48] projects.

Key Challenges Exascale systems will deliver exponential growth in on-chip parallelism and reduced
memory capacity per core, increasing the importance of strong scaling and finer-grained communication
events. The pervasive use of accelerators introduces heterogeneous systems in which the engines providing
the majority of the compute capability are not well suited to other tasks. Success at exascale demands that
software minimize the overheads incurred upon lightweight cores and accelerators, especially avoiding long,
branchy serial code paths; this motivates a requirement for efficient fine-grained communication. These
problems are exacerbated by application trends; many of the ECP applications require adaptive meshes, sparse
matrices, or dynamic load balancing. All of these characteristics favor the use of low-overhead communication
mechanisms that can maximize injection rate and network utilization, tolerate latency through overlap,
accommodate unpredictable communication events, minimize synchronization, leverage hardware support for
communication involving accelerator memory, and efficiently support small- to medium-sized messages. The
ECP software stack needs to expose the best-available communication mechanisms, including novel features
being developed by the vendor community.

Solution Strategy The PGAS model is a powerful means of addressing these challenges and is critical in
building other ECP programming systems, libraries, and applications. We use the term PGAS for models
that support one-sided communication, including contiguous and non-contiguous remote memory access
(RMA) operations such as put/get and atomic updates. Some of these models also include support for
remote function invocation. GASNet-EX [49] is a communications library that provides the foundation for
implementing PGAS models, and is the successor to the widely-deployed GASNet library. We are building on
over 15 years of experience with the GASNet [42, 50] communication layer to provide production-quality
implementations that include improvements motivated by technology trends and application experience.

The goal of the GASNet-EX team is to provide a portable, high-performance PGAS communication
layer for exascale and pre-exascale systems, addressing the challenges identified above. GASNet-EX provides
interfaces that efficiently match the RDMA capabilities of modern inter-node network hardware and intra-node
communication between distinct address spaces. New interfaces for atomics and collectives have enabled
offload to current and future network hardware with corresponding capabilities. These design choices and their
implementations supply the low-overhead communication mechanisms required to address the requirements
of exascale applications.

Figure 29 shows representative results from a paper [49] comparing the RMA performance of GASNet-EX
against MPI on multiple systems including NERSC’s Cori and OLCF’s Summit1. These results demonstrate
the ability of a PGAS-centric runtime to deliver performance as good as MPI, and often better. The paper
presents experimental methodology and system descriptions, which are also available online [42], along with
results for additional systems.

1The paper’s results from Summitdev have been replaced by more recent (June 2019) results from OLCF’s newer Summit
system.

Exascale Computing Project (ECP) 40 ECP-RPT-ST-0002-2020–Public

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Cori-I Cori-II Summit Gomez

R
M

A
O

pe
ra

tio
n

La
te

nc
y

(µ
s)

MPI RMA Get
GASNet-EX Get
MPI RMA Put
GASNet-EX Put

(a) 8-byte RMA Latencies

 0

 5

 10

 15

 20

 25

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd

w
id

th
 (G

iB
/s

)

Transfer Size

Summit: IBM POWER9, Dual-Rail EDR InfiniBand, IBM Spectrum MPI

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

(b) Summit Flood Bandwidth

Figure 29: Selected GASNet-EX vs. MPI RMA Performance Results

Figure 29a shows the latency of 8-byte RMA Put and Get operations on four systems, including two
distinct network types and three distinct MPI implementations. GASNet-EX’s latency is 6% to 55% better
than MPI’s on Put and 5% to 45% better on Get. Algorithms sensitive to small-transfer latency may become
practical in PGAS programming models due to these improvements relative to MPI.

Figure 29b shows flood bandwidth of RMA Put and Get over the dual-rail InfiniBand network of OLCF’s
Summit. GASNet-EX’s bandwidth is seen to rise to saturation at smaller transfer sizes than IBM Spectrum
MPI, with the most pronounced differences appearing between 4KiB and 32KiB. Comparison to the bandwidth
of MPI message-passing (dashed green series) illustrates the benefits of one-sided communication, a major
feature of PGAS models.

Recent Progress The most notable work on GASNet-EX in the past year has been in two areas:
Device (GPU) Memory Support. “Memory kinds” is the GASNet-EX term for support for commu-

nication involving memory other than host memory, and in the context of ECP refers primarily to accelerator
devices such GPUs. The GASNet-EX APIs for memory kinds have been co-designed with the developers
of UPC++ and the Realm runtime layer of the Legion Programming System (WBS 2.3.1.08). Starting in
October 2020, GASNet-EX can now leverage the GPUDirect RDMA (GDR) capabilities of modern NVIDIA
GPUs and Mellanox network adapters (such as those on Summit) to perform one-sided RMA involving GPU
memory without the overheads of staging through intermediate buffers in host memory.

Scalability. We have devoted effort in the past year to reducing the memory footprint of the GASNet
runtime as the job size grows. This has included efforts in collaboration with the ExaBiome (WBS 2.2.4.04)
team to run their applications at previously unattainable scales on Summit at the OCLF and on Cori at
NERSC.

Next Steps Our next efforts include:
Device (GPU) Memory Support. We will continue work in the area of GASNet-EX memory kinds,

including the hardening and tuning of the implementation featured in the October 2020 release. As access to
other ECP-relevant systems is secured, we plan to extend support to accelerators from additional vendors,
including those from AMD and Intel which are scheduled to appear in early exascale systems.

Client-Driven Tuning. In collaboration with authors of client runtimes using GASNet-EX (most
notably UPC++ and Legion) and their users (such as ExaBiome), we will continue to identify and address
any significant scalability issues or performance anomalies which are discovered.

Exascale Computing Project (ECP) 41 ECP-RPT-ST-0002-2020–Public

4.1.12 WBS 2.3.1.14 UPC++

Overview The Lightweight Communication and Global Address Space Support project (Pagoda) is develop-
ing UPC++ [44], a C++ library supporting Partitioned Global Address Space (PGAS) programming [43, 51].
The current UPC++ v1.0 (distinct from an earlier prototype designated V0.1 [52]) is distinguished by
three guiding principles. First, all communication is asynchronous, allowing overlap of computation and
communication, and encouraging programmers to avoid global synchronization. Second, all communication
is syntactically explicit, encouraging programmers to consider the costs of communication. Third, UPC++
encourages the use of scalable data-structures, avoiding non-scalable library features. These principles provide
a programming model that can scale efficiently to potentially millions of processors. UPC++ is well-suited
for implementing elaborate distributed data structures where communication is irregular or fine-grained. The
UPC++ communication interfaces for Remote Memory Access (RMA) and Remote Procedure Calls (RPC)
are composable and fit naturally within the context of modern C++.

UPC++ is needed for ECP because it delivers low-overhead communication, embracing interest by
vendors in the PGAS model to efficiently match RDMA capabilities of modern network hardware and on-chip
communication between distinct address spaces. Because ECP applications rely on irregular representations
to improve accuracy and conserve memory, the UPC++ library provides an essential ingredient for the
ECP software stack. It enables effective scaling of exascale software by reducing the work funneled to
lightweight cores, avoiding the overhead of long, branchy serial code paths, and providing efficient fine-
grained communication. The importance of these properties is reinforced by application trends; many ECP
applications require the use of irregular data structures such as adaptive meshes, sparse matrices, particles, or
similar techniques, and also perform load balancing. UPC++’s low-overhead communication mechanisms can
maximize injection rate and network utilization, tolerate latency through overlap, streamline unpredictable
communication events, minimize synchronization, leverage hardware support for communication involving
accelerator memory, and efficiently support small- to medium-sized messages arising in such applications.
UPC++ enables the ECP software stack to exploit the best-available communication mechanisms, including
novel features being developed by vendors. UPC++ provides seamless and efficient multithreading support,
offering a complementary and interoperable approach to “MPI + X”, enabling developers to focus their effort
on optimizing performance-critical communication.

Key Challenges As a result of technological trends, the cost of data motion is steadily increasing relative
to that of computation. To reduce communication costs, we need to reduce the software overheads and hide
communication latency behind available computation. UPC++ addresses both strategies. UPC++ avoids
the software overheads associated with MPI, instead relying on the GASNet-EX [42, 49] communication
library which is specifically designed and tuned for native PGAS communication using the best-available
hardware mechanisms on each network (see Section 4.1.11 on GASNet-EX, which is being co-designed).
UPC++ supports asynchronous communication via one-sided RMA and RPC.

Solution Strategy The UPC++ project has two primary thrusts:
1. Increased performance through reduced communication costs: The UPC++ programmer

can expect communication to run at close to hardware speeds. Asynchronous execution enables an application
to hide communication behind available computation.

2. Improved productivity: UPC++’s treatment of asynchronous execution relies on futures and
promises, and these simplify the management of asynchrony.

The PGAS one-sided RMA communication employed by UPC++ benefits application performance by
mapping tightly onto the RDMA mechanisms supported by the network hardware. GASNet-EX provides the
thin middleware needed to enable this model to run at close to hardware speeds, across platforms ranging from
laptops to supercomputers. One-sided communication also has another benefit: it decouples synchronization
from data motion, avoiding the fine-grained synchronization overheads of message-passing.

UPC++’s Remote Procedure Call (RPC) enables the programmer to execute procedure calls on remote
processors. RPC is useful in managing access to complicated irregular data structures, and in expressing
asynchronous task execution, where communication patterns are data-dependent and hence difficult to predict.

As one example of how our approach is applicable to real problems we have implemented a distributed
hash table, which serves as a proxy for a key phase in the HipMer application of the Exabiome Project

Exascale Computing Project (ECP) 42 ECP-RPT-ST-0002-2020–Public

(WBS 2.2.4.04). This implementation scales efficiently to a large number of processors. RPC was observed to
simplify the implementation considerably, by avoiding data hazards without the need for locking. Figure 30
illustrates the benefits of the UPC++ model in a weak scaling study up to 34,816 processes on the KNL
partition of NERSC’s Cori.

Figure 30: Weak scaling of distributed hash table
insertion on the KNL partition of NERSC’s Cori
platform. The dotted line represents one node.

Recent Progress The most notable work in the past
year has been in three areas:

1. Memory Kinds. UPC++ “memory kinds” provide
a unified abstraction for communication between combi-
nations of device (e.g. GPU) and host memory, possibly
remote. By unifying the expression of data transfer among
the various memories in a heterogeneous system, these ab-
stractions enable ECP applications to utilize accelerators
within UPC++’s PGAS model. The abstraction enables
hardware offload (when available) of device data transfers,
eliminating the need for the application to stage transfers
through intermediate buffers in host memory. The global
pointer representation transparently tracks device infor-
mation, eliminating the need for expensive address space
queries in critical paths. Support for such offload on the
OLCF’s Summit has been demonstrated in an October 2020
memory kinds prototype distributed to our stakeholders.

2. Training and Outreach. In the past year, the UPC++ team has increased focus on outreach. This
includes presenting four training events, and preparation of a fifth to appear at SC20. A two-hour “Birds of a
Feather” event in August 2020 introduced current and potential UPC++ users to the authors of successful
UPC++-based applications. Circulation of working group drafts of proposed enhancements has been valuable
to both the UPC++ team and our stakeholders to agree upon design in advance of implementation.

3. Productivity and Performance. Having completed the core specification and implementation of
UPC++, we have shifted focus toward addressing improvements to productivity and performance, especially
in response to stakeholder feedback. The most significant example is addition of support for non-trivial
serialization of user-defined types, providing concise syntax for the common cases and robust, extensible
mechanisms for more complex ones.

Next Steps The planned work for the near-term future includes the following:
1. Memory Kinds. We will continue development of the October 2020 memory kinds prototype. The

implementation, currently targeting the hardware in Summit, will be extended to include other accelerators
scheduled to appear in the early Exascale systems. As with Summit, transfers will be offloaded to available
hardware capabilities by leveraging the parallel efforts in GASNet-EX.

2. Productivity and Performance. With the help of our stakeholders, we will continue to identify
and address portions of UPC++ where performance tuning is most needed and/or beneficial. Similarly, we
will continue to work with stakeholders to identify and implement features which improve productivity.

3. Outreach. We will continue to hold training events for users of UPC++ and circulate working group
drafts of productivity features (above) to solicit feedback.

Exascale Computing Project (ECP) 43 ECP-RPT-ST-0002-2020–Public

4.1.13 WBS 2.3.1.16 SICM

Overview The goal of this project is to create a universal interface for discovering, managing and sharing
within complex memory hierarchies. The result will be a memory API and a software library which implements
it. These will allow operating system, runtime and application developers and vendors to access emerging
memory technologies. The impact of the project will be immediate and potentially wide reaching, as developers
in all areas are struggling to add support for the new memory technologies, each of which offers their own
programming interface. The problem we are addressing is how to program the deluge of existing and emerging
complex memory technologies on HPC systems. This includes the MCDRAM (on Intel Knights Landing),
NV-DIMM, PCI-E NVM, SATA NVM, 3D stacked memory, PCM, memristor, and 3Dxpoint. Also, near
node technologies, such as PCI-switch accessible memory or network attached memories, have been proposed
in exascale memory designs. Current practice depends on ad hoc solutions rather than a uniform API that
provides the needed specificity and portability. This approach is already insufficient and future memory
technologies will only exacerbate the problem by adding additional proprietary APIs. Our solution is to
provide a unified two-tier node-level complex memory API. The target for the low-level interface are system
and runtime developers, as well as expert application developers that prefer full control of what memory types
the application is using. The high-level interface is designed for application developers who would rather
define coarser-level constraints on the types of memories the application needs and leave out the details of
the memory management. The low-level interface is primarily an engineering and implementation project.
The solution it provides is urgently needed by the HPC community; as developers work independently to
support these novel memory technologies, time and effort is wasted on redundant solutions and overlapping
implementations. Adoption of the software is focused on adsorption into existing open source projects such
as hwloc, Umpire, CLANG/LLVM, OpenMP, and Jemalloc.

• Low-Level Interface: Finished refactor of low-level interface supporting memory arenas on different
memory types. Added initial support for Umpire, OpenMP. Reviewing features need to fully support
these runtimes. SICM now supports Intel Optane memory, the first NVM memory that can be used as an
extension of traditional DRAM memory. Pull requests have been developed for OpenMP/CLANG/LLVM
and Umpire. the patches to Clang/LLVM/OpenMP turn OpenMP memory spaces in OpenMP 5.x into
SICM library calls in the LLVM/OpenMP runtime. The same codepath that supports memkind library
was refactored to support multiple custom memory allocators – more general than just SICM support.
SICM currently supports “pragma openmp allocate” with memory types: omp (default, large cap,
const, high bw, low lat) mem spaces and supports KNL, Optane, testing on Sierra/Summit.

• High-Level Graph Interface: Metall is a persistent memory allocator designed to provide developers
with an API to allocate custom C++ data structures in both block-storage and byte- addressable
persistent memories (e.g., NVMe and Intel Optane DC Persistent Memory) beyond a single process
lifetime. Metall relies on a file-backed mmap mechanism to map a file in a filesystem into the virtual
memory of an application, allowing the application to access the mapped region as if it were regular
memory which can be larger than the physical main-memory of the system.

• Analysis: SICM has employed application profiling and analysis to direct data management across
complex memory hierarchy, the team extended the SICM high-level interface with application-directed
data tiering based on the MemBrain approach which is more effective than an unguided first touch
policy. The impact of using different data features to steer hot program data into capacity-constrained
device tiers was modeled.

Next Steps

• Low-Level Interface: Focus on performance of support for runtimes and adding feature requested to
support Umpire, OpenMP and MPI and address the slow move pages implementation in the Linux
kernel – (collaboration with RIKEN). Test with proxy applications for functionality and correctness.
Investigate Linux kernel modifications for page migration in collaboration with ECP project Argo
2.3.5.05 and RIKEN research center in Japan, on-going. Start collaborating with applications to enable
use of heterogenous memory on ECP target platforms. Additionally, the team needs to finalize the
memory topology discover with the hwloc team.

Exascale Computing Project (ECP) 44 ECP-RPT-ST-0002-2020–Public

• For the analysis work the team will extend and harden the tools for guiding application memory
management and investigate feature categories to classify objects associated with different features such
as size, type, allocation time, etc to guide data placement.

• For the Metall high-level interface we plan to continue outreach to ExaGraph to store graph data as well
as other intermediate data into PM leveraging Metall. We also plan to support UMap (user-level mmap
library in Argo PowerSteering project) underneath Metall to enhance its performance and capability.

Exascale Computing Project (ECP) 45 ECP-RPT-ST-0002-2020–Public

4.1.14 WBS 2.3.1.17 Open MPI for Exascale (OMPI-X)

Overview The OMPI-X project ensures that the Message Passing Interface (MPI) standard, and its
specific implementation in Open MPI meet the needs of the ECP community in terms of performance,
scalability, and capabilities or features. MPI is the predominant interface for inter-process communication
in high-end computing. Nearly all of the ECP application (AD) projects (93% [53]) and the majority of
software technology (ST) projects (57% [53]) rely on it. With the impending exascale era, the pace of change
and growing diversity of HPC architectures pose new challenges that the MPI standard must address. The
OMPI-X project is active in the MPI Forum standards organization, and works within it to raise and resolve
key issues facing ECP applications and libraries.

Open MPI is an open source, community-based implementation of the MPI standard that is used by a
number of prominent HPC vendors as the basis for their commercial MPI offerings. The OMPI-X team is
comprised of active members of the Open MPI community, with an extensive history of contributions to this
community. The OMPI-X project focuses on prototyping and demonstrating exascale-relevant proposals
under consideration by the MPI Forum, as well as improving the fundamental performance and scalability
of Open MPI, particularly for exascale-relevant platforms and job sizes. MPI users will be able to take
advantage of these enhancements simply by linking against recent builds of the Open MPI library.

In addition to MPI and Open MPI, the project also includes two other products, which are less visible to
the end user, but no less important. PMIx (Process Management Interface for Exascale) provides facilities for
scalable application launch, process wire-up, resilience, and coordination between runtimes. It originated as a
spin-off from the Open MPI community, but is now developing a community of its own as adoption grows.
Starting in FY20, Qthreads (formerly WBS 2.3.1.15) is also part of the OMPI-X project. Qthreads is a user-
level lightweight asynchronous thread library particularly focused on improving support for multithreading in
the context of network communications. Both PMIx and Qthreads help the OMPI-X project address key
issues of performance and capability for exascale applications.

Key Challenges A number of aspects of “exascale” levels of computing pose serious challenges to the “tried
and true” message passing model presented by MPI and its implementations, including Open MPI. Keeping
pace with changes in HPC architecture is a major challenge. Examples include massive node-level concurrency,
driving the growth of “MPI+X” programming approaches, and the complex memory architectures, which
make the placement of data within memory more important. In the near-term, with GPUs dominating the
exascale environment, how code running on the GPUs interacts with MPI and inter-process communications
must also be addressed. This will require both changes to the standard and changes and improvements
within implementations. Performance and scalability become both more important and more challenging as
node counts increase and memory per MPI rank trends downward. Finally, as we identify solutions to these
challenges that must be “implemented” within the MPI standard rather than particular MPI libraries, we
must work within the much larger and broader MPI community that may not always be attuned to the needs
of computing at the largest scales.

Solution Strategy The OMPI-X project is working across a number of fronts to address these challenges.
Runtime Interoperability for MPI+X and Beyond MPI is increasingly being used concurrently with other

runtime environments. This includes both “MPI+X” approaches, where X is most often a threading model,
such as OpenMP, as well as the use of multiple inter-process runtimes within a single application. Concerns
include awareness of other runtimes, cooperative resource management capabilities, and ensuring that all
concurrently active runtimes make progress. We are developing APIs and demonstrating capabilities for
interoperability in both MPI+X and multiple inter-process runtime situations.

Extending the MPI Standard to Better Support Exascale Architectures The MPI community is standardizing
a number of ideas that are particularly important to supporting the architectural and system size characteristics
anticipated for exascale. “Partitioned communications” (previously called “Finepoints”) deal with the growing
use of threading for node-level concurrency, in combination with MPI. “Sessions” increases the flexibility
of MPI semantics in a number of areas, which in turn can open opportunities for enhanced scalability, as
well as easier support for multi-component applications such as coupled multi-physics simulations. Error
management and recovery capabilities are key to ensuring that applications can detect and respond effectively
when errors, inevitably, occur during execution. We are helping to drive incorporation of these and other ideas

Exascale Computing Project (ECP) 46 ECP-RPT-ST-0002-2020–Public

Figure 31: Parti-
tioned communications
enables increased con-
currency in communica-
tion operations which
can be carried out
by multiple threads or
tasks.

into the MPI standard by developing prototypes and working with ECP teams and the broader community
to demonstrate their feasibility and value.

Open MPI Scalability and Performance As we push the scale of both hardware and applications, we stress
MPI implementations and expose areas that need to be improved. OMPI-X is targeting key components
within Open MPI, such as threading capabilities, memory usage, remote memory access (RMA), tag matching,
and other areas, for improvements in both scalability and performance.

Supporting More Dynamic Execution Environments We are developing and implementing strategies to
help MPI applications better deal with topological process layout preferences and contention in the network.

Resilience in MPI and Open MPI Concerns about system and application resilience increase as either
scales in size. Our goal in this area is to ensure that MPI, Open MPI, and PMIx provide not only support for
simplified recovery for the widely used checkpoint/restart fault tolerance strategy, but also the building blocks
to support more general error management and recovery by applications (the evolution of the User-Level Fault
Mitigation concept). We work within the MPI Forum, implement, and train users on resilience strategies.

MPI Tools Interfaces Several interfaces within the MPI standard are primarily used to support performance
and correctness tools. The MPI Forum is in the process of making significant revisions and extensions to
these interfaces. We will track the discussions in the Forum and provide prototype implementations within
Open MPI to facilitate evaluation and provide feedback. We will work with the ECP community, including
tool developers, to make additional data available through the MPI T interface.

Quality Assurance for Open MPI We are enhancing the Open MPI testing infrastructure, adding tests
to reflect ECP requirements, and instantiating routine testing on systems of importance to ECP, both for
correctness and performance.

Figure 32: ReInit reduces application recovery
time.

Recent Progress Through extensive efforts with the MPI
Forum community this year, OMPI-X has been successful in
introducing a number of important exascale-related features
into the forthcoming MPI 4.0 standard. These include sessions,
partitioned communications, and a number of error management
and recovery features based on the long-standing User-Level
Fault Mitigation (ULFM) concept. These capabilities have at
least prototype-level implementations available in the Open MPI
library, allowing interested project teams to start exploring the
new capabilities. We also undertook a cleanup of the Open MPI
code base to improve the quality of the implementation of some
key error handling features. (As in many standards communities,
distinctions sometimes need to be made between conformance with the standard and providing a “high-quality”
implementations.)

We are also continuing to drive forward on a number of fronts that did not make the 4.0 version of the
standard, but are still considered important or useful for exascale and the ECP community, particularly in
the context of resilience. The ULFM proposal has been updated to reflect those features that have been
incorporated into 4.0, as well as the discussions within the Forum. For the complementary Reinit simplified
checkpoint/restart proposal (Figure 32), we have carried out a formal verification on the recovery algorithm.
This ensures that the protocol, which we plan to propose for a future version of MPI, correctly handles the

Exascale Computing Project (ECP) 47 ECP-RPT-ST-0002-2020–Public

recovery phase of a failure response, including correct propagation of notifications, absence of deadlocks, and
proper termination.

We have provided initial implementations of the features above, and more, within the context of the
Open MPI library, to allow users to explore the new capabilities. In addition to sessions and partitioned
communications, we have expanded the MPI T interface implementation to include events, and imple-
mented a number of new events and performance variables, demonstrating their use in the context of ECP
miniapplications and tools.

Motivated largely by support for the Partitioned Communications proposal and other situations where
high network concurrency is required, a general user-level threading abstraction has been developed to
support both the Qthreads and BOLT/Argobots threading libraries within either the Open MPI or MPICH
libraries. Work begun last year, in collaboration with the MPICH and Argobots ECP teams (WBS 2.3.1.07
and 2.3.5.05), has now been integrated into the two MPI implementations. An important part of the work
within Open MPI involved abstracting the threading layer so that it was not limited to pthreads.

Work on integration with hardware and software environments specifically relevant to the exascale systems
continues as well. On the software side, we have implemented support for the ALCF’s Cobalt resource
management system in Open MPI and PMIx. This work, which was necessitated by a major refactoring of
Open MPPI to exclusively use PMIx as its low-level runtime layer, will facilitate support for Aurora, which
will use a successor to Cobalt. Combining both software and hardware, we have been working with the
SICM ECP project (WBS 2.3.1.16) to integrate support for complex memory hierarchies into Open MPI
based on SICM’s APIs. This work has now been demonstrated in several contexts within the Open MPI
library, including the ability to selectively place objects in either GPU HBM memory or DRAM. We have
also provided a design document for library developers to work with different memory pools in the context of
Open MPI. Finally, on the hardware side, we have benefit working with HPE (Cray) to ensure that the new
partitioned communication capability in MPI 4.0 will support GPUs effectively.

In addition to these activities, we continue to support quality assurance of the Open MPI code base
through more and better testing. The Open MPI testing infrastructure, MTT, continues to be improved for
flexibility and capability. One of this year’s noteworthy efforts was the addition of the bueno application
test harness to the testing system. The facilitates incorporating third-party test cases (i.e. based on user
applications) into the routine testing process without having to commit them to the Open MPI testing
repository.

Next Steps In FY21 and beyond, we plan to continue working across the multiple fronts described above.
We will be in a much better position to work with application teams who can benefit from the new capabilities
embodied in MPI 4.0, but who have been reluctant to adopt them until they were officially part of the
standard. We will likewise continue to identify and improve performance and scalability bottlenecks, and to
work with HPE (Cray) and the larger community to ensure that their Slingshot network and GPU support
are ready for Frontier and Aurora.

Exascale Computing Project (ECP) 48 ECP-RPT-ST-0002-2020–Public

4.1.15 WBS 2.3.1.18 RAJA/Kokkos

Introduction The RAJA/Kokkos sub-project is a new combined effort intended to focus on collaborative
development of backend capabilities for the Aurora and Frontier platforms. The formation of this project is
significant in that it brings two independent teams, RAJA (primarily from LLNL) and Kokkos (primarily
from Sandia), to work on a common goal. This project also enhances interactions with staff from other
labs, in particular Argonne and Oak Ridge, to help integrate RAJA and Kokkos into the software stack and
applications at the respective leadership computing facilities. The remainder of this section is focused on the
Kokkos-specific activities. A description of RAJA is provided in the NNSA/LLNL section 2.3.6.02.

Overview The Kokkos C++ Performance Portability Ecosystem is a production-level solution for writing
modern C++ applications in a hardware-agnostic way. Started by Sandia National Laboratories, it is now
supported by developers at the Argonne, Berkeley, Oak Ridge, Los Alamos and Sandia National Laboratories
as well as the Swiss National Supercomputing (Centre). It is now used by more than a hundred HPC projects,
and Kokkos-based codes are running regularly at-scale on half of the top ten supercomputers in the world.
The EcoSystem consists of multiple libraries addressing the primary concerns for developing and maintaining
applications in a portable way. The three main components are the Kokkos Core Programming Model, the
Kokkos Kernels Math Libraries and the Kokkos Tools. Additionally, the Kokkos team is participating in the
ISO C++ standard development process, to get successful concepts from the Kokkos EcoSystem incorporated
into the standard. Its development is largely funded as part of the Exascale Computing Project, with a mix
of NNSA ATDM and Office of Science sources.

Key Challenges One of the biggest challenges for the Exascale supercomputing era is the proliferation
of different computer architectures, and their associated mechanisms to program them. Vendors have an
incentive to develop their own models in order to have maximum freedom of exposing special hardware
capabilities, and potentially achieve ”vendor-lock-in”. This poses the problem for applications that they
may need to write different variants of their code for different machines - an effort which can be simply not
feasible for many of the larger application and library projects.

The Kokkos project aims at solving this issue by providing a programming solution which provides a
common interface build upon the vendor specific software stacks. There are a number of technical challenges
associated with that. First an abstraction must be designed which is restricted enough to allow mapping to
a wide range of architectures while allowing exploitation of all the hardware capabilities provided by new
architectures. Secondly, the development of support for a new architecture may take significant resources.
In order to provide a timely solution for applications in line with the availability of the machine, CoDesign
collaborations with the vendors are critical. At the same time software robustness, quality and interface
stability is of utmost importance. In contrast to libraries such as the BLAS, programming models permeate
the entire code base of an application, and are not isolated to simple call sites. API changes thus would
require a lot of work inside of the users code base. A fourth challenge is that in order to debug and optimize
the code base tools are required to gain insights into the application.

Besides the technical challenges, a comprehensive support and training infrastructure is absolutely critical
for a new programming model to be successful. Prospective users must learn how to use the programming
model, current users must be able to bring up issues with the development team and access detailed
documentation, and the development team of the model must be able to continue technical efforts without
being completely saturated with support tasks. The latter point became a significant concern for the Kokkos
team with the expected growth of the user base through ECP. Already before the launch of ECP, there were
multiple application or library teams starting to use Kokkos for each developer on the core team – a level not
sustainable into the future without a more scalable support infrastructure. This issue was compounded by
the fact that Kokkos development was funded through NNSA projects, making it hard to justify extensive
support for open science applications.

Solution Strategy To address the challenges the Kokkos team is developing a set of libraries and tools
which allow application developers to implement, optimize and maintain performance portable codes. At its
heart the EcoSystem provides the Kokkos Core Programming Model. Kokkos Core is a programming model
for parallel algorithms that use many-core chips and share memory among those cores. The programming

Exascale Computing Project (ECP) 49 ECP-RPT-ST-0002-2020–Public

model includes abstractions for frequently used parallel execution patterns, policies that provide details for
how those patterns are executed, and execution spaces that denote on which execution agents the parallel
computation is performed. Kokkos Core also provides fundamental data structures with policies that provide
details for how those data structures are laid out in memory, memory spaces that denote in which memory the
data reside, and data access traits conveying special data access semantics. The model works by requiring that
application development teams implement their algorithms in terms of Kokkos’ patterns, policies, and spaces.
Kokkos Core can then map these algorithms onto the target architecture according to architecture-specific
rules necessary to achieve best performance.

Kokkos Kernels is a software library of linear algebra and graph algorithms used across many HPC
applications to achieve best (not just good) performance on every architecture. The baseline version of
this library is written using the Kokkos Core programming model for portability and good performance.
The library has architecture-specific optimizations or uses vendor-specific versions of these mathematical
algorithms where needed. This reduces the amount of architecture-specific software that an application
team potentially needs to develop, thus further reducing their modification cost to achieve “best in class”
performance.

Kokkos Tools is an innovative “plug in” software interface and a growing set of performance measurement
and debugging tools that plug into that interface for application development teams to analyze the execution
and memory performance of their software. Teams use this performance profiling and debugging information
to determine how well they have designed and implemented their algorithms and to identify portions of their
software that should be improved. Kokkos Tools interfaces leverage the Kokkos Core programming model
interface to improve an application developer’s experience dramatically, by forwarding application specific
information and their context within the Kokkos Core programming model to the tools.

Kokkos Support addresses the challenges of establishing, growing and maintaining the user community.
First and foremost, it provides explicit means for supporting all DOE ECP applications. A main component
of that is funding for local Kokkos experts at the Sandia, Oak Ridge, Argonne, Berkeley and Los Alamos
laboratories which can serve as direct contacts for local applications and the users of the leadership computing
facilities. Secondly, the project develops and maintains a reusable support infrastructure, which makes
supporting more users scalable and cost effective.

The support infrastructure consists of GitHub wiki pages for the programming guide and API reference,
GitHub issues to track feature requests and bug reports, a Slack channel for direct user-to-user and user-to-
developer communication, and tutorial presentations and cloud-based Kokkos hands-on exercises.

The Kokkos Team is also actively engaging the ISO C++ Committee, where it provides about a third of
the members interested in HPC. This strong engagement enables the team to lead or contribute to numerous
proposals. Among those proposals the team leads are abstractions for multi dimensional arrays based on
Kokkos View, atomic operations on generic types and linear algebra algorithms based on Kokkos Kernels,
which cover not only the classic Fortran BLAS capabilities, but also batched BLAS and mixed precision
linear algebra. The team also has a central role in the primary proposal introducing heterogeneous computing
into the C++ standard via the executors concept.

Furthermore, certain areas of common needs between RAJA and Kokkos have emerged. To avoid
duplicated efforts, and leverage possible synergies the two teams are developing certain capabilities together.
These include for example:

• advanced atomic support with memory order and memory scope exposure.

• common metaprogramming facilities.

• optional integration of Umpire memory pools into Kokkos.

• integration of Kokkos Tools callback mechanisms into RAJA.

• an extension of the RAJA performance test suite to include Kokkos variants.

Recent Progress The Kokkos project now consists of an integrated developers team spanning five DOE
National Laboratories. In particular both NNSA and Office of Science funded developers are working based
off the same task and code management system, use a shared slack channel, and attend a common weekly

Exascale Computing Project (ECP) 50 ECP-RPT-ST-0002-2020–Public

team meeting. This ensures that no duplication of effort happens, and makes Kokkos a true inter laboratory
project.

Kokkos is used by many applications in production across the entire spectrum of DOE’s super computers.
Support for current production platforms is mature and stable. Work on supporting the upcoming Exascale
platforms is underway and the primary Kokkos capabilities for AMD GPUs and Intel GPUs are working.
Initial application tests were successfully conducted with projects such as EXAALT/LAMMPS, ArborX and
Cabana.

A training course was developed called ”The Kokkos Lectures”, which consists of about 15 hours of
recorded lessons and over 20 hands-on exercises. It is available at https://kokkos.link/the-lectures.
The https://kokkosteam.slack.com channel has grown dramatically in use, with about 500 users at the
end of 2020, of which more than 150 are active in any given week. The team finished developing a full API
documentation as well as adding use case descriptions for common patterns found in applications.

Auto-tuning is now available as an integrated capability into Kokkos with user facing hooks, which allow
for the development of custom tuning tools.

At the C++ committee, the MDSpan proposal is now in wording review - meaning that the technical
design is approved. MDSpan will be able to provide all the core capabilities of Kokkos View. This includes
compile and runtime extents, customizable layouts, and data access traits. The extension to heterogeneous
memory can be achieved by trivial extensions. Furthermore, the atomic ref proposal was voted into C++20.
This capability will provide atomic operations on generic allocations as powerful as Kokkos’ atomic operations.
In particular it allows atomic operations on types independent of their size, and not just the ones native in
the hardware. A very recent development is the proposal for linear algebra functions. It entails functionality
covering all of BLAS 1, 2, and 3, but extends it to any scalar types (including mixing of scalar types) and
batched operations. The proposal was approved by the relevant study groups, as well as the library evolution
incubator group. The Kokkos team was also able to gain co-authors from NVIDIA, Intel and AMD - providing
significant support from the leading hardware vendors.

Implementations of those proposals are now available on GitHub. The new atomic operations implemen-
tation is hosted at https://github.com/desul/desul which serves as the common utility repository for
both Kokkos and RAJA. RAJA integrated the Kokkos Tools callback interface, which allows it to leverage
investment into tools made by the Kokkos effort.

Next Steps Highest priority for both RAJA and Kokkos is now the further maturing of the backends for
Aurora and Frontier, as well as optimization work guided by application teams. Besides our general support
for application teams, we have chosen a few driver projects to focus the optimization efforts.

Addressing latency limitations in current application design is another critical topic. Many codes are now
reaching a point on the production platforms, where kernel launch, memory transfer, and communication
latencies are limiting factors. The Kokkos team is exploring concepts such as predefined kernel graphs as well
as global arrays style communication to address these issues. Initial prototypes are available now, and need
to be tested by applications.

Further work on the shared facilities for RAJA and Kokkos is ongoing.

Exascale Computing Project (ECP) 51 ECP-RPT-ST-0002-2020–Public

https://kokkos.link/the-lectures
https://kokkosteam.slack.com
https://github.com/desul/desul

4.1.16 WBS 2.3.1.19 Argo: Low-Level Resource Management for the OS and Runtime

The goal of the Argo project [54] is to augment and optimize existing OS/R components for use in production
HPC systems, providing portable, open source, integrated software that improves the performance and
scalability of and that offers increased functionality to exascale applications and runtime systems.

System resources should be managed in cooperation with applications and runtime systems to provide
improved performance and resilience. This is motivated by the increasing complexity of HPC hardware and
application software, which needs to be matched by corresponding increases in the capabilities of system
management solutions.

The Argo software is developed as a toolbox—a collection of autonomous components that can be freely
mixed and matched to best meet the user’s needs.

Project activities focus around four products:

• AML — a library providing explicit, application-aware memory management for deep memory systems,

• UMap — a user level library incorporating NVRAM into complex memory hierarchy using a high
performance mmap-like interface.

• PowerStack — power management infrastructure optimizing performance of Exascale applications under
power or energy constraints.

• NRM — a daemon centralizing node management activities such as job management, resource manage-
ment, and power management.

AML

Overview AML is a memory management library designed to ease the use of complex memory topologies
and complex data layout optimizations for high-performance computing applications.

AML is a framework providing locality-preserving abstractions to application developers. In particular,
AML aims to expose flexible interfaces to describe and reason about how applications deal with data layout,
tiling of data, placement of data across hardware topologies, and affinity between work and data.

Key Challenges Between non-uniform memory access (NUMA) to regular DRAM, the 3-D stacked high-
bandwidth memory, and the memory local to the accelerator devices such as GPUs, the increasing depth
of the memory hierarchy presents exascale applications with a critical challenge of how to use the available
heterogeneous memory resources effectively.

Standardized interfaces to manage complex memory hierarchies are lacking, and vendors are reluctant to
innovate in this space in the absence of clear directions from the community. Coming up with an interface
that is sufficiently expressive to cover the emerging and projected hardware advances, yet is simple enough
and practical to be both acceptable and useful to the applications is the key challenge that we are working
on addressing.

Solution Strategy AML provides explicit, application-aware memory management for deep memory
systems. It offers a collection of building blocks that are generic, customizable, and composable. Applications
can specialize the implementation of each offered abstraction and can mix and match the components as
needed. AML can be used to create, for example, a software-managed scratchpad for multilevel DRAM
hierarchy such as HBM and DDR. Such a scratchpad provides applications with a memory region with a
predictable high performance for critical data structures.

We provide applications and runtimes with a descriptive API for data access, where all data placement
decisions are explicit, and so is the movement of data between different memory types. At the same time, the
API does abstract the memory topology and other device complexities. We focus on optimizing data locality
for current and future hardware generations; applications provide insights for static allocations, and we can
also dynamically and asynchronously move or transform data to optimize for a particular device or to best
take advantage of the memory hierarchy.

Exascale Computing Project (ECP) 52 ECP-RPT-ST-0002-2020–Public

Layout

<aml/higher>

AML components are built on top of hardware drivers and system libraries (libnuma,
hwloc, accelerator libraries, other ECP products). The figure on the right depicts the
major components of AML, including:

• Memory areas, the location where data lives,

• Applications data layouts description,

• DMA engines, to move data across areas and layouts,

• Tiling schemes, the meta-structures on top of data layouts,

• High level abstractions and helpers (replicaset).

Recent Progress This year AML contributions are distributed across new features, infrastructure im-
provements, and a new collaboration project.

As part of our effort to improve application locality, we merged features on top of the hwloc backend. The
hwloc library exposes the machine topology and its objects attributes. As a result, AML is able to process
the relationship between processing units and memories in terms of latency, bandwidth, and hop distance.
Additionally, AML is able to make use of user-provided distances. Hence, it becomes possible to enhance
available performance data with benchmarked metrics. From AML user’s perspective, a new area base block
implementation is available. It implements the preferred allocation policy on all memories. These memories
are ordered according to a performance criterion (e.g., bandwidth). Therefore, data can be allocated as long
as some memory is available. On top of that, data will be mapped onto the best available memories according
to a performance criterion. Furthermore, we updated and merged the replicaset high level abstraction which
is now available to users. In a nutshell, this abstraction will create an area per NUMA cluster on the fastest
memory of the cluster. Then, the user can use the replicaset primitives to map data replicas and update
the latter in these areas. We previously demonstrated the use of this facility to improve the performance of
the XSBench application (published this year). We are working with ExaSMR developers to offer it as an
optional feature in the latest version of the benchmark.

Finally, the last new capability we introduced in the library is a submodule library called excit. Excit
implements general-purpose iterators, and we are using it to provide extensive iteration interfaces to the core
building blocks of AML, as well as custom topology object iterators. For example, we want to be able to
iterate memories of a certain type or with specific performance abilities.

As part of our infrastructure improvements, we purchased a new machine with heterogeneous hardware
that we are using in our CI pipeline to test new vendor backends. We are also taking advantage of the ECP
CI infrastructure as part of our development process. The development of the library is validated by our own
CI before being merged into a staging branch. The latter is then mirrored to ECP facilities to be further
tested by an ECP CI pipeline, before being merged into our master branch. The goal is to ensure that our
master branch can always be stable on production systems. Our ECP CI pipeline runs on Theta at ALCF
and we are in the process of setting it up at OLCF.

Next Steps We are looking to build on top of our success with XSBench and use it as a showcase of some
of the AML capabilities. Our next goal is to provide a feature inspired by OpenMP 5 custom mappers. An
OpenMP mapper makes it possible to describe which parts of a structure should be mapped onto accelerator
devices. As it is a recent addition to the standard, to the best of our knowledge no compiler implements
it yet. Furthermore, this feature is limited in its ability to filter or reorganize memory during the mapping
process. We are using our tiling abstraction to build a more flexible interface for such a feature, based on
the needs of the OpenMC application. It will be combined with our DMA abstraction to manage memory
transfers and might be also provided through a more straightforward higher-level API.

Finally, we are aiming at a broad compatibility of the library with accelerator devices. Therefore, we are
about to implement the base library abstractions on top of the OpenCL backend.

Exascale Computing Project (ECP) 53 ECP-RPT-ST-0002-2020–Public

UMap

Overview UMap is a user level library providing a high performance mmap-like interface that can be tuned
to application needs without requiring OS customization or impacting system configuration. UMap enables
applications to interact with out-of-core data sets as if in memory, and to configure parameters such as page
buffer size and page size on a per-application basis.

Leadership supercomputers feature a diversity of storage, from node-local persistent memory and NVMe
SSDs to network-interconnected flash memory and HDD. Interacting with large persistent data sources is
critical to exascale applications that harness the power of data analytics and machine learning. The UMap
user-level library enables user-space page management of data located in the memory/storage hierarchy. By
providing a memory map interface, applications can interact with large data sets as if in memory. As a user
level library, a UMap page fault handler can be easily adapted to access patterns in applications and to
storage characteristics, reducing latency and improving performance.

Key Challenges As ECP applications transition to include ML and data analytics as integral components
of workflows, persistent memories and low latency storage devices offer new alternatives to hold portions
of very large global data sets within the fabric of the computing system. These new applications drive new
access patterns, i.e. read-dominated analysis of observational or simulation data rather than write-mostly
checkpoints. The combination of new technologies (byte addressable, very low latency, asymmetric read/write
latency), new insertion points (node local, Top of Rack or other intermediate storage, global FS, external
distributed storage servers), and new applications (in-situ analytics, experimental + simulation data analysis,
ML batched data sets) present challenges both to the traditional memory/storage dichotomy as well as to
traditional HPC I/O libraries tailored to checkpoint transmission.

Solution Strategy We prioritize four design choices for UMap based on surveying realistic use cases.
First, we choose to implement UMap as a user-level library so that it can maintain compatibility with the
fast-moving Linux kernel without the need to track and modify for frequent kernel updates. Also, we employ
the recent userfaultfd mechanism, rather than the signal handling + callback function approach to reduce
overhead and performance variance in multi-threaded applications. Third, we target an adaptive solution
that sustains performance even at high concurrency for data-intensive applications, which often employ a
large number of threads for hiding data access latency. Our design pays particular consideration on load
imbalance among service threads to improve the utilization of shared resources even when data accesses to
pages are skewed. UMap dynamically balances workloads among all service threads to eliminate bottleneck
on serving hot pages. Finally, for flexible and portable tuning on different computing systems, UMap provides
both API and environmental controls to enable configurable page sizes, eviction strategy, application- specific
prefetching, and detailed diagnosis information to the programmer. The UMap software architecture is shown
in Figure 33.

Recent Progress In recent months, we have released UMap v2.1.0 and updated the UMap Spack package
with major enhancements to improve load balancing and incorporate features for additional configurability.
The new features include a SparseStore handler to optimize access to sparse, randomly accessed persistent
data structures. The MetaAllocator Metall developed under the ECP SICM project has been integrated into
UMap’s SparseStore, enabling persistent heaps.

UMap now supports a new network-based handler using the ECP Mochi data service to fetch and manage
memory pages from remote nodes over the network. UMap also has a new capability to provide region-centric
page access profiling from the collaboration with the ECP Caliper project.

We have incorporated UMap into new applications, including the Livermore Metagenomics Toolkit
(LMAT), which is being used for COVID research. We designed custom prefetching and eviction policies for
LMAT. The new solution outperforms the system solution in runtime by 5− 15% on realistic metagenomic
queries and supports high parallelism that cannot be supported efficiently by the system solution.

A paper on the UMap network handler has been accepted and presented at the IEEE SBAC-PAD 2020
conference. An SC20 poster on the UMap SparseStore handler is to appear.

Exascale Computing Project (ECP) 54 ECP-RPT-ST-0002-2020–Public

Store	
Object	

Store	
Object	

Physical	pages	

Application	

Filler	0	

SSD	
Backend	
Storage	 PM	

Network-attached	
HDD	

				Network-
attached	SSD	

...	

UMap	

Store	
Object	

Filler	1	 Filler	2	 Filler	3	

Internal	Buffer	

Page	faults	

Evictor0	 Evictor1	

Virtual	Address	Space	

Prefetching	
Policies	

Eviction	
Policies	

Figure 33: UMap Handler architecture

Next Steps In the coming year, we plan to continue outreach to application teams within ECP and in the
science/data community. This includes collaboration with Caliper, Mochi, Exagraph, the LMAT team, and
with LLNL users of materials and EOS tables. The Exagraph collaboration will map persistent data such as
binary format graphs and intermediate data structures through UMap using the SparseStore and Metall. To
adapt to dynamic changes in memory resources, an adaptive buffer management will be added to monitor
and react at runtime. To support the shared table use case, we will implement a multi-process version of
UMap to be used by multiple MPI processes on a node to share read-only tables stored in persistent memory.

PowerStack

Overview Power remains a critical constraint for Exascale. As we design supercomputers with higher
heterogeneity at larger scales, power becomes an expensive and limited resource. Inefficient management of
power leads to added operational costs as well as low scientific throughput. Although hardware advances
will contribute a certain amount towards achieving high energy efficiency, several vendors agree that these
will not be sufficient in isolation – creating a need for a sophisticated system software approach. Significant
advances in software technologies are thus required to ensure that Exascale systems achieve high performance
with effective utilization of available power. Distributing available power to nodes (and components such as
GPUs) while adhering to system, job and node constraints involves complex decision making in software.

The ECP PowerStack sub-area in Argo explores hierarchical interfaces for power management at three
specific levels: batch job schedulers, job-level runtime systems, and node-level managers. Each level will
provide options for adaptive management depending on requirements of the supercomputing site under
consideration. Site-specific requirements such as cluster-level power bounds, user fairness, or job priorities will
be translated as inputs to the job scheduler. The job scheduler will choose power-aware scheduling plugins to
ensure compliance, with the primary responsibility being management of allocations across multiple users
and diverse workloads. Such allocations (physical nodes and job-level power bounds) will serve as inputs to a
fine-grained, job-level runtime system to manage specific application ranks, in-turn relying on vendor-agnostic
node-level measurement and control mechanisms. The figure below presents an overview of the envisioned
PowerStack, which takes a holistic approach to power management. Additionally, power management support

Exascale Computing Project (ECP) 55 ECP-RPT-ST-0002-2020–Public

Figure 34: Envisioned PowerStack

for science workflows (such as MuMMI Cancer workflow, E3SM climate models, etc), in-situ visualization,
and workflow management infrastructures (e.g. Kokkos and Caliper) is being developed. Interfaces with
ATDM projects such as LLNL’s Flux are also being developed. Furthermore, solutions for co-scheduling
challenges for extremely heterogeneous architectures are being designed as a part of a university subcontract
to University of Arizona.

This project is essential for ECP because it enables power management of Exascale applications and
science workflows on modern heterogeneous architectures, where optimal performance often depends on
how resources are scheduled efficiently across power domains (eg GPUs, or co-scheduling). The project is
also essential to allow for better throughput and utilization of such heterogeneous clusters, and for allowing
applications to operate safely and optimally with power and energy constraints when needed. This project is
also essential for building a sophisticated hierarchical software stack proposed by the ECP ATDM (LLNL)
and Flux projects, as well as community standardization efforts such as the PowerAPI standard. Additionally,
the project fulfills an essential need for ECP by enabling vendor and academic collaborations that provide
for accelerated adoption of best practices and better interoperability at scale. By leveraging the software
developed in this project, compute centers can safely operate under power and energy constraints while
maximizing performance and scientific throughput.

Key Challenges Power management in software is challenging due to the dynamic phase behavior of
applications, processor manufacturing variability, and the increasing heterogeneity of node-level components.
While several scattered research efforts exist, a majority of these efforts are site-specific, require substantial
programmer effort, and often result in suboptimal application performance and system throughput. Addition-
ally, these approaches are not production-ready and are not designed to cooperate in an integrated manner.
A holistic, generalizable and extensible approach is still missing in the HPC community, and a goal for the
ECP Argo PowerSteering project is to provide a solution for this technology gap.

Another set of challenges come from portability issues. Existing solutions are targeted toward specific
microarchitectures (typically Intel) as well as specific programming models (typically MPI-only and traditional
benchmarks). Additionally, some of the existing solutions violate the specified power budget before reaching
a steady state, resulting in power fluctuations as well as unsafe operation. As part of this project, we strive
to provide portability across multiple platforms (IBM, NVIDIA, ARM, AMD, etc), multiple programming
models that enable workflows (through Kokkos or Caliper, or specific science workflow studies such as E3SM
or MuMMI). Such portability and support of vendor-neutrality is important for safe operation using both
hardware-level and application-level information for adaptive configuration selection and critical path analysis.

Solution Strategy As discussed earlier, our solution is to develop an end-to-end deployable stack, that
combines coarse-grained power-scheduling (Flux, SLURM) with fine-grained job-level runtime system (Intel
GEOPM) while ensuring vendor neutrality through node-level interfaces in Variorum. Such a stack can
typically operate transparently to user applications. At the scheduler level, we are working on extending
SLURM and Flux resource managers to be power-aware. Here, we are looking at both static, coarse-grained
power management and variation-aware scheduling in Flux, as well as portability through SLURM SPANK

Exascale Computing Project (ECP) 56 ECP-RPT-ST-0002-2020–Public

plugins. For the job-level, a power management runtime system called GEOPM that will optimize performance
of Exascale scientific applications transparently is being developed in collaboration with Intel. At the node-
level, vendor-neutral interfaces are being developed as part of Variorum library, to allow for support for Intel,
IBM, AMD, ARM, and HPE/Cray platforms. In order to accomplish portability and smooth integration
across domains, we are closely collaborating with ECP MuMMI workflow project, the E3SM workflow project,
ECP Flux, Kokkos and Caliper, and with the University of Arizona. We are actively engaging ECP users in
order to support power management in a non-intrusive and transparent manner.

Recent Progress We achieved three milestones through FY20 in September 2020. The first was to release
a production-ready version of Variorum, a vendor neutral power monitoring and control library, with support
for Intel, IBM and NVIDIA platforms. Variorum currently supports IBM Witherspoon architecture with
Power9, NVIDIA Volta GPUs, and six Intel microarchitectures (Sandy Bridge, Ivy Bridge, Haswell, Broadwell,
Kaby Lake, Skylake) in a vendor-neutral manner. Our second milestone this year was the initial deployment
and testing of a production-ready PowerStack. Here, we first developed interfaces between Intel GEOPM and
Variorum to allow for vendor-neutral access across the platforms that Variorum supports. Then, we tested and
included GEOPM v1.1 as a part of the TOSS (Tri-Lab Operating System) release, which included significant
testing and integration. This now allows users on the Tri-Lab systems with the underlying platforms (currently
Intel) to utilize GEOPM. Additionally, we implemented SLURM SPANK plugins through msr-safe to allow
for resource management level control. We also tested our Flux variation-aware plugin, which was developed
last year as part of ECP Argo for the second milestone. For our third milestone, we carried out power
and performance analysis of the MuMMI Cancer Workflow, explored power management of co-scheduled
applications by studying NAS benchmarks and E3SM configurations, and delivered a Kokkos-tool extension
to Variorum. We began the process of understanding how we can write a Caliper service for Variorum as
well. In parallel, as part of ASC L2 for the Flux effort, Flux and Variorum integration was also carried
out for upcoming supercomputers for both power monitoring and capping (outside of the scope of this
ECP Argo PowerSteering project, but expected to help with integration efforts at exascale). Additionally,
LLNL is working on a multi-vendor CRADA involving Intel, HPE, ARM and IBM – industry partners
that are helping us drive vendor-neutral solutions to power management; and are actively engaged in the
community effort for PowerStack homogenization. We are also working in collaboration with PowerAPI
team for the same. We established the PowerStack community charter in June 2018, involving collaborators
across multiple vendors (Intel, IBM, ARM, HPE, AMD, NVIDIA, Cray), academic institutions (TU Munich,
Univ. Tokyo, Univ. Bologna, Univ. Arizona), and national laboratories (Argonne National Lab).The
goal for this team is to design a holistic, flexible and extensible concept of a software stack ecosystem for
power management. Over the past 2.5 years, this group is looking at engineering and research challenges,
along with RFP/procurement designs through active vendor interaction and involvement. We held a 3-day
seminar in Nov 2019 and again in June 2020 virtually this year, the details of which can be found here:
https://hpcpowerstack.github.io/powerstack-nov19.html.

Next Steps We will continue our research and development work as planned toward the FY21 milestones.
More specifically, we will continue development for variorum library to allow support for ARM, AMD and other
architectures. We will continue to extend Intel GEOPM’s new codebase, continue development of scheduler
components such as Flux and SLURM, work on GPU power capping research, and enable user-space access
to power management on diverse architectures. We will expand our collaborations for science workflows, such
as MuMMI and E2SM, including support for Caliper and Kokkos power management. We will also continue
to further explore co-scheduling challenges in power management (University of Arizona) and multi-tenancy
issues in power management on heterogenous architectures, and lead the efforts on multi-vendor CRADA.

NRM

Overview Argo Node Resource Manager (NRM) is a daemon running on the compute nodes. It centralizes
node management activities such as local application launching, resource management, and power management.

NRM interacts with both global resource management services (e.g., job scheduler) and with application
components and runtime services running on the node. It acts as a control infrastructure to enable custom
resource management policies at the node level. Applications can influence these mechanisms, both directly

Exascale Computing Project (ECP) 57 ECP-RPT-ST-0002-2020–Public

https://hpcpowerstack.github.io/powerstack-nov19.html

(through explicit API calls used, e.g., to request additional resources on the node) and indirectly (by having
their run-time behavior monitored by NRM).

Key Challenges Many ECP applications have a complex runtime structure, ranging from in situ data
analysis, through an ensemble of largely independent individual subjobs, to arbitrarily complex workflow
structures. At the same time, HPC hardware complexity increases as well, from deeper memory hierarchies
to heterogeneous compute resources and performance fluctuating based on power/thermal constraints.

Even in the common case of each compute node being allocated exclusively to a single job, managing
available node resources can be a challenge. If a compute node is shared among multiple job components (a
likely scenario considering the reduced cost of data transfers), these components—if allowed to freely share
node resources—could interfere with one another, resulting in suboptimal performance. It is the NRM’s job
to rein in this complexity by acting as a coarse-grained resource arbitrator.

Solution Strategy NRM uses an active approach to resource management. Physical and logical resources
on the compute nodes are configured, discovered, and accounted for. NRM can manage compute nodes and
individual components of parallel workloads, in the sense that it performs an active accounting of two types
of interfaces for those workloads: sensors and actuators. These abstracted components are available through
an upstream API which enables their discovery and management.

The NRM daemon supports power actuators, as well as‘ sensors based on CPU counters and power
information. We also provide a simple API that application processes can use to periodically update the
NRM on their progress. This gives NRM reliable feedback on the efficacy of its power policies, and it can
also be used for a more robust identification of the critical path, rather than relying on heuristics based on
performance counters.

In addition to those capabilities, NRM’s
configuration format allows for the configu-
ration of actuators and active polling sensors
based on arbitrary executables. The figure
on the right shows a reading of NRM’s sen-
sor outputs for two RAPL sensors along
with CPU counter instrumentation. In or-
der to provide these capabilities, the NRM
daemon manages the launching, manage-
ment, and stopping of parallel workloads
through a unified interface. Resources can
be dynamically reconfigured at run time;
these interfaces are provided for use from applications and from global services.

Other than sensor and actuator accounting capabilities, NRM
provides optional support for autonomic node management. This
support is provided through the accounting of node-local auto-
nomic goals and constraints, which are expressed in terms of
available nodes and sensors. These goals and constraints can be
inspected by the users, global services (GRM), and applications
through NRM’s unified interface. Inspection is achieved through
the emission of a Control Problem Description (CPD), which
outlines active sensors, actuators, goals, and constraints. This
scheme is outlined in the figure on the left.

Recent Progress The NRM daemon has undergone major improvements. In order to improve the software
quality and overall reliability of NRM, the core business logic of the NRM daemon has been externalized in a
shared library, written in the statically typed language Haskell. This NRM version is pending an upcoming
release. Our custom CI pipeline also has been improved, with the addition of unit tests and enrichment of
existing functional tests. We are still in the process of leveraging ECP testing infrastructure.

Exascale Computing Project (ECP) 58 ECP-RPT-ST-0002-2020–Public

NRM has recently added support for multi-armed bandit based control policies. In order to make this work
as robust as possible, it has been compartmentalized into a software library (hbandit). hbandit implements
statically typed, independently tested versions of the relevant machine learning algorithms.

NRM now offers a Python support library for upstream control. This library is intended for workload-
specific control algorithm experiments.

We continue supporting the libnrm C library that can be linked to applications in order to provide
reports on application progress to NRM. We have instrumentation for EXAALT, QMCPACK, ExaSMR,
AMG, Stream, and CANDLE. This capability gives us insight into the effect of our resource management
policies on the run-time behavior of user codes.

Next Steps We are working on a report to showcase the use of NRM’s current autonomic resource
management strategies in the context of workload energy minimization, through the use of RAPL control
and application feedback.

We are also working on expanding the set of ECP applications that are instrumented to report their
progress to NRM, as well as validation of the infrastructure on multiple ECP platforms.

We are planning to expand the list of resources managed by NRM by adding support for other vendor-
specific mechanisms, as well as better integration with other ECP system software (job schedulers, application
tracing, and power interfaces).

Exascale Computing Project (ECP) 59 ECP-RPT-ST-0002-2020–Public

4.2 WBS 2.3.2 DEVELOPMENT TOOLS

End State: A suite of compilers and development tools aimed at improving developer productivity across
increasingly complex heterogeneous architectures, primarily focused on those architectures expected for the
upcoming Exascale platforms of Frontier and Aurora.

4.2.1 Scope and Requirements

For Exascale systems, the compilers, profilers, debuggers, and other software development tools must be
increasingly sophisticated to give software developers insight into the behavior of not only the application
and the underlying hardware but also the details corresponding to the underlying programming model
implementation and supporting runtimes (e.g., capturing details of locality and affinity). These capabilities
should be enhanced with further integration into the supporting compiler infrastructure and lower layers
of the system software stack (e.g., threading, runtime systems, and data transport libraries), and hardware
support. Most of the infrastructure will be released as open source, as many of them already are, with a
supplementary goal of transferring the technology into commercial products (including reuse by vendors
of ECP enhancements to LLVM, such as Fortran/Flang, or direct distributions by vendors of software on
platforms). Given the diversity of Exascale systems architectures, some subset of the tools may be specific to
one or more architectural features and is potentially best implemented and supported by the vendor; however,
the vendor will be encouraged to use open APIs to provide portability, additional innovation, and integration
into the tool suite and the overall software stack.

4.2.2 Assumptions and Feasibility

The overarching goal of improving developer productivity for Exascale platforms introduces new issues of
scale that will require more lightweight methods, hierarchical approaches, and improved techniques to guide
the developer in understanding the characteristics of their applications and to discover sources of the errors
and performance issues. Additional efforts for both static and dynamic analysis tools to help identify lurking
bugs in a program, such as race conditions, are also likely needed. The suite of needed capabilities spans
interfaces to hardware-centric resources (e.g., hardware counters, interconnects, and memory hierarchies) to a
scalable infrastructure that can collect, organize, and distill data to help identify performance bottlenecks
and transform them into an actionable set of steps and information for the software developer. Therefore,
these tools share significant challenges due to the increase in data and the resulting issues with management,
storage, selection, analysis, and interactive data exploration. This increased data volume stems from multiple
sources, including increased concurrency, processor counts, additional hardware sensors and counters on the
systems, and increasing complexity in application codes and workflows.

Compilers obviously play a fundamental role in the overall programming environment but can also serve as a
powerful entry point for the overall tool infrastructure. In addition to optimizations and performance profiling,
compiler-based tools can help with aspects of correctness, establishing connections between programming
model implementations and the underlying runtime infrastructures, and auto-tuning. In many cases, today’s
compiler infrastructure is proprietary and closed source, limiting the amount of flexibility for integration and
exploration into the Exascale development environment. In addition to vendor compiler options, this project
aims to provide an open source compiler capability (via the LLVM ecosystem) that can play a role in better
supporting and addressing the challenges of programming at Exascale.

4.2.3 Objectives

This project will design, develop, and deploy an Exascale suite of development tools for development, analysis,
and optimization of applications, libraries, and infrastructure from the programming environments of the
project. The project will seek to leverage techniques for common and identified problem patterns and create
new techniques for data exploration related to profiling and debugging and support advanced techniques such
as autotuning and compiler integration. We will seek to establish an open-source compiler activity leveraging
activities around the LLVM infrastructure. For tools, the overarching goal is to leverage and integrate the
data measurement, acquisition, storage, and analysis and visualization techniques being developed in other

Exascale Computing Project (ECP) 60 ECP-RPT-ST-0002-2020–Public

projects of the software stack. These efforts will require collaboration and integration with system monitoring
and various layers within the software stack.

4.2.4 Plan

Multiple projects will be supported under the tools effort. To ensure relevance to DOE missions, most of
these efforts shall be DOE laboratory led and leverage and collaborate with existing activities within the
broader HPC community. Initial efforts will focus on identifying the core capabilities needed by the selected
ECP applications, components of the software stack, expected hardware features, and the selected industry
activities from within the Hardware and Integration focus area. The supported projects will target and
implement early versions of their software on both CORAL and APEX systems, with an ultimate target of
production-ready deployment on the Exascale systems. Throughout this effort the applications teams and
other elements of the software stack will evaluate and provide feedback on their functionality, performance,
and robustness. These goals will be evaluated yearly (or more often as needed) based on milestones as well as
joint milestone activities shared across the associated software stack activities by AD and HI focus areas.

4.2.5 Risk and Mitigation Strategies

A primary risk exists in terms of adoption of the various tools by the broader community, including support
by system vendors. Past experience has shown that a combination of laboratory-supported open source
software and vendor-optimized solutions built around standard APIs that encourage innovation across multiple
platforms is a viable approach, and this will be undertaken. We will track this risk primarily via the risk
register.

Given its wide use within a range of different communities, and its modular design principles, the project’s
open source compiler activities will focus on the use of the LLVM compiler ecosystem as a path to reduce both
scope and complexity risks and leverage with an already established path for NRE investments across multiple
vendors. The compilers and their effectiveness are tracked in the risk register. In fact, in the past year, ECP
has created a fork of the llvm-project upstream repository (see https://github.com/llvm-doe-org) to
capture, integrate, and test LLVM projects, and to serve as a risk mitigation option if other compilers are
not working successfully on the target platforms.

Another major risk for projects in this area is the lack of low-level access to hardware and software
necessary for using emerging architectural features. Many of these nascent architectural features have
immature implementations and software interfaces that must be refined prior to release to the broader
community. This project should be at the forefront of this interaction with early delivery systems. This risk
is also tracked in the risk register for compilers, which are particularly vulnerable.

4.2.6 Future Trends

Future architectures are becoming more heterogeneous and complex [55]. As such, the role of languages,
compilers, runtime systems, and performance and debugging tools will becoming increasingly important
for productivity and performance portability. In particular, our ECP strategy focuses on improving the
open source LLVM compiler and runtime ecosystem; LLVM has gained considerable traction in the vendor
software community, and it is the core of many existing heterogeneous compiler systems from NVIDIA, AMD,
Intel, ARM, IBM, and others. We foresee that this trend will continue, which is why we have organized the
Development Tools technical area around LLVM-oriented projects. We expect for many of our contributions
to LLVM to address these trends for the entire community and will persist long after ECP ends. For example,
our contributions for directive-based features for heterogeneous computing (e.g., OpenMP, OpenACC) will
not only provide direct capabilities to ECP applications, but it will also impact the redesign and optimization
of the LLVM infrastructure to support heterogeneous computing. In a second example, Flang (open source
Fortran compiler for LLVM; [the second version is also known as F18]) will become increasingly important
to the worldwide Fortran application base, as vendors find it easier to maintain and deploy to their own
Fortran frontend (based on Flang). Furthermore, as Flang become increasingly robust, researchers and
vendors developing new architectures will have immediate access to Flang, making initial Fortran support
straightforward in ways similar to what we are seeing in Clang as the community C/C++ frontend.

Exascale Computing Project (ECP) 61 ECP-RPT-ST-0002-2020–Public

https://github.com/llvm-doe-org

4.2.7 WBS 2.3.2.01 Development Tools Software Development Kits

Overview The Software Development Tools SDK is a collection of independent projects specifically targeted
to address performance analysis at scale. The primary responsibility of the SDK is to coordinate the disparate
development, testing, and deployment activities of many individual projects to produce a unified set of tools
ready for use on the upcoming exascale machines. The efforts in support of the SDK are designed to fit
within the overarching goal to leverage and integrate data measurement, acquisition, storage, analysis, and
visualization techniques being developed across the ECP Software Technology ecosystem.

Key Challenges In addition to the general challenges faced by all of the SDKs outlined in Section 4.5.7, the
unique position of the Development Tools SDK between the hardware teams and the application developers
requires additional effort in preparing today’s software to run on yet-unknown architectures and runtimes to
be delivered by the end of ECP.

Solution Strategy The primary mechanism for mitigating risk in the SDK is the Readiness Survey. This
survey is designed to assess the current status of each product in the SDK in six key areas: software availability,
documentation, testing, Spack build support, SDK integration, and path forward technology utilization. By
periodically assessing the progress of the individual L4 products in the SDK, we will use the survey to identify
and resolve current hardware architecture dependencies, plan for future architecture changes, and increase
adoption of the Continuous Integration (CI) testing workflow to reduce this risk.

Critically, the survey will allow us to accomplish this by providing a direct communication channel
between the SDK maintainers and the L4 product developers allowing us to identify current architecture
dependencies in each project and compare them with existing and emerging ECP platforms. Our initial
efforts will be to increase support for today’s heterogeneous CPU architectures across the DOE facilities (e.g.,
x86, Power, ARM, etc.) to ensure a minimum level of usability on these platforms. We will then focus on
current accelerator architectures- namely GPGPU computing. As new architectures arise, we will re-issue the
survey and use this same process to provide guidance to the L4 product as they develop support for them.

The survey also allows us to monitor the increased adoption of the proposed ECP CI testing workflow.
This will be crucial to understanding each project’s interoperability with not only the other projects within
the Tools SDK, but all applications across the ECP Software Technologies landscape. Additionally, it will
serve as a bridge between the Hardware Integration teams working with the facilities and the software teams
working across the SDK. By relaying new hardware requirements from the facilities to the software developers,
we can closely monitor support for both new and existing systems. Conversely, giving feedback to the facilities
regarding compiler support and buildability of library dependencies will guide software adoption on those
platforms.

Recent Progress The Readiness Survey was re-issued to each L4 product in July 2020. All projects had
nominal changes except that HPCToolkit and TAU have added support for both Intel and AMD GPUs. With
these changes, four of the six L4 projects support NVIDIA GPUs, 3/6 support AMD, 2/6 support Intel, and
2/6 have support for all three GPU platforms.

The first step in assessing buildability of the L4 products was carried out in Q2 of FY20. All six projects
were built on three platforms (Power9, x86, and Aarch64) using gcc and clang. Initially, only four successfully
built with gcc on all platforms, and only one built with clang on any platform. The issues were reported and
fixed, and now all six products build with gcc successfully on all three pre-exascale test platforms. The clang
builds encountered a large number of issues in both the SDK products and their dependencies. The effort
required to fix these issues was larger than the time allocated for the task, so they have been moved to Q1
FY21 as part of a larger procedure to assess LLVM/clang compatibility.

Support for automated testing remains a challenge area that all of the projects are aware of and plan to
dedicate time to in FY21 and beyond. In Q2 of FY20, initial assessment of testing capabilities was carried out
for two of the six products, Dyninst and TAU, on pre-exascale systems. With this work, both products now
have working test suites that can be employed through scriptable executions. This represents an essential
component of software sustainability to demonstrate and track correctness in the presence of code changes
for these products.

Exascale Computing Project (ECP) 62 ECP-RPT-ST-0002-2020–Public

Continuous Integration (CI) testing remains a still-larger challenge for the SDK. This is due in part to
some products not having scriptable testing capabilities and also in part to more general challenges of using
CI at the facilities through OSTI. With substantial help from Don Magrack at NMC and the CI team at
ALCF, the first CI run was successfully carried out using Dyninst using Theta at the Argonne Leadership
Compute Facilities in Q4 2020. We note that automated CI testing through OSTI remains as future work
until the federated runners are established at the national labs.

Next Steps Additional testing using multiple compilers- including some variant of LLVM currently in use
by the Compilers and Debuggers SDK- on at least one current DOE facility machine, and preferably one early
access system, is our top priority for FY21. Results from these tests will continue to be fed back into the L4
products to further guide development of spack packages, bug/issue-reporting workflows, and integration into
the greater ECP software ecosystem. Any discovered issues with Spack, compilers, or libraries will be directly
reported back to their respective development teams or L3 representative.

Our KPP3 goals are tightly associated with integrating each L4 product into E4S, and a large part of
these goals is getting more products using CI testing. As such, increasing the number of L4 products in the
SDK with CI testing adoption is our second goal for FY21. The first CI workflow integration carried out
in Q4 2020 established the basic procedure for getting the other products set up. Arguably, establishing
this workflow is the largest contribution the Tools SDK will bring to the overall ECP software ecosystem.
Having automated testing in place across heterogeneous build environments and target architectures is a
fundamental challenge to creating reliable, sustainable software- making this work a critical path to attaining
the ECP goals of large-scale software sustainability. We also anticipate that this may be the introduction
of formal software testing for some of the L4 products. The heterogeneous nature of the testing available
in the Tools SDK L4 products will serve as a focused testbed for constructing implementation guidelines
for the CI workflow which can then be applied across the SDK efforts and into the greater ECP software
ecosystem. Importantly, these lessons can also be carried on by the individual project teams to help maintain
their software beyond the ECP timeline.

Exascale Computing Project (ECP) 63 ECP-RPT-ST-0002-2020–Public

4.2.8 WBS 2.3.2.06 Exa-PAPI

Overview The Exa-PAPI project is developing a new C++ Performance API (PAPI++) software package
from the ground up that offers a standard interface and methodology for using low-level performance counters
in CPUs, GPUs, on/off-chip memory, interconnects, and the I/O system, including energy/power management.
PAPI++ is building upon classic-PAPI functionality and strengthening its path to exascale with a more
efficient and flexible software design, one that takes advantage of C++’s object-oriented nature but preserves
the low-overhead monitoring of performance counters and adds a vast testing suite.

In addition to providing hardware counter-based information, a standardizing layer for monitoring software-
defined events (SDE) is being incorporated that exposes the internal behavior of runtime systems and libraries,
such as communication and math libraries, to the applications. As a result, the notion of performance
events is broadened from strictly hardware-related events to include software-based information. Enabling
monitoring of both hardware and software events provides more flexibility to developers when capturing
performance information.

Key Challenges Widely deployed and widely used, PAPI has established itself as fundamental software
infrastructure in every application domain where improving performance can be mission critical. However,
processor and system designs have been experiencing radical changes. Systems now combine multi-core CPUs
and accelerators, shared and distributed memory, PCI-express and other interconnects, and power efficiency
is emerging as a primary design constraint. These changes pose new challenges and bring new opportunities
to PAPI. At the same time, the ever-increasing importance of communication and synchronization costs in
parallel applications, as well as the emergence of task-based programming paradigms, pose challenges to the
development of performance-critical applications and create a need for standardizing performance events that
originate from various ECP software layers.

Solution Strategy The Exa-PAPI team is preparing PAPI support to stand up to the challenges posed
by exascale systems by

1. widening its applicability and providing robust support for exascale hardware resources;

2. supporting finer-grain measurement and control of power, thus offering software developers a basic
building block for dynamic application optimization under power constraints;

3. extending PAPI to support software-defined events; and

4. applying semantic analysis to hardware counters so that the application developer can better make sense
of the ever-growing list of raw hardware performance events that can be measured during execution.

In summary, the team will be channeling the monitoring capabilities of hardware counters, power
usage, software-defined events into a robust PAPI++ software package. PAPI++ is meant to be PAPI’s
replacement—with a more flexible and sustainable software design.

Recent Progress The Exa-PAPI team shipped the PAPI 6.0.0 release on March 4, 2020. This release
includes a new API for Software Defined Events (SDEs), a major revision of the high-level API, and several
new components, including ROCm and ROCm SMI for AMD GPUs, powercap ppc and sensors ppc for IBM
Power9 and later, the SDE component to expose software-defined events through the standard PAPI interface,
and the IO component that exposes I/O statistics exported by the Linux kernel.

Furthermore, PAPI 6.0.0 ships CAT, a new Counter Analysis Toolkit that assists with native performance
counter disambiguation through micro-benchmarks. Performance in different CPU architectures can be
monitored by reading the occurrences of various hardware events. However, from architecture to architecture,
it is not clear which native hardware events are indexed by which event names, making it difficult for the
performance analyst to understand how to measure specific events. To alleviate this difficulty, CAT aims to
measure the occurrences of events through a series of benchmarks, classify particular events of interest via
data analysis of the patterns of event occurrences, and allow its users to discover the high-level meaning of
native events. The examples in Figure 35 show the results from the CAT floating-point tests used to verify

Exascale Computing Project (ECP) 64 ECP-RPT-ST-0002-2020–Public

single- and double-precision FLOP counters on three different CPU architectures (Intel Broadwell, Intel
Skylake, IBM POWER9 CPU). Our paper [56] discussed how to monitor bandwidth and arithmetic intensity
with PAPI and CAT.

 0

 5

 10

 15

 20

 25

1 5 10 50 100 500

DDOT

DGEMV

DGEMM

E
v
e
n
t

C
o
u
n
t

(L
o
g
.
S
ca

le
)

Dimension of Vector/Matrix

Cross-Architecture Comparison of Double-Precision FLOPs Events

Intel Broadwell
Intel Skylake
IBM POWER9

Expected (DGEMM: 2*N3)
Expected (DGEMV: 2*N2)

Expected (DDOT: 2*N)

Figure 35: FLOPs validation on Broadwell, Skylake, and POWER9.

For the refactoring PAPI to PAPI++ effort, the Exa-PAPI team circulated a survey to the ECP applications
(AD) and software technology (ST) teams to assess their needs and requirements for hardware and software
performance counter functionality. A white paper [57] has been released, describing our survey findings and
articulating research priorities for the development of the new PAPI++ software package. In July 2020, a
second white paper [58] has been released, describing our roadmap for refactoring PAPI to PAPI++. The
objective of these documents is to describe the current design of the classic PAPI framework in conjunction
with its limitations and sustainability challenges, as well as identify and articulate opportunities and possible
implementations and C++ features for PAPI++ to provide support for the simultaneous measurement of
data from multiple counter domains.

Next Steps Our next efforts will focus on:

1. Production-ready CMake build system for PAPI++: Implementation of a production-ready
CMake build system for PAPI++ . We will build on the prototype CMake implementation from classic
PAPI (produced in STTO09-103), and use the ”PAPI Red Team” input and feedback for implementing
a CMake build system for the new PAPI++ framework and its component.

2. Transition from PAPI’s C framework to the new PAPI++ framework implemented in
C++: Implementation of the modular structure of the new PAPI++ framework that includes a new
C++ API in addition to the traditional C and Fortran APIs to preserve backward-compatibility. Focus
will be on the implementation of the PAPI++ core and modular framework that is architecture-neutral.
We will build on the design and prototype implementation from STTO09-105. A beta release for early
users will be planned as completion criteria. It will allow us to follow an iterative and incremental
software development process early in the design cycle before adding all of the 30+ PAPI components
to the new PAPI++ framework.

3. Development of a C++ API for PAPI’s stand-alone SDE library: In addition to the already
implemented and released C and FORTRAN APIs for the PAPI software-defined event (SDE) function-
ality (release with STTO09-104), we will develop a C++ API for the stand-alone SDE library while
maintaining its traditional APIs. The goal is to achieve consistency by providing all three APIs (C++ ,
C, FORTRAN) across all PAPI++ modules. This effort involves transitioning PAPI SDE to the new
PAPI++ package.

Exascale Computing Project (ECP) 65 ECP-RPT-ST-0002-2020–Public

4.2.9 WBS 2.3.2.08 HPCToolkit

Overview The HPCToolkit project is working to develop performance measurement and analysis tools
to help ECP application, library, runtime, and tool developers understand where and why their software
does not fully exploit hardware resources within and across nodes of extreme-scale parallel systems. Key
deliverables of the project are a suite of software tools that developers need to measure and analyze the
performance of parallel software as it executes on existing ECP testbeds and new technologies needed to
measure and analyze performance on forthcoming GPU-accelerated exascale systems.

To provide a foundation for performance measurement and analysis, the project team is working with
community stakeholders, including standards committees, vendors, and open source developers to improve
hardware and software support for measurement and attribution of application performance on extreme-scale
parallel systems. The project team has been engaging vendors to improve hardware support for performance
measurement in next-generation GPUs and working with other software teams to design and integrate new
capabilities into operating systems, runtime systems, communication libraries, and application frameworks
that will enhance the ability of software tools to accurately measure and attribute code performance on
extreme-scale parallel systems. Using emerging hardware and software interfaces for monitoring code
performance on both CPUs and GPUs, the project team is working to extend capabilities to measure and
analyze computation, data movement, communication, and I/O as a program executes to pinpoint scalability
bottlenecks, quantify resource consumption, and assess inefficiencies.

Key Challenges Today’s fastest supercomputers and forthcoming exascale systems all employ GPU-
accelerated compute nodes. Almost all of the computational power of GPU-accelerated compute nodes comes
from GPUs rather than CPUs. GPU-accelerated compute nodes have complex memory hierarchies that
include multiple memory technologies with different bandwidth and latency characteristics. In addition,
GPU-accelerated compute nodes have non-uniform connections between memories and computational elements
(CPUs and GPUs). Furthermore, the next three DOE supercomputers (Perlmutter, Aurora, and Frontier)
will feature GPUs from different vendors (NVIDIA, Intel, and AMD). There are significant differences in
the underlying organization of these GPUs as well as their hardware and software support for performance
measurement. For performance tools, the need to support multiple CPU and GPU architectures significantly
increases tool complexity. At the same time, the complexity of applications is increasing dramatically
as developers struggle to expose billion-way parallelism, map computation onto heterogeneous computing
elements, and cope with the growing complexity of memory hierarchies. While application developers can
employ abstractions to hide some of the complexity of emerging parallel systems, performance tools must be
intimately familiar with each of the features added to these systems to improve performance or efficiency,
develop measurement and analysis techniques that assess how well these features are being exploited, and
then relate these measurements back to software to create actionable feedback that will guide developers to
improve the performance, efficiency, and scalability of their applications.

Solution Strategy Development of HPCToolkit as part of ECP is focused on preparing it for production
use at exascale by enhancing it in several ways. First, the team is adding new capabilities to measure and
analyze interactions between software and key hardware subsystems in extreme-scale platforms, including
GPUs and the complex memory hierarchies on GPU-accelerated compute nodes. A major focus of this
effort is developing new capabilities for measurement and analysis of performance on GPUs. Second, the
team is working to improve performance attribution given optimized code for a large collection of complex
node-level programming models used by ECP developers, including vendor specific programming models such
as CUDA, HIP, and Data Parallel C++, open source community programming models such as OpenMP, and
template-based programming models developed at national laboratories such as LLNL’s RAJA and Sandia’s
Kokkos. To support this effort, the project team is enhancing the Dyninst binary analysis toolkit, which is
also used by other ECP tools. A major focus of this effort is to support analysis of GPU binaries. Third, the
team is improving the scalability of HPCToolkit so that it can be used to measure and analyze extreme-scale
executions. Fourth, the project team is working to improve the robustness of the tools across the range of
architectures used as ECP platforms. Finally, the project team will work other ECP teams to ensure that
they benefit from HPCToolkit’s capabilities to measure, analyze, attribute, and diagnose performance issues
on ECP testbeds and forthcoming exascale systems.

Exascale Computing Project (ECP) 66 ECP-RPT-ST-0002-2020–Public

(a) (b)

Figure 36: (a) HPCToolkit’s hpcviewer showing a detailed attribution of GPU performance metrics in a profile
of Quicksilver. (b) HPCToolkit’s hpctraceviewer showing CPU and GPU trace lines for Nyx.

Recent Progress

• The project team developed a unified GPU monitoring substrate. Upon this substrate, they developed
support for collecting summary metrics for kernel launches, memory copies, and synchronizations on
AMD, Intel, and NVIDIA GPUs.

• The project team enhanced support for fine-grained measurement of GPU computations using PC
sampling on NVIDIA GPUs and binary instrumentation on Intel GPUs. HPCToolkit uses instruction-
level measurements to reconstruct approximate calling context trees to help developers understand
performance of complex GPU kernels. Figure 36(a) shows a calling context for Quicksilver, an ECP
proxy application for LLNL’s Mercury next-generation transport code; the highlighted region shows an
approximate reconstruction of a GPU calling context tree.

• The project team enhanced HPCToolkit for collecting and visualizing traces of both CPU and GPU
activity. Figure 36(b) shows a trace of a GPU-accelerated execution of a recent snapshot of Nyx—an
adaptive mesh, compressible cosmological hydrodynamics simulation code being developed as part of
the ECP ExaSky project. Each GPU kernel is related to the CPU calling context in which it was
launched, which helps developers understand the performance of complex applications.

• The project team developed a novel approach that utilizes both shared and distributed memory
parallelism to analyze and aggregate sparse data representations of performance measurements from
every rank, thread and GPU stream in a program execution.

• The project team improved the reliability of HPCToolkit’s hpcrun for monitoring complex dynamic
library loading and unloading and interacting with the application when other software tools are present.

Next Steps

• Integrate GPU measurement and analysis capabilities into HPCToolkit’s trunk for release.

• Continue to improve solutions for fine-grained measurement of computations on Intel GPUs and explore
new solutions for fine-grained measurement on AMD GPUs.

• Continue to refine the reliability and performance of monitoring operations on dynamic libraries.

• Work with the open source community to upstream GPU measurement support developed by the
project team into the community version of the libomptarget offloading library.

• Work with DOE and platform vendors to evaluate and refine software interfaces for measuring GPU
performance.

Exascale Computing Project (ECP) 67 ECP-RPT-ST-0002-2020–Public

4.2.10 WBS 2.3.2.10 PROTEAS-TUNE: Programming Toolchain for Emerging Architectures
and Systems

Key Challenges: Programmer productivity and performance portability are two of the most important
challenges facing users of future exascale computing platforms. Application developers targeting ECP
architectures will find it increasingly difficult to meet these two challenges without integrated capabilities
that allow for flexibility, composability, and interoperability across a mixture of programming, runtime, and
architectural components.

Solution Strategy: The PROTEAS-TUNE project was formed as a strategic response to this challenge.
(The PROTEAS-TUNE project is the result of merger in FY20 of two previous ECP projects: PRO-
TEAS [PROgramming Toolchain for Emerging Architectures and Systems] and Y-Tune: Autotuning for
Cross-Architecture Optimization and Code Generation.) This project has three high-level goals. First,
PROTEAS-TUNE will provide a programming pathway to anticipated exascale architectures by addressing
programmability and portability concerns of emerging technology trends seen in emerging architectures. In
particular, the project focuses on improvements to LLVM and OpenACC. Additionally, the team has significant
experience with CUDA, OpenCL, and other programming models that will enable ECP applications teams to
explore programming options to find the most effective and productive approaches without constraining pro-
gramming models or software solutions. Second, PROTEAS-TUNE will prototype an integrated programming
framework strategy will deliver solutions on these emerging architectures that will be further refined for these
architectural capabilities, and make sure that they transition to vendors, standards activities, applications,
and facilities. Thirdly, PROTEAS-TUNE includes autotuning which makes it possible to separate a high-level
C/C++/FORTRAN implementation from architecture-specific implementation (OpenMP, OpenACC, CUDA,
etc.), optimization, and tuning. It also provides a flexible programming framework and integrated toolchain
that will provide ECP applications the opportunity to work with programming abstractions and to evaluate
solutions that address the exascale programming challenges they face.

Specifically, the PROTEAS-TUNE focuses on seven thrusts to improve capabilities and performance
portability for applications on exascale architectures:

• Improve the core-LLVM compiler ecosystem;

• Design and implement the OpenACC heterogeneous programming model for C/C++ in Clang/LLVM
(Clacc);

• Design and implement the OpenACC heterogeneous programming model for Fortran in Flang/LLVM
(Flacc);

• Use performance modeling and optimization to enable code transformation and performance portability;

• Refine autotuning for OpenMP and OpenACC programming models in order to directly target challenges
with heterogeneous architectures;

• Improve performance measurement and analysis tools (TAU) for the target exascale architectures and
apply it to applications to improve performance;

• Develop and implement portable software abstractions (Papyrus) for managing persistent memory;

• Aggressively engage applications, SDK, vendor, and software teams to demonstrate and deploy; and,

• in collaboration with SOLLVE and Flang, develop a DOE ECP fork of LLVM that will be the
clearinghouse for ECP modifications of LLVM (see https://github.com/llvm-doe-org).

Importantly, the team’s solutions are based on significant, continuing work with LLVM, OpenACC,
OpenMP, ARES HLIR, OpenARC, TAU, SuRF and CHiLL. The team has extensive experience and
a demonstrated track record of accomplishment in all aspects of this proposed work including existing
software deployments, interaction with application teams, vendor interaction, and participation in open
source community and standards organizations. Also, the team champions its successful solutions in ECP
procurements, community standards, and open-source software stacks, like LLVM, in order to improve their
use.

Exascale Computing Project (ECP) 68 ECP-RPT-ST-0002-2020–Public

https://github.com/llvm-doe-org

Recent Progress: Our recent work has focused on six topics:

1. OpenACC and Clacc [59]. Develop production-quality, standard-conforming OpenACC compiler and
runtime support as an extension of Clang/LLVM. See §4.2.12.

2. OpenACC and Flacc. Develop production-quality, standard-conforming OpenACC compiler and runtime
support as an extension of Flang/LLVM.

3. Performance analysis with Tau by adding additional functionality for new architectures. Improve a
widely-used performance analysis framework by adding functionality for new architectures and software
systems. See §4.2.17.

4. Improving LLVM. In collaboration with numerous other ECP projects, PROTEAS is contributing
improvements to the LLVM compiler infrastructure. These improvements include simple bugfixes to
the existing infrastructure, monitoring Flang progress, developing Clacc (see §4.2.12), developing Flacc
(See §4.2.14), and developing a DOE ECP fork of LLVM for our work.

5. Papyrus [60, 61] for portability across NVM architectures. Develop a portable interface to NVM
architectures to provide massive, persistent data structures as required by many applications. See
§4.2.18.

6. Outreach and collaboration with ECP applications teams. We have interacted with over a dozen
applications teams to help prepare their applications for ECP. See §4.2.12, §4.2.18, and §4.2.17.

Next Steps: Our next efforts are:

1. Clacc. Continue developing OpenACC support by lowering OpenACC directives to use the existing
LLVM OpenMP infrastructure.

2. Flacc. Continue developing OpenACC support by finishing the development of the OpenACC dialect
for MLIR and beginning to develop the runtime system on the existing LLVM OpenMP infrastructure.

3. Papyrus. Improve support for versioning and other performance improvements.

4. Tau. Improve performance instrumentation for deep memory hierarchies in Tau, focusing primarily on
various GPUs and emerging NVM.

5. ECP LLVM fork. Finish consolidation of ECP activities into the ECP LLVM fork, and start basic
support for continuous integration.

4.2.11 WBS 2.3.2.10 PROTEAS-TUNE: LLVM

Overview LLVM, winner of the 2012 ACM Software System Award, has become an integral part of the
software-development ecosystem for optimizing compilers, dynamic-language execution engines, source-code
analysis and transformation tools, debuggers and linkers, and a whole host of programming-language and
toolchain-related components. Now heavily used in both academia and industry, where it allows for rapid
development of production-quality tools, LLVM is increasingly used in work targeted at high-performance
computing. LLVM components are integral parts of the programming environments on our upcoming Exascale
systems, and smaller-scale systems as well, being not only popular open-source dependencies, but are critical
parts of the commercial toolchains provided by essentially all relevant vendors.

Key Challenges LLVM is well suited to the compilation of code from C++ and other languages on CPU
hardware, and for some models, GPU hardware, but lacks the kind of high-level optimizations necessary to
enable performance-portable programming across future architectures.

• LLVM lacks the ability to understand and optimize parallelism constructs within parallel programs.

• LLVM lacks the ability to perform high-level loop transformations to take advantage of complex memory
hierarchies and parallel-execution capabilities.

Exascale Computing Project (ECP) 69 ECP-RPT-ST-0002-2020–Public

Without these abilities, code compiled well for LLVM must be presented to the compiler in a form already
tuned for a specific architecture, including expressions of parallelism suited for the particular characteristics
of the target machine. It is, however, unfeasible to tune our entire workload of applications in this way for
multiple target architectures. Autotuning helps this problem by allowing dynamic analysis to supplement
static cost modeling, which is always fundamentally limited, but without the ability to perform complex
transformations, both the parallel and serial execution speed of the resulting programs will be suboptimal.

There are two remaining challenges that we are addressing: The first is that deploying autotuning relying
on source-to-source transformations is difficult because maintaining these separate source kernel versions is
practically difficult. The second is that, as a general matter, performance improvements can be obtained by
specializing code and runtime as opposed to limiting ourselves to ahead-of-time code generation.

Solution Strategy We are developing two significant enhancements to LLVM’s core infrastructure, and
many other LLVM components. These enhancements are grouped into two categories:

• Enhancements to LLVM’s inter-procedural analysis, and an improved representation of parallelism
constructs, to allow LLVM to propagate information across boundaries otherwise imposed by parallelism
constructs, and to allow LLVM to transform the parallelism constructs themselves.

• Enhancements to LLVM’s loop-optimization infrastructure to allow the direction of a sequence of loop
transformations to loop nests, exposing these features to users through Clang pragmas (in addition to
being available at an API level to tools such as autotuners), enabling those transformations to execute
as specified, and otherwise enhancing the loop-optimization infrastructure.

As part of this project, we’re investigating both fundamental intermediate representation (IR) level
enhancements (as part of the Kitsune development), as well as runtime call aware optimizations that deal
with the classical lowering of parallelism into runtime calls. The latter mechanism is being implemented
upstream as an OpenMP optimization pass, while the Kitsune work is, at present, more exploratory.

To address autotuning and the need for code specialization, we are developing a just-in-time compilation
technology with integrates naturally with the C++ language as well as embedding of (domain specific)
languages into C/C++ programs.

Recent Progress For parallelism, we have implemented several new features in upstream LLVM including
an OpenMP-aware optimization pass that performs various optimizations specific to OpenMP code on the
host and device (=GPU) [62]. It is run by default with medium and high optimizations enabled (“-O2”
and “-O3”). In addition to transformations it will provide user feedback in form of optimization remarks
(“-Rpass=openmp-opt”)

Extension to the Attributor inter-procedural optimization framework that transparently applies trans-
formations across the boundary between sequential and parallel code. This upstream work will reduce the
overhead parallelism introduces due to missed classical optimizations [63].

We prototyped heterogeneous LLVM-IR modules which allow host and device code to coexist in the same
LLVM-IR file and therefore be optimized with a holistic view. Our approach was already discussed with the
community and needs to be further refined and tested.

For loop optimizations, we have implemented several new features in LLVM and Clang, including the
OpenMP 5.1 “tile” directive and clang pragma syntax for exploration of future transformations not yet
available through the OpenMP standard. Most of these enhancements are in papers ([64, 65] and in several
forums directly to the LLVM community.

In a more forward looking approach we prototyped a loop-hierarchical IR for LLVM which we also present
and discuss in various LLVM community forums.

To facilitate autotuning (ref. Section 4.2.15), we implemented a loop nest information extraction tool for
LLVM-IR [66].

We have developed a prototype C++ compiler, based on Clang, supporting an extension that enables
programmers to embed (domain specific) languages inside their “C-like” programs [67]. That is, we allow a
new type of Clang plugin to bridge the gap between classical code, e.g., C or C++, and code written in a
different language, e.g., a quantum or tensor domain specific language (DSL). The latter two examples have
been successfully prototyped as well.

Exascale Computing Project (ECP) 70 ECP-RPT-ST-0002-2020–Public

All our efforts have also been featured in many talks, tutorials, and so on at LLVM developers’ meetings
over the last couple of years.

Next Steps We will continue to prototype implementations, discuss them with the LLVM community, and
then refine them for integration in upstream LLVM.

For the C++ JIT technology, we will also continue to pursue standardization at the C++ standards
committee.

In addition, we are implementing autotuning technology based on the loop transformation improvements,
and other improvements developed by this project. This will enable an easy-to-use autotuning capability for
applications on Exascale systems.

Parallelism specific optimizations will further be improved through Attributor enhancements upstream
and more capabilities for the OpenMP-aware aware optimization pass. Generalization of the latter to other
parallel models is planned as well.

To enable optimizations across the host-device boundary we are continuing to work on heterogeneous
LLVM-IR modules in order to integrate them into upstream LLVM.

4.2.12 WBS 2.3.2.10 PROTEAS-TUNE - Clacc: OpenACC in Clang and LLVM

Overview Heterogeneous and manycore processors (e.g., multicore CPUs, GPUs, Xeon Phi, etc.) are
becoming the de facto architectures for current HPC platforms and future Exascale platforms. These
architectures are drastically diverse in functionality, performance, programmability, and scalability, significantly
increasing the complexity that ECP app developers face as they attempt to fully utilize available hardware.

A key enabling technology pursued as part of PROTEAS-TUNE is OpenACC. While OpenMP has
historically focused on shared-memory multi-core, OpenACC was launched in 2010 as a portable programming
model for heterogeneous accelerators. Championed by institutions like NVIDIA, PGI, and ORNL, OpenACC
has evolved into one of the most portable and well recognized programming models for accelerators today.

Despite the importance of OpenACC, the only non-academic open-source OpenACC compiler cited by
the OpenACC website is GCC [68]. However, GCC has lagged behind commercial compilers, such as PGI’s,
in providing production-quality support for the latest OpenACC specifications [69]. Moreover, GCC is known
within the compiler community to be challenging to extend and, especially within the DOE, is losing favor to
Clang and LLVM for new compiler research and development efforts.

Clacc [59] is a major component of the PROTEAS-TUNE project. Overall, the goal is to build on
Clang and LLVM to develop an open-source, production-quality OpenACC compiler ecosystem that is easily
extensible and that utilizes the latest research in compiler technology. Such an ecosystem is critical to the
successful acceleration of ECP applications using modern HPC hardware. The PROTEAS-TUNE objectives
for Clacc are:

1. Develop production-quality, standard-conforming OpenACC compiler and runtime support as an
extension of Clang and LLVM. Two compilation modes are being developed: (a) traditional mode,
which produces a binary, and (b) source-to-source mode, which produces OpenMP source.

2. As part of the design, leverage the Clang ecosystem to enable the future construction of source-level
OpenACC tools, such as pretty printers, analyzers, lint tools, debugger extensions, and editor extensions.

3. Throughout development, actively contribute improvements to the OpenACC specification, and actively
contribute mutually beneficial improvements to the upstream Clang and LLVM infrastructure.

4. As the work matures, contribute OpenACC support itself to upstream Clang and LLVM so that it can
be used by the broader HPC and parallel programming communities.

Key Challenges

1. OpenACC Support: Developing production-quality, standards-conforming OpenACC compiler and
runtime support is a large undertaking. Complicating that undertaking further is the need for
optimization strategies that are competitive with existing commercial compilers, such as PGI’s, which
have been developed over many years since before the conception of the OpenACC standard.

Exascale Computing Project (ECP) 71 ECP-RPT-ST-0002-2020–Public

2. Source-to-Source: Source-to-source translation to OpenMP significantly reduces the effort to imple-
ment OpenACC and offers additional capabilities, such OpenACC support for proprietary OpenMP
compilers. However, a known issue with Clang is that its AST, the source-level representation, was
designed to be immutable. Moreover, the AST represents the source after preprocessor expansions, which
harm readability and can prevent compilation with other compilers. Finally, sophisticated analyses
and optimizations are critical for lowering OpenACC’s descriptive language to the more prescriptive
language of OpenMP, but these are best implemented at the level of LLVM IR not the Clang AST.

3. Production-Quality: Clang and LLVM are sophisticated tools with a complex codebase and a large
team of developers who diligently screen contributions to maintain a clean design and correct operation.
As for any production-quality compiler, developing and contributing improvements to Clang and LLVM
can be significantly more challenging and time-consuming than for research-quality compilers.

4. OpenMP Alternative: We believe that OpenACC’s current momentum as the go-to directive-
based language for accelerators will continue into the foreseeable future. Nevertheless, some potential
OpenACC adopters hesitate over concerns that OpenACC will one day be replaced by OpenMP features.
A tool to migrate OpenACC applications to OpenMP could alleviate such concerns, encourage adoption
of OpenACC, and thus advance utilization of acceleration hardware in ECP applications.

Solution Strategy

1. A key Clacc design feature is lowering OpenACC to OpenMP.
Benefits include:

(a) By building on Clang and LLVM’s OpenMP support, it
reduces the effort necessary to construct a production-
quality OpenACC implementation.

(b) It enables OpenACC support on OpenMP compilers
other than Clang, including proprietary compilers.

(c) It facilitates repurposing existing OpenMP static anal-
ysis and debugging tools for the sake of OpenACC.

(d) It facilitates porting applications from OpenACC to
OpenMP to alleviate the aforementioned concerns
about developing applications in OpenACC.

3. To handle Clang’s immutable AST, Clacc’s design includes a TransformACCToOMP component
that reuses a Clang feature called TreeTransform, which was originally designed for C++ template
specializations.

4. To avoid preprocessor expansions in source-to-source mode, Clacc includes a RewriteOpenACC compo-
nent that reuses a Clang feature called Rewrite.

5. To utilize LLVM IR analyses and optimizations, we are investigating ongoing efforts toward a parallel
LLVM IR. Clacc could use such an IR as a code generation target for OpenACC, either directly or after
translation to OpenMP extensions Clacc would introduce to support OpenACC’s descriptive features.

6. To stage our development effort, we are initially implementing Clacc with two simplifications: we are
implementing a prescriptive OpenACC interpretation for correct behavior, and we are implementing for
C. We will then extend Clacc with necessary analyses for a descriptive interpretation and for C++.

7. To ensure Clacc’s successful implementation and eventual acceptance upstream, we continue design
discussions with the Clang and LLVM communities via mailing lists and other relevant forums.

8. Throughout Clacc development, we are continuously integrating the latest upstream Clang and LLVM
changes, and we are running and extending the Clang and LLVM test suites to detect regressions and
incompatibilities. We are also investigating OpenACC benchmarks [70] and validation test suites [69]
to ensure correct OpenACC behavior and good performance.

Exascale Computing Project (ECP) 72 ECP-RPT-ST-0002-2020–Public

Recent Progress

1. Extended Clacc to support additional features, including various OpenACC directives and clauses
related to data motion and OpenACC Profiling Interface features motivated by integration with TAU.

2. Designed and prototyped various OpenMP extensions to support the above, including OMPT extensions.

3. Developed Gitlab CI config for x86 64, ppc64le, and nvptx64, including a Summit node, on ORNL’s
ExCL cluster.

4. Performed preliminary GPU evaluation using SPEC ACCEL benchmarks.

5. Contributed numerous improvements to Clang and LLVM, including OpenMP and LLVM testing
infrastructure improvements, and to the OpenACC specification.

Next Steps

1. Continue to implement Clacc support for critical OpenACC features based on the needs of ECP and
other HPC apps and benchmarks, and pursue OpenACC optimizations and C++ support.

2. Continue contributions to upstream Clang and LLVM and to the OpenACC specification.

4.2.13 WBS 2.3.2.10 PROTEAS-TUNE - LLVM-DOE: Creating and Maintaining a DOE
Fork of LLVM

Overview The ECP funds multiple projects that develop compiler technologies, based on the popular,
open-source LLVM compiler infrastructure project. This ecosystem allows customization to meet the unique
needs of ECP, and a level of well-established mechanisms to deploy technologies through vendors and at
DOE’s leadership facilities. Importantly, this provides an alternative open-source compiler ecosystem to those
provided by the vendor, thus reducing the dependence on the vendor’s compilers, timelines, and staff (Risk
10032 that ST product will not function or meet performance targets).

In addition, most today’s vendors already rely on LLVM as the foundation for their compiler ecosystems.
This means ECP technology has a path back to vendors via LLVM itself or through a DOE-/ECP-focused
fork of LLVM’s open source repository. This work will focus on deployment to reduce Risk 10020.

More broadly, there are eight LLVM-related projects supported by ECP that have a risk of not being
used if developers cannot easily access their contributions. This fork of LLVM will provide an opportunity for
these projects to work collectively on establishing synergies, interoperability, address the unique needs of
ECP, and mechanisms for making contributions back into the mainstream LLVM code base. The tasks to
setup the DOE Fork of LLVM are:

1. Set up a fork of the llvm-project upstream repository (see https://github.com/llvm-doe-org).

2. Enable continuous integration for the fork on various hardware of interests.

3. Enable LLVM ECP related projects to be able to push and test branches.

4. Setup status information for the continuous information results.

Solution Strategy

1. The DOE LLVM repository is setup on GitHub as a fork of the llvm-project main repository also hosted
on GitHub. This makes it easier to have a seamless synchronization with the main repository and keep
all the GitHub main-fork integrated features.

2. The GitHub repository is automatically mirrored in the GitLab premium instance hosted at ORNL.

3. The continous integration takes advantage of the GitLab CI infrastructure. This infrastructure is
available on several machines form the ExCL lab as well as on Summit and Theta.

Exascale Computing Project (ECP) 73 ECP-RPT-ST-0002-2020–Public

https://github.com/llvm-doe-org

Recent Progress

1. Fork is setup with an automatic mirroring with the upstream repository. The mirroring is using GitHub
Actions.

2. A GitLab premium instance is running at ORNL and mirrors automatically the GitHub repository.
The base continuous integration is running nightly for the main branch of the repository on ExCL
machines (Kold and Leconte).

Next Steps

1. Add continuous integration on more hardware (AMD explorer node in ExCL, Summit and Theta)

2. Enhance the continuous integration with additional LLVM sub-projects.

3. Add test-suite to the CI (e.g. SOLLVE validation test-suite).

4.2.14 WBS 2.3.2.10 PROTEAS-TUNE - FLACC and MLIR: Creating and Maintaining Ope-
nACC in LLVM/Flang

Overview Heterogeneous and manycore processors (e.g., multicore CPUs, GPUs, Xeon Phi, etc.) are
becoming the de facto architectures for current HPC platforms and future Exascale platforms. These
architectures are drastically diverse in functionality, performance, programmability, and scalability, significantly
increasing the complexity that ECP app developers face as they attempt to fully utilize available hardware.

A key enabling technology pursued as part of PROTEAS is OpenACC. While OpenMP has historically
focused on shared-memory multi-core, OpenACC was launched in 2010 as a portable programming model
for heterogeneous accelerators. Championed by institutions like NVIDIA, PGI, and ORNL, OpenACC has
evolved into one of the most portable and well recognized programming models for accelerators today.

Despite the importance of OpenACC, the only non-academic open-source OpenACC compiler cited by
the OpenACC website is GCC [68]. However, GCC has lagged behind commercial compilers, such as PGI’s,
in providing production-quality support for the latest OpenACC specifications [69]. Moreover, GCC is known
within the compiler community to be challenging to extend and, especially within the DOE, is losing favor to
Clang and LLVM for new compiler research and development efforts.

Recent efforts to build a Fortran counter-part to Clang in LLVM project have been accelerated and big
chunk of the Flang have been upstreamed. Directive-based programming model are heavily used in Fortran
applications ported to accelerators. Unlike C and C++, Fortran doesn not have many alternatives.

FLACC proposes to develop a prototype OpenACC 3.0 implementation in Flang based on MLIR to fill
this gap. As the implementation of the OpenMP target offload feature in Flang does not have a clear path,
this work will help in this regard by sharing code in the MLIR dialects and lowering sections with the Flang
and SOLLVE projects.

Key Challenges

1. OpenACC Support: Developing production-quality, standards-conforming OpenACC compiler and
runtime support is a large undertaking. Complicating that undertaking further is the need for
optimization strategies that are competitive with existing commercial compilers, such as PGI’s, which
have been developed over many years since before the conception of the OpenACC standard.

2. MLIR: Flang and the OpenACC support for it rely on the MLIR project for the intermediate
representation. MLIR has been upstreamed to the core LLVM project in early 2020 and it is still
actively under development. Flang will be the first core frontend relying on MLIR.

3. Runtime: LLVM does not include an OpenACC runtime but only one for OpenMP at the moment.
This runtime can be generalized to support missing OpenACC features. This generalization needs to be
accepted by the current OpenMP community.

Exascale Computing Project (ECP) 74 ECP-RPT-ST-0002-2020–Public

4. OpenMP Stability: As we plan to generalize the OpenMP runtime to support OpenACC, we will also
rely on various part of the runtime that are already here. There has been some concern on the stability
of the current OpenMP runtime implementation and especially the textitlibomptarget responsible for
the target offload part.

Solution Strategy
1. Flacc design follows a similar design as the OpenMP implementation for Flang. This design includes

the following aspects:

(a) An OpenACC MLIR dialect part of the core MLIR project.

(b) A lowering from the Flang AST to a mix of FIR and OpenACC MLIR dialect.

(c) A progressive lowering from MLIR to LLVM IR with runtime call.

Recent Progress

1. OpenACC 3.0 parser is upstreamed to the Flang front-end. It covers the full specification and also
implements the unparsing feature of Flang.

2. Semantic checking for OpenACC 3.0 is also upstreamed in Flang. While implementing this part, a
new TableGen backed for directive-based language has been contributed upstreamed. This is used by
OpenACC and OpenMP for both Clang and Flang.

3. Base of the OpenACC MLIR dialect has been introduced upstream. The OpenACC dialect is part of
the core MLIR project.

4. Discussed Flacc at various ECP, HPC, and LLVM venues.

Next Steps

1. Continue the definition of the OpenACC MLIR dialect and complete the lowering to it.

2. Start working on the runtime support for OpenACC.

3. Work on the lowering from MLIR to LLVM IR and runtime call.

4.2.15 WBS 2.3.2.10 PROTEAS-TUNE: Autotuning

Overview We are developing tools and an application development workflow that separates a high-level
C/C++/FORTRAN implementation from an architecture-specific implementation (OpenMP, CUDA, etc.),
optimization, and tuning. This approach will enable Exascale application developers to express and maintain
a single, portable implementation of their computation that is also legal code that can be compiled and run
by using standard tools. The autotuning compiler and search framework will transform the baseline code into
a collection of highly-optimized implementations. This reduces the need for extensive manual tuning. Both
code transformation and autotuning are essential in ECP for providing performance portability on Exascale
platforms. Due to significant architectural differences in ECP platforms, attaining performance portability
may require fundamentally different implementations of software – different strategies for parallelization,
loop order, data layout, and exploiting SIMD/SIMT. A key concern of ECP is the high cost of developing
and maintaining performance-portable applications for diverse Exascale architectures, including manycore
CPUs and GPUs. Ideally Exascale application developers would express their computation separate from
its mapping to hardware, while autotuning compilers can automate this mapping and achieve performance
portability.

Exascale Computing Project (ECP) 75 ECP-RPT-ST-0002-2020–Public

Key Challenges Autotuning has the potential to dramatically improve the performance portability of
Petascale and Exascale applications. To date, autotuning has been used primarily in high-performance
applications through tunable libraries or previously tuned application code that is integrated directly into the
application. If autotuning is to be widely used in the HPC community, support for autotuning must address
the software engineering challenges, manage configuration overheads, and continue to demonstrate significant
performance gains and portability across architectures. In particular, tools that configure the application
must be integrated into the application build process so that tuning can be reapplied as the application and
target architectures evolve.

Solution Strategy We are developing pluggable software infrastructure that incorporates autotuning at
different levels: compiler optimization, runtime configuration of application-level parameters and system
software. To guarantee success in the ECP time frame, we are collaborating with application teams, such as
SuperLU and QMCPACK, to impact performance of their codes and libraries.

The autotuning compiler strategy revolves CHiLL, which has the following distinguishing features:
(1) Composable transformation and code generation, such that the same tool can be applied to multiple
different application domains; (2) Extensible to new domain-specific transformations that can be represented
as transformations on loop nest iteration spaces are also composable with existing transformations; (3)
Optimization strategies and parameters exposed to autotuning: By exposing high-level expression of the
autotuning search space as transformation recipes, the compiler writer, an expert programmer or embedded
DSL designer can directly express how to compose transformations that lead to different implementations.
A part of our efforts in ECP are to migrate these capabilities of CHiLL into the Clang/LLVM open-source
compiler, as well as provide lightweight interfaces through Python, C++, and REST APIs/web services.

For example, we have developed a brick data layout library and code generator for stencil computations.
Recent trends in computer architecture that favor computation over data movement incentivize high-order
methods. Paradoxically, high-order codes can be challenging for compilers/optimization to attain high
performance. Bricks enable high performance and make fine-grained data reuse and memory access information
known at compile time. The SIMD code generation achieves performance portability for high-order stencils
for both CPUs with wide SIMD units (Intel Knights Landing) and GPUs (NVIDIA Pascal). Integration with
autotuning attains performance that is close to Roofline performance bound for both manycore CPU and
GPU architectures and demonstrates strong scaling by reducing on-node data movement in communication.

The Search using Random Forests (SuRF) search framework is a separate tool in Y-Tune that optimizes
the search over an autotuning search space. While SuRF provides support to CHiLL for compiler-directed
autotuning, it can also be integrated directly with applications and runtimes to search over application
parameters and alternative code variants. SuRF is an asynchronous search framework that consists of
sampling a small number of input parameter configurations and progressively fitting a surrogate model over
the input-output space until exhausting the user-defined maximum number of evaluations. The framework is
designed to operate in the master-worker computational paradigm, where one master node fits the surrogate
model and generates promising input configurations and worker nodes perform the computationally expensive
evaluations and return the outputs to the master node. We implemented both MPI- and scheduler-based
master-worker approaches.

Recent Progress We have pursued the following main activities this year:
Autotuning capability in LLVM: The key idea is to support the use of pragmas in the C++ source to guide

transformations to be applied. These can include the types of transformation recipes used in CHiLL, but
also parallelization directives for OpenMP and OpenACC that would interact with SOLLVE and PROTEAS.
Our initial focus is the implementation of user/tool-directed optimizations in Polly, which is a polyhedral
framework in LLVM with some similar features to CHiLL. An initial plan for pragmas in Clang and LLVM
metadata has been developed. Several existing open-source LLVM projects allowing for just-in-time (JIT)
compilation of C++ code have been identified and are being evaluated for use with autotuning. A summer
intern developed the JIT/autotuning explorations.

SuRF Supporting Autotuning Search Recently, we developed stopping criterion based on local convergence and
expected improvement over time. This allows the search to terminate in shorter computation time. Currently,
we are expanding the search for multinode autotuning where each evaluation spans multiple nodes. In the

Exascale Computing Project (ECP) 76 ECP-RPT-ST-0002-2020–Public

past year, we have used SuRF to perform autotuning search on pragmas, including loop transformations
and OpenMP pragmas. Most recently, we are using SuRF to refine descriptive OpenMP pragmas such as
pragma omp loop to derive prescriptive pragmas for CPU and GPU mapping of code. For this purpose,
we refined SuRF to use a python library that supports expressing tree-structured search spaces, including
dynamic trees. We have demonstrated that this approach can achieve performance portability across CPU
and GPU using OpenMP. We also published a paper on using autotuning to drive loop transformation
decisions.

Large high-performance computing (HPC) clusters and DOE leadership-class supercomputing systems
pose a few deployment and portability challenges for SuRF. The key issues stem from the differences in
queuing systems, scheduling policies, and scripts needed to run the search in a distributed way. Typically,
manager worker is implemented with message-passing interface (e.g., MPI) built into the search application.
Although this approach is flexible, it requires SuRF to handle a number of system level issues related to
system calls (such as apruns, sruns), Python package dependencies, and the correct MPI software stack.

To that end, we integrated Balsam, a default workflow manager on Theta leadership-class system at Argonne
Leadership Computing Facility. BalsamEvaluator module was implemented to interface SuRF with Balsam.
The BalsamEvaluator uses the Python API provided by Balsam to interact with the BalsamJob database.
Each BalsamJob corresponds to a single autotuning configuration evaluation and contains information
pointing to the task executable and the command-line arguments used to run the configuration with the
executable. The BalsamEvaluator comprise two dictionaries: pending evals, which maps configurations
onto the corresponding BalsamJob IDs, and evals, which maps the same configurations to the stored objective
value (runtime). As a search proceeds asynchronously, receiving data from BalsamEvaluator, these data
structures are updated accordingly. The BalsamEvaluator takes advantage of the Balsam Django API to
filter jobs according to their state (e.g., process return code) and leverages functionality such as monitoring
job output, logging error tracebacks, and generating compute node utilization profiles.

We developed an easy-to-use common interface for search space definition for autotuning. GPTune is
an autotuning software developed within xSDK4ECP project. The interface allow GPTune and SuRF to
share the same search space and problem definition. We developed SPACK specifications for SuRF package
installation and made the software open source in github.

Brick Library: We developed a code generator for the Brick Data Layout library for stencils that is performance-
portable across CPU and GPU architectures, and addresses the needs of modern multi-stencil and high-order
stencil computations. The key components of our approach that lead to performance portability are (1) a
fine-grained brick data layout designed to exploit the inherent multidimensional spatial locality common to
stencil computations; (2) vector code generation that can either target wide SIMD CPU instructions sets
such as AVX-512 and SIMT threads on GPUs; and, (3) integration with autotuning framework to apply
architecture-specific tuning. For a range of stencil computations, we show that it achieves high performance
for both the Intel Knights Landing (Xeon Phi) CPU, and the NVIDIA GPUs [71, 72]. This year we extended
the library in multiple ways. We show that the indirection in the brick data layout permits distinct physical
and logical data layouts; we can therefore store the bricks in memory to reduce the data movement of
packing and unpacking during cross-node communication. We have demonstrated strong scaling by reducing
communication time.

Next Steps We will continue to work with ECP application teams to integrate our tools with their efforts.
In particular, we are integrating bricks into the Proto system, used in subsurface flows.

Figure 37: Y-TUNE Solution Approach.

Exascale Computing Project (ECP) 77 ECP-RPT-ST-0002-2020–Public

4.2.16 WBS 2.3.2.10 PROTEAS-TUNE - Bricks

Overview We have developed a source-to-source stencil framework (“textttBricks”) to address the growing
gap between memory and computational performance on pre-exascale systems. The approach uses standard
C++ code to express stencil loops, then transforms the code to use a different memory alignment and ghost
zone region to optimize memory and communication performance specifically for that stencil kernel [71, 72, 73].
This also provides an opportunity to inject architecture-specific code transformations, that can take advantage
of SIMD/SIMT, threading, virtual memory layouts, and the variety of parameters that are needed to tune for
optimal performance. This is a powerful paradigm for having both a correct legal code base using standard
tools and, in combination with the autotuning tools previously described, the ability to achieve portable
performance on many different platforms with minimal, auto-generated code transformations.

Key Challenges Bricks require three primary ingredients for performance portability:
(1) Stencil kernel metadata - including stencil radius, dimensionality, neighbor dependencies, and other
memory access patterns. For example, for communication the optimal layout depends on the extent of stencil
corner coupling and symmetry or reuse.
(2) Transformation profitability model - based on the architecture characteristics and benchmarks, determining
what transformations could improve overall throughput, not just maximize flops or bytes moved. This can
also be explored using roofline models, auto-tuning, communication-avoiding techniques, etc.
(3) Back-end optimizations and benchmarks - knowing what architecture-specific transformations achieve the
best roofline performance, and how to isolate and compare those with a known benchmark problem. For
example, if there are special OS or hardware capabilities, like vectorized shuffle, or memory mmap or prefetch,
that are required to obtain peak performance.

1

2

6 87

4

1 32

5

Figure 38: Bricks can be used to map
memory onto regions that minimize ghost
zone packing and MPI message count (2D
example).

Solution Strategy With Bricks, we have developed a data lay-
out library and code generator for both stencil computations and
ghost zone communication. Recent trends in computer architecture
that favor computation over data movement incentivize high-order
methods. Paradoxically, high-order codes can be challenging for
compilers/optimization to attain high performance. Bricks enable
high performance and make fine-grained data reuse and memory
access information known at compile time. The SIMD code genera-
tion achieves performance portability for high-order stencils for both
CPUs with wide SIMD units (Intel Knights Landing and Skylake)
and GPUs (NVIDIA Pascal and Volta). Integration with autotuning
attains performance that is close to Roofline performance bound for
both manycore CPU and GPU architectures.

Recent Progress For optimization of MPI-based communication
on exascale proxy systems, we identified several stencil kernels from
applications that leverage the tuned kernels from previous milestones,
and evaluated their strong scaling on Theta (Intel KNL) and Summit
(NVIDIA V100 GPUs). For most stencil codes, strong scaling is
limited by the communication of “ghost zone” values or exchanged
between processors and nodes, which is required for iterative algorithms or time integrators. Because each
MPI rank has one or more subdomains with different layouts in memory, this involves “packing” before
sending – copying a subset of local arrays into an MPI message buffer – and then “unpacking” (copying buffers
to array subset) after receiving data. This involves both strided memory access and accessing the same array
as different messages are sent or received. These operations on the ghost zone “skin” can introduce significant
latency and is a blocking operation that, in the limit of strong scaling, can’t be hidden by overlapping
communication and computation. We have used our Bricks source-to-source transformation technique to
eliminate the cost of MPI packing/unpacking on CPUs and GPUs, which improves strong scaling for block
semi-structured applications, is performance-portable, and is directly relevant to applications with many
DoF’s per grid point (such as in combustion and multi-physics codes). We have also introduced a novel

Exascale Computing Project (ECP) 78 ECP-RPT-ST-0002-2020–Public

technique on CPU to significantly reduce the number of messages, using an indirect mapping of memory to
MPI buffers.

Next Steps For FY20, we are extending Bricks to other application patterns, including block-structured
AMR, chemistry kernels, and systems of (non-)linear solvers. For these, the primary focus will be on
investigating the profitability models, code transformations, and auto-tuning the kernels. As more diverse
architectures and benchmarks become available within the ECP program (AMD GPU, Intel GPU, NVIDIA
Turing), we will develop transformations that provide better performance portability. We will be building up
to portable application performance and load balancing; this is a complex trade-off between all kernels in a
given code, and will be very application- and architecture-dependent.

4.2.17 WBS 2.3.2.10 PROTEAS-TUNE - TAU Performance System

Overview The TAU Performance System is a versatile profiling and tracing toolkit that supports perfor-
mance instrumentation, measurement, and analysis. It is a robust, portable, and scalable performance tool
for use in parallel programs and systems over several technology generations. It is a ubiquitous performance
tool suite for shared-memory and message-passing parallel applications written in C++, C, Fortran, Java,
Python, UPC, and Chapel. In the PROTEAS project, TAU is being extended to support compiler-based
instrumentation for the LLVM C, C++, and Fortran compilers using higher-level intermediate language
representation. TAU is also targeting support for performance evaluation of directive based compilation
solutions using OpenARC and it will support comprehensive performance evaluation of NVM based HPC
systems. Through these and other efforts, our objective to better support parallel runtime systems such as
OpenMP, OpenACC, Kokkos, ROCm, and CUDA in TAU. Figures 39 and 40 give examples of using TAU’s
parallel profile analysis tool, ParaProf.

Key Challenges Scalable Heterogeneous Computing (SHC) platforms are gaining popularity, but it is
becoming more and more complex to program these systems effectively and to evaluate their performance at
scale. Performance engineering of applications must take into account multi-layered language and runtime
systems, while mapping low-level actions to high-level programming abstractions. Runtime systems such as
Kokkos can shield the complexities of programming SHC systems from the programmers, but pose challenges to
performance evaluation tools. Better integration of performance technology is required. Exposing parallelism
to compilers using higher level constructs in the intermediate language provides additional opportunities for
instrumentation and mapping of performance data. It also makes possible developing new capabilities for
observing multiple layers of memory hierarchy and I/O subsystems, especially for NVM-based HPC systems.

Solution Strategy Compilers and runtime systems can expose several opportunities for performance
instrumentation tools such as TAU. For instance, using the OpenACC profiling interface, TAU can tap into a
wealth of information during kernel execution on accelerators as well measure data transfers between the
host and devices. This can highlight when and where these data transfers occur and how long they last. By
implementing compiler-based instrumentation of LLVM compilers with TAU, it is possible to how the precise
exclusive and inclusive duration of routines for programs written in C, C++, and Fortran. Furthermore, we
can take advantage of the Kokkos profiling interface to help map lower level performance data to higher level
Kokkos constructs that are relevant to programmers. The instrumentation at the runtime system level can
be achieved by transparently injecting the TAU Dynamic Shared Object (DSO) in the address space of the
executing application. This requires no modification to the application source code or the executable.

Recent Progress

1. Updated CUDA support Added preliminary support in TAU for NVIDIA A100 GPUs with support
for CUDA 11.

2. Updated OpenMP support Updated OMPT support to OpenMP 5.0, tested with ECP Proxy
applications miniFE and miniQMC as shown in the Vampir [74] trace viewer in Figure 39.

Exascale Computing Project (ECP) 79 ECP-RPT-ST-0002-2020–Public

Figure 39: TAU was used to collect profiles and traces of ECP proxy applications
like miniFE (trace shown in Vampir), observing OpenMP parallel regions, loops
and synchronization without application instrumentation.

3. Clacc support Implemented/updated profiling support for OpenACC events provided by the Clacc
compiler as shown in the Vampir trace viewer in Figure 40.

4. HIP Added support for AMD GPUs with ROCm 3.3.

5. CODAR Updated TAU plugin for streaming profile and trace output to ADIOS2 for realtime application
monitoring. Integrated with Chimbuko framework for runtime trace analysis, demonstrated with XGC
on Summit using 768 MPI ranks. (publication accepted to ISAV Workshop @SC20)

6. E4S Integrated TAU in E4S to support AMD GPUs. Both Docker and Singularity images posted on
E4S.io website include TAU with support for NVIDIA and AMD GPUs.

7. Kokkos Updated support for Kokkos profiling interface in TAU (publication accepted to ProTools
Workshop @SC20).

8. LLVM Instrumentation Implemented an LLVM module for selective instrumentation of C/C++
using TAU, tested with LLVM versions 6 through 12 and Clacc.

9. CCAMP Extended OpenACC and OpenMP interoperable framework, (publication to be presented at
SC20).

Next Steps

1. CUDA Enhancements Implement new Profiling API and Perfworks Metrics API for CUDA/CUPTI
10+.

2. OpenMP and OpenACC Enhancements Explore and implement prototype measurement for
OpenMP and OpenACC regions executed on target devices.

3. New Architectures We plan to support Intel OneAPI with Level Zero and the HPE Cray platform
with AMD GPUs.

Exascale Computing Project (ECP) 80 ECP-RPT-ST-0002-2020–Public

Figure 40: TAU was used to collect profiles and traces of OpenACC benchmarks
(303.stencil trace shown in Vampir), observing OpenACC regions and device
offload events without application instrumentation.

4. Outreach Continued outreach activities to demonstrate comprehensive performance evaluation support
in TAU for OpenARC, OpenACC, LLVM compiler-based instrumentation, CUDA, Kokkos, ROCm,
and NVM based programming frameworks for SHC platforms.

5. E4S Continued integration of TAU and PROTEAS-TUNE projects in the E4S.

6. LLVM Instrumentation Add Fortran support for LLVM selective instrumentation module, add
OpenACC profiling support for F18.

7. TAU Instrumentation Modernize TAU source-to-source auto-instrumentation support in TAU for
C++ by replacing current parser front-end with LLVM based solution.

4.2.18 WBS 2.3.2.10 PROTEAS-TUNE - PAPYRUS: Parallel Aggregate Persistent Storage

Overview Papyrus is a programming system that provides features for scalable, aggregate, persistent
memory in an extreme-scale system for typical HPC usage scenarios. Papyrus provides a portable and
scalable programming interface to access and manage parallel data structures on the distributed NVM storage.
Papyrus allows the programmers to exploit large aggregate NVM space in the system without handling
complex communication, synchronization, replication, and consistency models. Papyrus consists of three
components, virtual file system (VFS) [60], C++ template container library (TCL) [60], and key-value store
(KV) [61]. (1) PapyrusVFS provides a uniform aggregate NVM storage image for the different types of NVM
architectures. It presents an illusion of a single large NVM storage for all NVM devices available in the
distributed system. Unlike other traditional kernel-level VFSs, PapyrusVFS is a lightweight user-level VFS,
which is provided as a library so that applications can link to or dynamically load it. PapyrusVFS implements
a subset of POSIX API related to file I/O. (2) PapyrusTCL provides a high-level container programming
interface whose data elements can be distributed to multiple NVM nodes. PapyrusTCL provides three
containers, including map, vector, and matrix, implemented as C++ templates. PapyrusTCL is built on
top of PapyrusVFS. This enables PapyrusTCL to be decoupled from a specific NVM architecture and to
present a high-level programming interface whose data elements are distributed across multiple NVM nodes
transparently. (3) PapyrusKV is a novel embedded KVS implemented specifically for HPC architectures
and applications to provide scalability, replication, consistency, and high performance, and so that they can
be customized by the application. It stores keys and values in arbitrary byte arrays across multiple NVMs.
PapyrusKV provides configurable consistency technique controlled by the application during the program

Exascale Computing Project (ECP) 81 ECP-RPT-ST-0002-2020–Public

execution dynamically to meet application-specific requirements and/or needs. It also supports fault tolerance
and streamlined workflow by leveraging NVM’s persistence property.

Key Challenges In HPC, NVM is quickly becoming a necessary component of future systems, driven, in
part, by the projections of very limited DRAM main memory per node and plateauing I/O bandwidth. More
concretely, recent DOE systems, such as NERSC’s Cori, LANL/Sandia’s Trinity, LLNL’s Sierra, OLCF’s
Summit, TACC’s Stampede2, and ALCF’s Theta, include some form of NVM. This NVM will be used in two
fundamental ways. First, it will be used as a cache for I/O to and from the traditional HDD-based external
parallel file systems. In this case, most scientists believe that the caching can be implemented transparently,
shielding complexity from the applications and users. Second, NVM will be used as an extended memory to
provide applications with access to vast amounts of memory capacity beyond what is feasible with DRAM
main memory. More interestingly, in HPC, this extended memory can be aggregated into a much larger,
scalable memory space than that provided by a single node alone. In this second case, however, no portable
and scalable programming systems exist.

Solution Strategy We describe our key goals for Papyrus: high performance, scalability, portability, inter-
operability with existing programming models, and application customizability. First, high performance
is a clear need in HPC. The design of Papyrus should provide the opportunity to exploit NVM resources
efficiently. Second, scalability is important in HPC as most of the applications must run on large sectors
of the systems - thousands to hundreds of thousands of processors. Papyrus should not inhibit scalability;
it should provide an interface that is able to scale as the application and system do. Third, portability is
a necessary requirement because HPC applications must be able to run on multiple, diverse platforms at
any given time. The upcoming DOE systems all have NVM integrated into the systems in different ways.
Papyrus must provide both functional portability and performance portability across systems with different
architectures. Fourth, interoperability is a practical requirement of HPC applications. Papyrus must be
designed so that it can be incrementally introduced into an application without conflicting with existing HPC
programming models and languages like MPI, UPC, OpenMP, OpenACC, C, C++, and Fortran. Furthermore,
Papyrus should leverage characteristics of these other programming models when possible. Interoperability
allows programmers to adopt Papyrus incrementally in legacy MPI applications avoiding major rewrites of
the application. Fifth, application customizability is a key requirement to achieve high performance and
scalability. HPC applications have many different usage scenarios, and thus Papyrus should have customizable
parameters for key features that impact other important properties like performance and scalability.

Recent Progress

1. Data compression and encryption Added data compression and encryption to Papyrus [75]. Our
compression technique exploits deep memory hierarchy in an HPC system to achieve both storage
reduction and performance improvement. Our encryption technique provides a practical level of security
and enables sharing of sensitive data securely in complex scientific workflows with nearly imperceptible
cost.

2. Redesign Redesigned and optimized Papyrus to support multidimensional tables.

3. Summit Performed preliminary evaluation on OLCF’s Summit supercomputer.

Next Steps

1. Versioning Versioning can be used to provide new levels of reliability and performance optimization.
We will design and implement versioning in Papyrus.

2. Performance optimization New APIs and hardware support is being developed for NVM technologies;
we are implementing optimizations in Papyrus to take advantage of these advances.

Exascale Computing Project (ECP) 82 ECP-RPT-ST-0002-2020–Public

4.2.19 SOLLVE

Overview OpenMP is a directive-based API for intra-node programming that is widely used in ECP
applications. Implementations of OpenMP and tools to facilitate OpenMP application development are
available in all DOE LCFs. The specification is supported by a stable community of vendors, research
labs, and academics who participate in the efforts of the OpenMP Architecture Review Board (ARB) and
its Language Committee to evolve its features. The mission of the SOLLVE project is to further enhance
OpenMP and its implementations to meet the performance and productivity goals of ECP applications.

SOLLVE has identified open ECP application software requirements, developed features and/or imple-
mentation technology to address them, and created use cases that motivate the need for enhancements. The
project continues to identify needs and works to standardize them via active participation in the deliberations
of the Language Committee.

The project is developing a verification and validation (V&V) suite to assess implementations and enable
evaluations by DOE facilities. It is constructing a high-quality, robust OpenMP implementation based on
the LLVM compiler. SOLLVE plays a critical role in specifying, implementing, promoting, and deploying
functionality that will enable ECP application developers to reach their goals using OpenMP.

Key Challenges Gaps in OpenMP functionality exist as a result of the rapid evolution of node architectures
and base programming languages, as well as a lack of focus on performance portability before version 5.0.
Since vendor representatives dominate the OpenMP Language Committee, effort is needed to secure their
support with regard to the scope of the API, as well as the syntax and semantics of new features.

The API has greatly expanded in recent years as some of these gaps are closed, placing a large burden
on its implementers. The timely provision of robust implementations of new features that are critical for
ECP is therefore particularly challenging. For performance portability, consistent approaches in multiple
implementations is highly desirable. Interoperability concerns have emerged as a new challenge.

Given the lack of availability of implementations with features that target accelerators, many existing
codes have used alternative APIs for GPUs: a significant effort will be required to replace those approaches
by OpenMP. A broad effort is required to develop and apply best practices for new features and platforms.

Solution Strategy We address the challenges by focusing on the following primary activities:

1. Application requirements Ongoing in-depth interactions with selected ECP application teams have
resulted in a list of required extensions, some of which have been met by the recent 5.0 specification.
New needs are being identified. This work informs all other project activities by producing use cases,
detailed feedback and example codes. It moreover contributes to the OpenMP Examples document.

2. OpenMP specification evolution Members of the SOLLVE project are active participants in the
OpenMP Language committee. The project creates early prototypes for new features based on ECP
use cases, develops concrete proposals and submits them for standardization. Several proposed features
were included in OpenMP 5.0, ratified November 2018. More are under development for version 5.1.

3. LLVM Compiler SOLLVE implements new OpenMP features in the LLVM compiler and develops
analyses and transformations that enhance, and provide consistency to, OpenMP performance. Its open
source solutions may be leveraged in vendor compilers. The compiler is available on LCF platforms.

4. Lightweight OpenMP runtime The BOLT runtime, built upon ultra-lightweight threading, addresses
the need for efficient nested parallelism and improved task scheduling, it develops better support for
interoperability with MPI. BOLT is integrated and delivered with the project’s LLVM compiler.

5. Validation and Verification (V&V) A V&V suite is being implemented that allows vendors, users
and facilities to assess the coverage and standard compliance of OpenMP implementations. A ticket
system for bug reporting and inquiries has also been deployed to facilitate interaction with end users.

6. Training and Outreach Tutorials and webinars are delivered to provide information on OpenMP
features and their usage, as well as updating on the status of implementations. Deeper interaction with
application programmers via hackathons supports the development of ECP codes using all available
OpenMP features.

Exascale Computing Project (ECP) 83 ECP-RPT-ST-0002-2020–Public

Compiler

•Implementation of
user-driven loop
transformations.
•Implementation of the
OpenMP 5.0 declare
mapper feature.
• Optimization of GPU
unified memory
performance.
• Implementation of
performance portability
features of OpenMP 5.0
such as declare variant.

•Support for OpenMP offload
feature of asynchronous
target regions

•Full support of math and
complex in GPU code.

.

Application
Requirements

• Support of LLVM
OpenMP for OpenMP
backend In
RAJA/Kokkos.

• ECP OpenMP
hackathons working
w/ applications: Lattice
QCD, miniVite,
GAMESS, QMCPack,
ExaAM, Flash (ExaStar),
E3SM.

• OpenMP feature
wishlist ticketing
system on Redmine

•

Runtimes

• Further optimizations of
OpenMP thread
scheduling for nested
parallel regions in the
BOLT 1.0 release.

• Enhanced
interoperability with MPI
systems including MPICH
(v3.4b1) and Open MPI
(v5.0) through BOLT at
the Argobots layer,
regularly tested by CI.

• Improved OpenMP
tasking by combining
gang-scheduling and
work stealing for
load-imbalanced
applications such as
SLATE.

Specification
Evolution

• Fall 2020
OpenMP virtual
Face-to-Face meeting

• Release of OpenMP 5.1
(Nov. 2020) containing

OpenMP 5.0
Examples and features
for OpenMP 5.1 with
features for running on
GPUs and user-driven
program
transformations.

Verification and
Validation Suite

• Working with a number of
compiler teams who have
used the V&V Suite to
evaluate their products.
• Improved V&V suite to
assess features in OpenMP
for a large number of
different ECP systems.
• Further developed V&V
suite to consider
computational patterns and
algorithmic strategies used
in many ECP application,
such as testing OpenMP
tasks used in SLATE.

OpenMP Services

Accelerator Parallelism Tasking
Memory

ManagementAffinity

ECP
Value

SOLLVE
Thrust
Areas

Updates

Training and Outreach
Webinars, Workshops, ECP Annual Meeting Tutorial and Breakout, Hackathons, Online Documentation

Figure 41: SOLLVE thrust area updates

Recent Progress Figure 41 shows the latest progress on the 5 core SOLLVE thrust areas. The training
and outreach activity is a cross-cutting effort which is supported by resources from SOLLVE and ECP
Broader Engagement, with contributions by external collaborators, notably Lawrence Berkeley National
Laboratory. A number of articles have also been published as part of the SOLLVE effort [76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 88].

Next Steps The following next steps are planned:

• Applications: Continue to interact with ECP applications teams, evaluate implementations of new
features and explore new requirements; identify best practices for the use of OpenMP on accelerators;

• OpenMP specification: Continue work toward the next version of the standard via ECP-motivated
feature development and participation in the OpenMP Language Committee: version 5.1 is underway
and due for release November 2020;

• LLVM compiler: Improve performance of device offloading and optimize generation of code within
target devices; generalize to enable reuse across multiple offloading architectures; develop infrastructure
to support integration of Fortran front end; increase parallel region performance; implementation of
OpenMP 5.1 loop transformations;

• OpenMP runtime: Provide support for 5.0 spec; address broader set of interoperability challenges
including MPI+OpenMP codes using BOLT; address advanced tasking requirements;

• V&V suite: Continue expanding the coverage of the V&V Suite, with focus on 5.0 features and additions
and corrections to 4.5 tests as OpenMP implementations mature; expand Fortran tests; work with ARB
Examples Committee; improve ALCF toolchains; more vendor interactions.

4.2.20 WBS 2.3.2.11 Argobots: Flexible, High-Performance Lightweight Threading

Overview Efficiently supporting massive on-node parallelism demands highly flexible and lightweight
threading and tasking runtimes. At the same time, existing lightweight abstractions have shortcomings while

Exascale Computing Project (ECP) 84 ECP-RPT-ST-0002-2020–Public

delivering generality and specialization. Our group at Argonne developed a lightweight, low-level threading
and tasking framework, called Argobots. The key focus areas of this project are: (1) To provide a framework
that offers powerful capabilities for users to allow efficient translation of high-level abstractions to low-level
implementations. (2) To provide interoperability with other programming systems such as OpenMP and MPI
as well as with other software components (e.g., I/O services). (3) To provide a programming framework that
manages hardware resources more efficiently and reduce interference with co-located applications.

Key Challenges Several user-level threading and tasking models have been proposed in the past to
address the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Their lightweight
nature and flexible generic interface play an important role at managing efficiently the massive concurrency
expected at the Exascale level. Existing user-level threading and tasking models, however, are either too
specific to applications or architectures or are not powerful or flexible. Existing runtimes tailored for generic
use [93, 94, 95, 96, 97, 98, 99, 100, 101] are suitable as common frameworks to facilitate portability and
interoperability but offer insufficient flexibility to efficiently capture higher-level abstractions, while specialized
runtimes [102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112] are tailored to specific environment.

Solution Strategy Argobots offers a carefully designed execution model that balances generality of
functionality with providing a rich set of controls to allow specialization by end users or high-level programming
models [113]. Delivering high performance in Argobots while providing a rich set of capabilities is achieved
by heavily optimizing critical paths as well as by exposing configuration knobs and a rich API, which allow
users to trim unnecessary costs. Furthermore, Argobots honors high degrees of expressibility through the
following three key aspects:

1. Capturing the requirements of different work units, which are the most basic manageable entities. Work
units that require private stacks and context-saving capabilities, referred to as user-level threads (ULTs,
also called coroutines or fibers), are fully fledged threads usable in any context. Tasklets do not require
private stacks. They are more lightweight than ULTs because they do not incur context saving and
stack management overheads. Tasklets, however, are restrictive; they can be executed only as atomic
work units that run to completion without context switching.

2. Exposing hardware computational units through execution streams (ESs) as OS-level threads to execute
work units. Unlike existing generic runtimes, ESs are exposed to and manageable by users.

3. Allowing full control over work unit management. Users can freely manage scheduling and mapping of
work units to ESs through thread pool management, and thus achieving the desired behavior. Figure 42
illustrates the various building blocks in the Argobots framework and the interactions between them to
build a hypothetical system.

Recent Progress Threading overheads are crucial for fine-grained parallel applications and runtimes
running in massively parallel environments. We have found that the timing of yield operations highly
affects the performance of lightweight threads [114], but other factors remained unexplored. We further
optimized fork-join overheads by exploring new threading methods with respect to stack allocation timing
and scheduling policies and a wider range of modern hardware architectures. Our evaluation shows that our
child-first scheduling yields promising results for deep and narrow recursive task-parallel programs while the
parent-first scheduling is good for flat parallelism. Our study helps users and application developers choose
the best threading methods that fit their hardware architectures and application workloads and maximize
the scalability [115].

Integration with other runtime systems is fundamentally important for the Argobots project. BOLT, a
SOLLVE OpenMP runtime over Argobots [34], is one of the most successful parallel programming systems
using Argobots. Our enhancements of Argobots threads lowers the cost of OpenMP threading and tasking.
The Argobots project continues to improve interoperability with communication layers such as MPI runtimes
(e.g., MPICH and Open MPI) and Margo, a Mercury RPC over Argobots. To help their performance analysis,
our latest Argobots 1.1a1 release includes a lightweight yet powerful profiling interface, which helps runtime
developers pinpointing a performance problem in these systems. I/O service is one of the most important

Exascale Computing Project (ECP) 85 ECP-RPT-ST-0002-2020–Public

Pool

U

ULT

T

Tasklet

E

Event

ES1

SM1

U

EE

U

S1

S2

T

T

T

T

U U T T U T

ES2

SM2EE

U

U

U

T

T

T

S

Scheduler

PS

PM11

PE1

P21P11

PE2

PM22PM21

...

ESn

Figure 42: Argobots execution model

application areas for Argobots. Intel DAOS, a next- generation high-performance storage system developed
by Intel, uses Argobots to efficiently handle asynchronous I/O messages. We are working together to improve
Argobots by providing a better debugging interface such as stack dump features. Our CI testing has been
extended for various CPU architectures, operating systems, and compilers to cover most of the DOE HPC
platforms. Thanks to our CI, Argobots 1.1a1 works on major UNIX-based platforms including Ubuntu,
FreeBSD, CentOS, macOS, and Solaris. Argobots supports most CPU architectures with special optimizations
for Intel/AMD x86/64, ARMv8-A, and POWER 8 and 9. Argobots can be compiled with numerous C
compilers including GCC, Clang, ICC (Intel), XLC (IBM), PGCC (PGI), Solaris Studio (Oracle), and Arm
C Compiler for HPC (ARM).

The innovative design and implementation of Argobots are highly recognized. Argobots was named a
finalist for the 2020 R&D 100 Awards. The prestigious R&D 100 competition, sponsored by R&D Magazine,
recognizes the 100 most innovative technologies of the previous year. Argobots, a lightweight and highly
flexible multithreading framework, was chosen as a finalist for the 2020 R&D 100 Awards.

Next Steps Argobots continues to implement new features and optimizations for application needs, while
our substantial efforts will be made to promote integration and composition with other systems. Our major
ongoing and planned steps are as follows.

1. Further integration with other applications and runtimes including MPI runtimes including MPICH
and Open MPI. In collaboration with MPICH and Open MPI developers, we will further optimize their
Argobots interoperability layers by utilizing user-level threading techniques.

2. Enhanced interoperability of multiple components that are not aware of Argobots. Unfortunately, not
all applications are written for lightweight ULTs; some programs suffer from core starvation and, in the
worst case, deadlocks if they are running on Argobots. To address this issue, we are investigating an
approach that is as lightweight as the current Argobots ULTs while it has the OS-implicit preemption
functionality that traditional OS-level threads have.

4.2.21 WBS 2.3.2.11 BOLT: Lightning Fast OpenMP

Overview OpenMP is central for several applications that target Exascale, including ECP applications,
to exploit on-node computational resources. Unfortunately, current production OpenMP runtimes, such as
those that ship with Intel and GNU compilers, are inadequate for the massive and fine-grained concurrency

Exascale Computing Project (ECP) 86 ECP-RPT-ST-0002-2020–Public

expected at the Exascale level. These runtimes rely on heavy-handed OS-level threading strategies that
incur significant overheads at fine-grained levels and exacerbate interoperability issues between OpenMP and
internode programming systems, such as MPI and OpenSHMEM. BOLT is a production quality OpenMP
runtime (called BOLT) which has been developed within the SOLLVE project to address this issue by
leveraging user-level threads instead of OS-level threads (e.g., Pthreads). Due to their lightweight nature,
managing and scheduling user-level threads incurs significantly less overheads. Furthermore, interoperability
between BOLT and internode programming systems opens up new optimization opportunities by promoting
asynchrony and reducing hardware synchronization (atomics and memory barriers). Initial studies on this
proposal can be found in [116, 117, 118]. This report briefly summarizes the issues in OpenMP runtimes that
rely on OS-level threading, describes BOLT as the solution to this challenge, the current status in the BOLT
effort, and the next steps for further improvements.

Key Challenges The growing hardware concurrency in High Performance Computing (HPC) cluster nodes
is pushing applications to chunk work more fine-grained to expose parallelism opportunities. This is often
achieved through nested parallelism either in the form of parallel regions or by explicit tasks. Nested parallel
regions can potentially cause oversubscription of OS-level threads to CPUs and thus lead to expensive OS-level
thread management. Such heavy costs usually outweigh the benefits of increased concurrency and thus
compel the OpenMP programmer to avoid nested parallel regions altogether. Such workaround, however,
not only causes poor resource utilization from insufficient parallelism but is also not always possible. For
instance, the nested level could be outside the control of the user because it belongs to an external library
that also uses OpenMP internally. Internode programming systems, such as MPI and OpenSHMEM, are
not aware of OpenMP semantics, such as the notion of an OpenMP task. What these internode systems
understand is the low-level threading layer used by OpenMP, such as Pthreads. This threading layer serves
as the interoperability medium between OpenMP and the internode programming system and has a direct
impact on performance. It is notoriously known that OS-level thread safety in production MPI libraries
suffers significant performance issues. While continued progress on improving OS-level thread safety in these
important internode programming systems is crucial for traditional interoperability, we propose in this work
exploring an orthogonal direction that assumes a more lightweight interoperability layer.

Solution Strategy Both fine-grained parallelism and interoperability issues suffer from the heavy nature
of working at the level of OS threads. Our solution to both challenges leverages user-level threads. Using
user-level threads as the underlying threading layer for the OpenMP runtime offers a significantly better
trade-off between high concurrency and thread management overheads. This allows users to generate fine-
grained concurrency and oversubscription without worrying about the performance collapse that is observed
in current OpenMP runtimes. Our OpenMP runtime, BOLT, is derived from the LLVM OpenMP runtime
and leverages Argobots, a highly optimized lightweight threading library, as its underlying threading layer.
OpenMP threads and tasks are spawned as Argobots work units and nested parallel regions are managed
through an efficient work-stealing scheduler. Furthermore, new compiler hints and runtime optimizations
have been developed to allow reducing thread management overheads even further [114, 115]. Interoperability
improvements have also been demonstrated by having BOLT interoperate with an MPI libraries through
the Argobots threading layer rather than OS-level threads. Results showed that this approach allows better
communication progress and outperforms the traditional Pthreads-level interaction [113].

Recent Progress We improved the interoperability of BOLT with various MPI systems via lightweight
threads, Argobots. Since most MPI runtimes including MPICH, Open MPI, and production MPI implementa-
tions that are derived from either MPICH or Open MPI assume OS-level threads as “Thread” in MPI+Thread,
lightweight OpenMP runtimes based on lightweight threads failed to interoperate well with existing MPI
systems. To address this issue, we have implemented an abstracted threading layer for lightweight threads in
these MPI runtimes so that users can choose OpenMP threads and tasks of BOLT as “Thread”.

Specifically, we focused on the MPI interoperability with the most widely used open-source MPI imple-
mentations: MPICH and Open MPI. For MPICH, we fixed a few bugs regarding synchronization mechanisms,
which will be included in the MPICH 3.4 release. In collaboration with the Open MPI researchers and
the Qthreads researchers at Sandia and Los Alamos National Laboratories, we implemented a new thread
abstraction layer for generic threading runtime support in Open MPI using the Opal Modular Component

Exascale Computing Project (ECP) 87 ECP-RPT-ST-0002-2020–Public

Figure 43: MPI+Threads interoperability of BOLT. OpenMP threads and
tasks in BOLT interact MPI implementations via the Argobots layer.

Architecture. This highly abstracted threading layer has been implemented carefully to minimize the addi-
tional overheads. Furthermore, this Opal architecture partly allows the programmer to choose an underlying
threading library at compile- or run-time to provide flexibility. The performance trade-off has been discussed
in our work [119]. This Open MPI interoperability improvement will be included in the Open MPI 5.0 release.
To ensure availability, we employed a weekly CI testing infrastructure for those MPI systems.

Our latest BOLT 1.0 release contains a large upgrade to be compatible with LLVM OpenMP 10.0, which
further improves performance and functionalities especially for GPU offloading and new OpenMP 5.0 features.
This release also contains scheduler improvement in BOLT and an upgrade of the Argobots package, which
allows further lightweight fine-grained OpenMP threading and tasking. Interaction and integration are a
critical piece for the BOLT project. We continue working on the SOLLVE Spack package so that this BOLT
system is available on our target HPC systems and users can utilize BOLT for (1) ECP applications that
have fine-grained parallelism such as nested parallel regions and tasking (e.g., ECP SLATE) and (2) runtime
systems via the Argobots layer (such as MPICH and Open MPI we mentioned) that can take advantage of
ULT’s lightweight synchronization for resource management.

Next Steps One of the largest advantages of BOLT is an underlying lightweight thread implementation,
flexible scheduling, and high interoperability thanks to Argobots. The following list includes our next plans:

1. Explores opportunities for utilizing lightweight threads for other optimizations in the context of OpenMP.
The main focus of BOLT has been the performance of fine-grained OpenMP threads, so we have not
fully explored how BOLT could elevate the performance of other parallel units (e.g., data-dependent
tasking and GPU offloading). We are planning to investigate room for optimizations and implement
them with evaluation.

2. Investigates the performance with large-scale applications. In order to find potential room for opti-
mizations and evaluate the performance of BOLT in real large-scale workloads, we further investigate
other SOLLVE components and ECP applications that can benefit from BOLT. Since most distributed
systems rely on MPI for internode communication, we will also work on tighter integration with MPI
to optimize the performance with MPI runtimes over BOLT.

Exascale Computing Project (ECP) 88 ECP-RPT-ST-0002-2020–Public

[

4.2.22 WBS 2.3.2.12 Flang

Overview The Flang project provides an open source Fortran [120] [121] [122] compiler. The project was
formally accepted as a component of the LLVM Compiler Infrastructure last year (see http://llvm.org) [123]
and has merged portions of its initial codebase into the main LLVM repository as of April 2020. Leveraging
LLVM, Flang will provide a cross-platform Fortran solution available to ECP and the broader international
LLVM community. The goals of the project include extending support to GPU accelerators and target
Exascale systems, and supporting LLVM-based software and tools R&D of interest to a large deployed base
of Fortran applications.

LLVM’s growing popularity and wide adoption make it an integral part of the modern software ecosystem.
This project provides the foundation for a Fortran solution that will complement and interoperate with the
Clang C/C++ compiler and other tools within the LLVM infrastructure. We aim to provide a modern,
open-source Fortran implementation that is stable, has an active footprint within the LLVM community, and
will meet the specific needs of ECP as well as the broader scientific computing community.

Key Challenges Today there are several commercially-supported Fortran compilers, typically available on
only one or a few platforms. None of these are open source. While the GNU gfortran open source compiler is
available on a wide variety of platforms, the source base is not modern LLVM-style C++ and the GPL open
source license is not compatible with LLVM, both of which can impact broader community participation and
adoption.

The primary challenge of this project is to create a source base with the maturity, features, and performance
of proprietary solutions with the cross-platform capability of GNU compilers, and which is licensed and
coded in a style that will be embraced by the LLVM community. Additional challenges come from robustly
supporting all Fortran language features, programming models, and scalability required for effective use on
Exascale systems.

Solution Strategy With the adoption of Flang into the LLVM community, our strategy focuses on building
a strong community around it and the development and delivery of a solid, alternative Fortran compiler
for DOE’s Exascale platforms. It is critical that we be good shepherds within the broad LLVM community
to successfully establish and grow a vibrant community for Flang. This external engagement is in the best
interest of ECP as well as the long-term success of Fortran in the LLVM community and the many industry
products that rely upon it.

Our path to success will rely on significant testing across not only the various facilities but also across a
very broad and diverse set of applications. Given the early development stage of Flang, this testing will be
paramount in the delivery of a robust infrastructure to ECP and the broader community.

Recent Progress After several years of effort and support from NNSA, Flang was successfully “adopted”
by the LLVM community and has transitioned from a stand-alone git repository to one hosted by the main
LLVM project. This represents a significant result and the current code is available via GitHub:

https://github.com/llvm/llvm-project/tree/master/flang

The current capabilities of flang include the full Fortran 2018 standard and OpenMP 5.X syntax and
semantics. As part of the development of the parsing and semantic analysis portions of the front-end, over
five million lines of Fortran code has been successfully processed. Beyond parsing and semantics, we have
been focusing our efforts on creating a Fortran-centric intermediate representation (Fortran IR – “FIR”)
that leverages recent activities within Google on https://www.blog.google/technology/ai/mlir-accelerating-
ai-open-source-infrastructure/ (MLIR) for use with the implementation of FIR. With the development of
FIR progressing, we are approaching completion of the first full (sequential) compiler with the full set of F77
capabilities, and implementations of later standards are expected to follow naturally after that.

Exascale Computing Project (ECP) 89 ECP-RPT-ST-0002-2020–Public

http://llvm.org
https://github.com/llvm/llvm-project/tree/master/flang

Next Steps Our short-term priorities are focused on the completion of the sequential compiler, the creation
of a significant testing infrastructure, and helping to lead the interactions and overall discussions within the
LLVM community. Longer term efforts will shift to support OpenMP 5.X features critical to ECP applications
on the target Exascale platforms. We are actively exploring finding a common leverage point between Clang’s
current OpenMP code base and Flang. This would enable the reuse of existing code versus writing everything
from scratch in Flang. We see this as a critical path forward to enabling a timely release of a node-level
parallelizing compiler for ECP. Additional work will focus on features that would benefit Fortran within the
LLVM infrastructure as well as general and targeted optimization and analysis capabilities.

Exascale Computing Project (ECP) 90 ECP-RPT-ST-0002-2020–Public

4.3 WBS 2.3.3 MATHEMATICAL LIBRARIES

End State: Mathematical libraries that (i) interoperate with the ECP software stack; (ii) are incorporated
into the ECP applications; and (iii) provide scalable, resilient numerical algorithms that facilitate efficient
simulations on Exascale computers.

4.3.1 Scope and Requirements

Software libraries are powerful means of sharing verified, optimized algorithms and their implementations.
Applied research, development, and support are needed to extend existing DOE mathematical software
libraries to make better use of Exascale architectural features. DOE-supported libraries encapsulate the latest
results from mathematics and computer science R&D; many DOE mission-critical applications rely on these
numerical libraries and frameworks to incorporate the most advanced technologies available.

The Mathematical Libraries effort will ensure the healthy functionality of the numerical software libraries
on which the ECP applications will depend. The DOE mathematical software libraries used by computational
science and engineering applications span the range from light-weight collections of subroutines with simple
APIs to more “end-to-end” integrated environments and provide access to a wide range of algorithms for
complex problems.

Advances in mathematical and scientific libraries will be necessary to enable computational science on
Exascale systems. Exascale computing promises not only to provide more computational resources enabling
higher-fidelity simulations and more demanding studies but also to enable the community to pose new
scientific questions. Exascale architectural characteristics introduce new features that algorithms and their
implementations will need to address in order to be scalable, efficient, and robust. As a result, it will be
necessary to conduct research and development to rethink, reformulate, and develop existing and new methods
and deploy them in libraries that can be used by applications to deliver more complete and sophisticated
models and provide enhanced predictive simulation and analysis capabilities.

The Mathematical Libraries effort must (1) collaborate closely with the Application Development effort
(WBS 2.2) to be responsive to the needs of the applications and (2) collaborate with the other products
within the Software Technology effort (WBS 2.3) in order to incorporate new technologies and to provide
requirements. All software developed within the Mathematical Libraries effort must conform to best practices
in software engineering, which will be formulated early in the project in collaboration with the Applications
Development focus area. Software produced by this effort must provide scalable numerical algorithms that
enable the application efforts to reach their performance goals, encapsulated in libraries whose data structures
and routines can be used to build application software.

4.3.2 Assumptions and Feasibility

Years of DOE investment have led to a diverse and complementary collection of mathematical software,
including AMReX, Chombo, hypre, Dakota, DTK, MAGMA, MFEM, PETSc/TAO, PLASMA, ScaLAPACK,
SUNDIALS, SuperLU, and Trilinos. This effort is evolving a subset of existing libraries to be performant on
Exascale architectures. In addition, research and development is needed into new algorithms whose benefits
may be seen only at the extreme scale. Results of preliminary R&D projects indicate that this approach is
feasible.

Additionally, ECP will need to rely on a strong, diverse, and persistent base math research program,
which is assumed to continue being supported by the DOE-SC ASCR Office. The ECP technical directors will
schedule quarterly meetings with the ASCR research program managers to get updates on research results
that might meet ECP requirements as well as to inform the program managers of ECP needs in applications
and software components.

4.3.3 Objectives

The high-level objective of the Mathematical Libraries effort is to provide scalable, resilient numerical
algorithms that facilitate efficient application simulations on Exascale computers. To the greatest extent
possible, this objective should be accomplished by preserving the existing capabilities in mathematical software

Exascale Computing Project (ECP) 91 ECP-RPT-ST-0002-2020–Public

while evolving the implementations to run effectively on the Exascale systems and adding new capabilities
that may be needed by Exascale applications.

The key performance metrics for the software developed by this effort are scalability, efficiency, and
resilience. As a result of the new capabilities in mathematics libraries developed under this effort, applications
will tackle problems that were previously intractable and will model phenomena in physical regimes that
were previously unreachable.

4.3.4 Plan

As detailed below, the Mathematical Libraries effort supports six complementary L4 projects as needed to
meet the needs of ECP applications. These efforts include strong collaborations among DOE labs, academia,
industry, and other organizations, and leveraging existing libraries that are widely used by the DOE HPC
community.

Initial efforts have focused on identifying core capabilities needed by selected ECP applications, establishing
performance baselines of existing implementations on available Petascale and prototype systems, and
beginning re-implementation of lower-level capabilities of the libraries and frameworks. Another key activity
is collaborating across all projects in the Mathematical Libraries effort to define community policies in order
to enable compatibility among complementary software and to provide a foundation for future work on deeper
levels of interoperability. Refactoring of higher-level capabilities will be prioritized based on needs of the
applications. In time, these efforts will provide demonstrations of parallel performance of algorithms from the
mathematical software on pre-Exascale, leadership-class machines (at first on test problems, but eventually in
actual applications). The initial efforts also are informing research into advanced exascale-specific numerical
algorithms that will be implemented within the libraries and frameworks. In FY20–23, the focus will be on
development and tuning for the specific architectures of the selected exascale platforms, in addition to tuning
specific features that are critical to ECP applications. The projects will implement their software on the
CORAL, NERSC and ACES systems, the pre-Exascale hardwares such as Tulip and Iris, and ultimately
on initial Exascale systems, so that functionality, performance, and robustness can be evaluated by the
applications teams and other elements of the software stack. Throughout the effort the applications teams and
other elements of the software stack will evaluate and provide feedback on their functionality, performance,
and robustness. These goals will be evaluated at least yearly based on milestones as well as joint milestone
activities shared across the associated software stack activities by Application Development and Hardware
and Integration project focus areas.

4.3.5 Risks and Mitigations Strategies

There are a number of foreseeable risks associated with the Mathematical Libraries effort.

• Efficient implementation of new or refactored algorithms to meet Exascale computing requirements may
introduce unanticipated requirements on programming environments. To mitigate this risk, effective
communication is needed between projects in the Mathematical Libraries effort and projects tasked
with developing the programming environments. From the application perspective, this is specifically
tracked in a specific AD risk in the risk register. Additionally, the risks of an inadequate programming
environment overall are tracked as a specific ST risk in the risk register.

• A significant number of existing algorithms currently implemented in numerical libraries may scale
poorly, thereby requiring significantly more effort than refactoring. The R&D planned for the first
three years of the ECP is the first mitigation for this risk (as well as the co-design centers planned in
Application Development). In addition, the ECP will be able to draw from a strong, diverse, well-run,
persistent base math research program. From the application perspective, this is tracked via an AD risk
in the risk register. Scaling issues for the software stack in general, including libraries, are monitored
via an ST risk in the risk register.

• Exascale architecture characteristics may force a much tighter coupling among the models, discretizations,
and solvers employed, causing general-purpose solvers to be too inefficient. The mitigation strategy is
to ensure close collaboration with the sub-elements of the Application Development focus area (WBS

Exascale Computing Project (ECP) 92 ECP-RPT-ST-0002-2020–Public

2.2) to understand integration and coupling issues. Again, a strong, diverse, well-run, persistent base
math research program may provide risk mitigation strategies.

4.3.6 Future Trends

Mathematical libraries have been one of the strongest success stories in the scientific software ecosystem.
These libraries encode specialized algorithms on advanced computers that can be the difference between
success or not. Algorithms such as multigrid, highly-tuned dense linear algebra and optimized FFTs, can
improve performance by orders of magnitude and reduce the asymptotic algorithmic complexity for users. We
foresee that math libraries will have an ever-growing role in the scientific software ecosystem, as architectures
become more challenging for targeting optimization and algorithms require even more concurrency and
latency hiding in order to realize performance on modern computer systems.

In addition, we anticipate that new algorithms based on multi-precision arithmetic will further enable
performance improvements on compute devices that are optimized for machine learning workloads, where
lower precision can be an order of magnitude faster than double precision. A recent paper [124] surveys the
landscape of multi-precision numerical linear algebra algorithms.

For a deeper discussion of the futures of ECP Math Libraries efforts, please consult the paper “Preparing
Sparse Solvers for Exascale Computing” [125].

Exascale Computing Project (ECP) 93 ECP-RPT-ST-0002-2020–Public

4.3.7 WBS 2.3.3.01 xSDK

Overview The xSDK project is creating a value-added aggregation of DOE math and scientific libraries
through the xSDK (Extreme-scale Scientific Software Development Kit) [126], which increases the combined
usability, standardization, and interoperability of these libraries as needed by ECP. The project focuses on
community development and a commitment to combined success via quality improvement policies, better
build infrastructure, and the ability to use diverse, independently developed xSDK libraries in combination to
solve large-scale multiphysics and multiscale problems. We are extending xSDK package community policies
and developing interoperability layers among numerical libraries in order to improve code quality, access,
usability, interoperability, and sustainability. Focus areas are (1) coordinated use of on-node resources, (2)
integrated execution (control inversion and adaptive execution strategies), and (3) coordinated and sustainable
documentation, testing, packaging, and deployment.

xSDK is needed for ECP because it enables applications such as ExaAM and ExaWind to seamlessly
leverage the entire scientific libraries ecosystem. For example, ExaWind has extremely challenging linear
solver scaling problems. xSDK provides access to all scalable linear solvers with minimal changes. xSDK
is also an essential element of the product release process for ECP ST. xSDK provides an aggregate build
and install capability for all ECP math libraries that supports hierarchical, modular installation of ECP
software. Finally, xSDK provides a forum for collaborative math library development, helping independent
teams to accelerate adoption of best practices, enabling interoperability of independently developed libraries
and improving developer productivity and sustainability of the ECP ST software products.

Key Challenges The complexity of application codes is steadily increasing due to more sophisticated
scientific models. While some application areas will use Exascale platforms for higher fidelity, many are
using the extra computing capability for increased coupling of scales and physics. Without coordination, this
situation leads to difficulties when building application codes that use 8 or 10 different libraries, which in
turn might require additional libraries or even different versions of the same libraries.

The xSDK represents a different approach to coordinating library development and deployment. Prior to
the xSDK, scientific software packages were cohesive with a single team effort, but not across these efforts.
The xSDK goes a step further by developing community policies followed by each independent library included
in the xSDK. This policy-driven, coordinated approach enables independent development that still results in
compatible and composable capabilities.

Solution Strategy The xSDK effort has two primary thrusts:

1. Increased interoperability: xSDK packages can be built with a single Spack package target. Fur-
thermore, services from one package are accessible to another package.

2. Increased use of common best practices: The xSDK has a collection of community policies that
set expectations for a package, from best design practices to common look-and-feel.

xSDK interoperability efforts began first with eliminating incompatibilities that prohibited correct
compilation and integration of the independently developed libraries. These issues include being able to
use a common version of a library by another library. The second, and ongoing phase is increased use of
one package’s capabilities from another. xSDK community package policies [3, 127] are a set of minimum
requirements (including topics of configuring, installing, testing, MPI usage, portability, contact and version
information, open source licensing, namespacing, and repository access) that a software package must satisfy
in order to be considered xSDK compatible. The designation of xSDK compatibility informs potential users
that a package can be easily used with others and makes configuration and installation of xSDK software and
other HPC packages as efficient as possible on common platforms, including standard Linux distributions and
Mac OS X, as well as on target machines currently available at DOE computing facilities (ALCF, NERSC,
and OLCF) and eventually on new Exascale platforms. Community policies for the xSDK promote long-term
sustainability and interoperability among packages, as a foundation for supporting complex multiphysics
and multiscale ECP applications. In addition, because new xSDK packages will follow the same standard,
installation software and package managers (for example, Spack [1]) can easily be extended to install many
packages automatically.

Exascale Computing Project (ECP) 94 ECP-RPT-ST-0002-2020–Public

For the adaptive execution effort, the team is working toward GPTune, a Gaussian process tuner, to help
math library users find the optimal parameter settings for the libraries to achieve high performance for their
applications. In addition, an interface will be created to also give access to alternate autotuners.

Recent Progress The xSDK team developed a suite of example codes that demonstrate interoperabilities
between select xSDK libraries, xsdk-examples v.0.1.0 [128]. The suite includes a build system and documen-
tation in the subfolders of the codes and can be built with Spack [1]. It provides training for xSDK users
on mixed package use. It also serves as test suite and will be included in testing of future xSDK releases.
Figure 44 illustrates the xSDK libraries and their interoperabilities represented in the first release.

The xSDK team also released version v.0.6.0 of the xSDK community policies [127]. It includes a new
recommended policy on documentation quality. Since the switch from the original xSDK installer to Spack
as the xSDK package installer has facilitated the build of the xSDK, the team could simplify policy M1 by
merging it with M16 and abandoning the installation policies. In place of the installation policies, Spack
variant guidelines have been provided, and a new policy M16 was created to keep the installation policy
requirement that xSDK libraries need to have an option to be configured in debug mode.

Figure 44: xSDK packages and interoperabilities represented in version v.0.1.0
of the xsdk-examples test suite. A→B indicates that A uses functionalities of B

The first version of the GPTune autotuning software for parameter optimization of HPC codes was
released [129]. It was evaluated by tuning several ECP math libraries and applications codes using up to 2048
Cori Haswell cores. GPTune achieved a performance gain of up to 60 percent compared to default parameter
settings. It outperformed two state-of-the-art tuners, OpenTuner and HpBandster, up to 2.5, when tuning
ScaLAPACK QR.

Next Steps Our next efforts include

• a new xSDK release with two additional math libraries heFFTe and SLATE,

• development of new interoperabilities between xSDK libraries and their inclusion in xsdk-examples,

• enhancing GPTune with new features, such as transfer learning, incorporation of predictive models,
and speeding up the internal Gaussian process modeling algorithms,

• design and implementation of a code quality toolkit that automates analyses and activities related to
code testing, documentation, and use.

Exascale Computing Project (ECP) 95 ECP-RPT-ST-0002-2020–Public

4.3.8 WBS 2.3.3.01 xSDK Sub-project: multiprecision

Overview Within the past years, hardware vendors have started designing low precision special function
units in response to the demand of the Machine Learning community for high compute power in low precision
formats. At the same time, the gap between compute power on the one hand and memory bandwidth on the
other hand keeps increasing, making data access and communication prohibitively expensive compared to
arithmetic operations. Having the choice between ignoring the hardware trends and continuing the traditional
path or adjusting the software stack to the changing hardware designs, the US Exascale Computing Project
decided to build a multiprecision focus effort to take on the challenge of designing and engineering novel
algorithms capable to exploit the compute power available in low precision and to adjust the communication
format to application specific needs. As part of the xSDK project, the multiprecision focus effort is a
coordinated effort creating synergies via cross-institutional collaboration.

Key Challenges Generally, there exists a strong relationship between the precision used in arithmetic
operations and the accuracy of the computed result. Since scientific applications need to provide high quality
output, replacing high precision formats with low precision formats throughout a complete application code
is generally not feasible. Instead, to utilize lower precision formats, the underlying numerical algorithms have
to be redesigned to employ low precision formats for the most time-consuming parts while preserving high
accuracy in the solution. In this context, the arithmetic operations are only one aspect. As the execution time
of many scientific applications is dominated by communication and memory access, the algorithm redesign also
has to include strategies for compressing data to reduce the pressure on the memory bandwidth. This aspect
becomes even more relevant as the arithmetic power continues to grow faster than the memory bandwidth,
therewith widening the gap between arithmetic performance and memory performance, see Figure 45.

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
year

1

10

100

Pe
ak

 M
flo

p/
s ÷

 M
W

/s

30
% pe

r y
ea

r

15% per year

Machine balance
(# floating point operations per read)

VAX-11

8088

Y-MP
C90

486DX2
CM-5E

Pentium

NEC SX-4

PII

Origin2000

NEC SX-5

T3E
PIII

NEC SX-7

Cray X1

P4

C1060

Core2Duo
M2050

K Computer

Core i7

K10

KNC

RaspberryPi

K40
P100

KNL V100

Figure 45: Evolution of the machine balance of processors over different
hardware generations.

Solution Strategy In the multiprecision effort, the team assesses current status and functionalities,
advances the theoretical knowledge on multiprecision algorithms, designs prototype implementations and
multiprecision interoperability layers, deploys production-ready multiprecision algorithms in the xSDK math
libraries, ensures multiprecision cross-library interoperability and integrates multiprecision algorithms into

Exascale Computing Project (ECP) 96 ECP-RPT-ST-0002-2020–Public

ECP application projects. The long list of project activities is organized in a multi-phase approach: The
first stage is dedicated to the exploration of the design space and existing research efforts focusing on low
precision, mixed precision, and extended precision. To this end, the effort includes internationally-renown
external experts for mixed precision algorithms. In the second stage, the multiprecision effort increasingly
focuses on developing production code ready to be used in the ECP application projects. Relevant algorithmic
functionality includes sparse linear algebra, multigrid methods, preconditioners, iterative solvers, low-rank
approximations, and mixed precision machine learning. On the hardware side, special focus is put on
low-precision special function units like NVIDIA’s tensor cores that – originally designed for machine learning
algorithms – offer about an order of magnitude higher arithmetic performance than conventional fp64 units.
In the third phase of the multiprecision effort, the project team will aid the ECP application projects with
the adoption of multiprecision functionality and continue to adapt to new hardware technologies.

Recent Progress As a first step, the multiprecision team surveyed the state of the art in terms of mixed
precision algorithms, low precision and extended precision algorithms, and the algorithmic needs of the ECP
application projects. The results of this landscape assessment are made publicly available as “A Survey of
Numerical Methods Utilizing Mixed Precision Arithmetic” [124]. A more compact version of this survey –
exclusively focusing on numerical linear algebra – has been submitted as a journal article.

Based on the findings of the multiprecision landscape assessment, we created a set of cross-institutional
focus groups that address different algorithms and aspects of the ECP software ecosystem including dense
and sparse direct solvers, eigensolvers, Krylov-based iterative solvers, multigrid methods, preconditioners,
Fast Fourier Transform, and machine learning technology. Orthogonal to those, we created focus groups on
the design on a memory accessor that separates the arithmetic precision from the communication precision,
and the efficient realization of multiprecision basic building blocks like sparse matrix vector multiply. In
bi-weekly virtual meetings, the progress on the different efforts is presented and discussed as many of these
efforts are closely related. As another integral part of the bi-weekly phone calls we established a series of
short talks where each meeting is commenced by an invited talk presenting an idea, success story, or progress
update on mixed precision functionality to the audience.

Following the idea of decoupling the memory precision from the arithmetic precision to reduce the pressure
on the memory bandwidth, the team released an accessor design document detailing the implementation
and usage of a memory accessor that compresses data, e.g. by converting to a lower precision format, before
invoking memory operations. The document has been made available to the ECP community.

Next Steps Our next efforts include

• the publication of a compacted version of the multiprecision landscape assessement as a scientific journal
paper,

• the deployment of the accessor separating memory precision and arithmetic precision in the Ginkgo
library with support for AMD GPUs, NVIDIA GPUs, and multicore CPUs,

• the implementation of compressed basis Krylov solvers that utilize the memory accessor to compact the
Krylov search directions,

• the advancement of multiprecision capabilities for solvers, preconditioners, and other ECP-relevant
kernels in xSDK libraries, including

- the design and implementation of mixed precision eigensolvers,

- the research and realization of mixed precision multigrid solvers,

- the design and implementation of mixed precision sparse factorizations.

Exascale Computing Project (ECP) 97 ECP-RPT-ST-0002-2020–Public

4.3.9 WBS 2.3.3.06 PETSc-TAO

Overview Algebraic solvers (generally nonlinear solvers that use sparse linear solvers) and integrators form
the core computation of many numerical simulations. No scalable “black box” sparse solvers or integrators
work for all applications, nor are there single implementations that work well for all problem sizes. Hence,
algebraic solver and integrator packages provide a wide variety of algorithms and implementations that can be
customized for the application and range of problem sizes. PETSc/TAO [130, 131] is a widely used numerical
library for the scalable solution of linear, nonlinear, and variational systems, for integration of ODE/DAE
systems and computation of their adjoints, and for numerical optimization. This project focuses on three
topics: (1) partially matrix-free scalable solvers to efficiently use many-core and GPU-based systems; (2)
reduced synchronization algorithms that can scale to larger concurrency than solvers with synchronization
points; and (3) performance and data structure optimizations for all the core data structures to better utilize
many-core and GPU-based systems as well as provide scalability to the exascale systems.

The availability of systems with over 100 times the processing power of today’s machines compels the
utilization of these systems not just for a single “forward solve” (as discussed above), but rather within a
tight loop of optimization, sensitivity analysis (SA), and uncertain quantification (UQ). This requires the
implementation of a new scalable library for managing a dynamic hierarchical collection of running scalable
simulations, where the simulations directly feed results into the optimization, SA, and UQ solvers. This
library, which we call libEnsemble, directs the multiple concurrent “function evaluations” through the tight
coupling and feedback. This work consist of two parts: (1) the development of libEnsemble; and (2) the
development of application-relevant algorithms to utilize libEnsemble.

Key Challenges A key challenge for scaling the PETSc/TAO numerical libraries to Exascale systems is that
traditional “sparse-matrix-based” techniques for linear, nonlinear, and ODE solvers, as well as optimization
algorithms, are memory-bandwidth limited. Another difficulty is that any synchronizations required across all
compute units—for example, an inner product or a norm—can dramatically affect the scaling of the solvers.
Another challenge is the need to support the variety of accelerators that will be available on the exascale
systems and the programming models that application teams use for performance portability.

Running an ensemble of simulations requires a coordination layer that handles load balancing and allows
the collection of running simulations to grow and shrink based on feedback. Thus, our libEnsemble library
must be able to dynamically start simulations with different parameters, resume simulations to obtain
more accurate results, prune running simulations that the solvers determine can no longer provide useful
information, monitor the progress of the simulations, and stop failed or hung simulations, and collect data
from the individual simulations both while they are running and at the end.

Solution Strategy To address the scalability of the numerical libraries, we implemented new solvers and
data structures including: pipeline Krylov methods that delay the use of the results of inner products and
norms, allowing overlapping of the reductions and other computation; partially matrix-free solvers using
high-order methods that have high floating-point-to-memory-access ratios and good potential to use many-core
and GPU-based systems; and in-node optimizations of sparse matrix-matrix products needed by algebraic
multigrid to better utilize many-core systems.

Our strategy for coordinating ensemble computations has been to develop libEnsemble to satisfy our
needs. This library should not be confused with workflow-based scripting systems; rather it is a library that,
through the tight coupling and feedback, directs the multiple concurrent “function evaluations” needed by
optimization, SA, and UQ solvers.

Recent Progress In the past year, we have released PETSc/TAO 3.14 (available at http://www.mcs.anl.
gov/petsc), which features enhanced GPU support. The library now supports CUDA-11 and HIP, along
with CUDA-aware MPI, which allows direct communication of data between Summit GPUs, bypassing the
previously needed step of first copying the data to the CPU memory. This enhancement reduces the latency
of the communication and improves bandwidth. An experimental Kokkos backend for some matrix and vector
operations using KokkosKernels was also provided, as one step in the refactoring process to support the
variety of accelerators needed for exascale systems and the programming models for performance portability
wanted by applications.

Exascale Computing Project (ECP) 98 ECP-RPT-ST-0002-2020–Public

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

Figure 46: The improved PETSc/TAO architecture enables users to utilize
a variety of programming models for GPUs independently of PETSc’s internal
programming model.

We have also release libEnsemble 0.7.1 (available at https://github.com/Libensemble/libensemble).
This release includes new generator functions and examples, changes to become xSDK compatible, and
improved testing across available platforms.

Next Steps Our next efforts are:

1. Performance and application assessment: We will provide updated performance reports of
PETSc/TAO on the architectures available to us. We will work with our applications to assess
the usage of our software technologies and our progress toward reaching our impact goals. We will add
a libEnsemble guide for function writer users to the documentation and survey the libEnsemble user
community.

2. PETSc/TAO release with full-functionality on available hardware: We will release a version
of PETSc/TAO that fully supports the hardware and software on the architectures available to us.
We will begin testing important kernels using different backends and prepare more methods to utilize
accelerators.

3. libEnsemble release with enhanced capabilities: We will release a version of libEnsemble that
implements a method for Bayesian calibration. We will connect libEnsemble to continuous integration
tools and demonstrate capabilities.

4. PETSc/TAO release focused on performance on available hardware: We will release a version
of PETSc/TAO with performance improvements on the architectures available to us. We will continue
testing important kernels using different backends and optimize more methods to utilize accelerators.

Exascale Computing Project (ECP) 99 ECP-RPT-ST-0002-2020–Public

https://github.com/Libensemble/libensemble

4.3.10 WBS 2.3.3.07 STRUMPACK-SuperLU

Overview This project will deliver factorization-based sparse solvers encompassing the two widely used
algorithm variants: supernodal (SuperLU: https://portal.nersc.gov/project/sparse/superlu) and
multifrontal (STRUMPACK: http://portal.nersc.gov/project/sparse/strumpacK). STRUMPACK is
further enhanced with scalable preconditioning using hierarchical matrix algebra. Both libraries are purely
algebraic, applicable to many application domains. We will address several Exascale challenges, with
the following focus areas: (1) Develop novel approximation algorithms that have lower arithmetic and
communication complexity with respect to the size of the input matrix; (2) Develop new parallelization
strategies that reduce inter-process communication and expose task parallelism and vectorization for irregular
computations involving sparse data structures to better use on-node resources; (3) Integrate our software
into higher-level algebraic solvers such as hypre, PETSc, Trilinos, and collaborate with ECP teams for
application-specific and hardware-specific tuning of the parameters space to achieve optimal efficiency.

Our solver technology is essential for ECP, because many codes expected to run on Exascale machines
need solutions of sparse algebraic systems, and many high-fidelity simulations involve large-scale multiphysics
and multiscale modeling problems that generate highly ill-conditioned and indefinite algebraic equations,
for which pure iterative methods cannot converge to the solution. The factorization-based algorithms being
developed herein represent an important class of methods that are indispensable building blocks for solving
those numerically challenging problems. Our software can often be used as a reliable standalone solver, or as
a preconditioner for Krylov methods, or as a coarse grid solver in multigrid methods.

Key Challenges At Exascale we need to address several major challenges: decreasing amount of memory per
core, increasing impact of communication cost and load imbalance, and increasing architectural heterogeneity.
Our new design of algorithms and codes must focus on reducing communication and synchronization and task
scheduling instead of floating point operation throughput. In sparse factorization methods, we expect new
bottlenecks in parts of the code that previously received little attention. For example, the preprocessing step
involves numerical pivoting for selecting stable pivots and symbolic factorization, which do not yet parallelize
well on manycore architectures with fine-grained parallelism. At Exascale, direct solvers are more likely to be
used in a preconditioning strategy, for example, in block Jacobi preconditioning, in domain decomposition
methods or as coarse-grid solvers in algebraic multigrid, which requires repeated triangular solves. The
challenge here is to mitigate the low arithmetic intensity and high degree of data dependency.

Compared to iterative methods, the primary bottleneck of direct solvers is the asymptotically higher
growth in memory need and floating point operations, especially for problems from three-dimensional geometry.
It is imperative to develop new factorization methods that require much less memory and data movement.

Solution Strategy We will address these challenges in several thrust areas. The new techniques will be
implemented in the two software packages SuperLU and STRUMPACK. The former is a widely used sparse
direct solver based on supernodal factorization and the latter is a newer direct solver/preconditioner package
based on multifrontal factorization and hierarchical low-rank matrix structures.

The improvements for SuperLU will be mainly in two areas: (1) develop the communication-avoiding 3D
factorization and triangular solve algorithms and codes that have provably lower communication complexity;
(2) develop a synchronization-avoiding triangular solve code to enable more overlap of communications
of different processes at different substitution steps; (3) develop new multi-GPU codes for both symbolic
preprocessing step and numerical factorization and solve steps.

In addition to exploiting structural sparsity as SuperLU does, STRUMPACK also exploits data sparseness
in the dense blocks of sparse factors using low-rank representations, which leads to linear scaling O(n)
or O(n log n) memory and arithmetic complexity for PDEs with smooth kernels. The developments for
STRUMPACK will focus on several areas: (1) develop robust stopping criteria — both absolute and relative —
for adaptive (incremental) randomized sampling schemes to reveal numerical ranks in the low-rank compression
routine. The goal is to use enough samples for stability, but not too many for efficiency; (2) add OpenMP
support for both HSS compression and ULV factorization routines, especially use OpenMP task construct
to support irregular parallelism; (3) reduce MPI communication in all stages of the code, including HSS
construction, ULV factorization and triangular solve; (4) in addition to HSS, develop codes to support other
simpler low-rank formats, such as HOLDR and BLR. The HSS format has asymptotically lower complexity
than HOLDR and BLR, but has a larger prefactor constant. We expect HSS to be more useful for large-scale
problems while HOLDR and BLR are more useful for mid-range problems; (5) work with ECP application

Exascale Computing Project (ECP) 100 ECP-RPT-ST-0002-2020–Public

https://portal.nersc.gov/project/sparse/superlu
http://portal.nersc.gov/project/sparse/strumpacK

teams to examine their specific problem characteristics and develop the best clustering/ordering methods to
reveal low-rank structures.

Recent Progress We mainly focus on the multi-GPU developments. For SuperLU, the developments are
on parallel symbolic factorization and triangular solve with one-sided communication using NVSHMEM. All
the experiments are performed on Summit.

For STRUMPACK we improved the GPU off-loading code. We ported the preconditioner based on
block low-rank compression to distributed memory systems. We developed an interface from Trilinos to
STRUMPACK.

We also worked with the ECP application ExaSGD team, applying our sparse solvers to the linear systems
coming from AC optimal power flow problems. The linear systems arising from the Interior Point optimization
loops are highly ill-conditioned, and zero-pivots are encountered during numerical factorization. We improved
both STRUMPACK and SuperLU to deal with the situation and allow the factorization to succeed and
recover the solution accuracy by iterative refinement.

The other algorithmic changes and the results are detailed below.

STRUMPACK

• We added GPU kernels for the extend-add (gather-scatter) operation used in the sparse solver, so
that the entire factorization (or a subset fitting in device memory) can be off-loaded without requiring
excessive amounts of data movement between host and device. On a single summit node, the new GPU
code is up to 8x faster than the old algorithm.

• STRUMPACK now supports AMD GPUs through HIP, and the hipBLAS and rocSOLVER libraries.

• We added a distributed memory block low-rank preconditioner to the sparse solver. For a medium sized
3D 1753 high frequency Helmholtz problem, the new preconditioner is 3.7x faster than the sparse direct
solver, and 2x faster than our previous state of the art preconditioner based on Butterfly compression.

SuperLU

• Finished the first version of the multi-GPU path-based traversal algorithm for parallel symbolic
factorization, including supernode detection algorithm. The new code showed strong scaling up to 31x
speedup on 44 Summit GPU nodes.

• Implemented the single precision LU factorization with double precision iterative refinement. Initial
tests show up to 50-60% speedup on 1 node Summit using 6 CPU cores and 6 GPUs.

• Improved the user interface for the 3D code base: developed the new redistribution routine, so that the
users do not need to worry about setting up proper submatrices on the 2D layer of the 3D process grid.

Figure 47: SuperLU symbolic factorization: GPU speedup over CPU, 13
matrices

Next Steps Our future efforts will focus on the following areas: For STRUMPACK, we will work to
improve the performance of the triangular solve on the GPU, and add GPU acceleration to the block low-rank
solver and preconditioner. For SuperLU, we will work towards release of the GPU-enabled 3D code, including
both numerical factorization and triangular solve on multi-GPUs, and release of GPU-enabled symbolic
factorization code. Furthermore, we will apply the GPTune autotuner developed from xSDK4ECP project to
conduct comprehensive tuning in the parameter space for both STRUMPACK and SuperLU, for the ECP
applications and on the pre-exascale machines.

Exascale Computing Project (ECP) 101 ECP-RPT-ST-0002-2020–Public

4.3.11 WBS 2.3.3.07 Sub-project: FFTX

Overview The use of Fast Fourier Transforms (FFTs) span a broad range of DOE science applications,
including ones represented in the Exascale applications space. In the FFTX project (https://github.com/
spiralgen/fftx), we are developing a new package for supporting FFT applications on exascale architectures.
Our approach is based on the following ideas: a C++ high-level API that can express a more complete set of use
cases as a composition of operators including FFTs, but also computation of and multiplication by a symbol,
and padded inputs / pruned outputs; a toolchain based on the SPIRAL toolset, an open-source toolchain for
FFT developed at CMU, that enables the specialization of the FFT calculation and its surrounding use case
calculations (scaling, data layout transformation, marshalling/unmarshalling for communication), using code
generation, symbolic analysis, automatic performance tuning, and applications-specific code generation; and
a workflow that automates the code generation and integration into the applications software. We are using
specific ECP applications and target ECP exascale platforms to provide a focus for this work.

Key Challenges There are several challenges to the FFT-based simulations on exascale systems.

(1) Performance engineering on accelerator-based systems. The traditional approach to FFT calculations
is to provide library functions for computing FFTs, with user code to calculate the remaining parts of the
algorithm. Such an approach can lead to less than the theoretically maximum performance, specifically
due to the larger amounts of data motion due to the coarse data granularity of the library interface. This
can be addressed to some extent using a finer-grained interface, but only incompletely, and with code that
complicated and difficult to maintain.

(2) Performance portability. High performance is difficult to obtain on a single accelerator-based platform,
and the low-level code required to obtain high performance as described in (1) is likely to change as one
moves onto different hardware and programming systems.

(3) The need for an open-source ecosystem. One of the major successes of the FFTW software is that it was
open source, and available as a starting point for any FFT-based application. However, FFTW has not been
supported since the mid-2000’s, and is not being ported to GPUs. In the absence of a new open-source FFT
code base, ECP will be entirely dependent on what is provided by the vendors, which is a significant risk to
the overall success of the ECP applications that depend on FFTs.

Solution Strategies Our approach is based on SPIRAL, an open-source framework for expressing the
family of algorithms that includes FFT applications in a high-level notation that can be parsed and
represented as nontrivial decompositions of low-level algorithmic fragments (analogous to FFTW codelets).
This decomposition can then be transformed into low-level code to be called by the application. The
decomposition and code generation is done in a platform-specific fashion for optimal performance, and
multiple variants can be generated for the purpose of autotuning. FFTX is building out from SPIRAL in the
following ways. First, we are developing a C++ API that expresses high-level components of FFT-based
algorithms in a mathematically concise fashion. Executing C++ programs written in terms of this interface
generates a SPIRAL symbolic representation of these algorithms, which is then transformed by SPIRAL into
optimized low-level code. The class of algorithms expressible in the FFTX API (and in the SPIRAL symbolic
representation) includes many of the ECP algorithms, such as convolutions of various types, and plane-wave
calculations for density functional theory calculations. Second, we are developing novel algorithmic analysis
and code generation techniques specific to the requirements of exascale systems, in particular to reduce data
footprint and data movement in ways that are impractical, if not impossible, for a human programmer to
do. Finally, we are developing an automated workflow for managing the process that goes from an FFTX
specification to code generation to compiling and linking to a user’s application.

This approach addresses the challenges given above. The “whole-algorithm” approach to expressing
and generating optimized code for FFT-based algorithms enables optimizations that are not feasible in the
classical library approach; for example, fine-grained interleaving of sub-steps in a multidimensional FFT
and parts of the symbol calculation in a convolution, or eliminating unused calculations for padded inputs
or pruned outputs. The high-level specification of the algorithms through the FFTX API does not change
when moving between platforms, this providing performance portability from the application developer’s

Exascale Computing Project (ECP) 102 ECP-RPT-ST-0002-2020–Public

https://github.com/spiralgen/fftx
https://github.com/spiralgen/fftx

standpoint. Also, other parts of the toolchain are reused across platforms, such as the higher-level stages of
the SPIRAL representation. Finally, the entire SPIRAL and FFTX software stack is open source. SPIRAL is
publicly available, as will be various FFTX capabilities as they are completed.

Recent Progress We have a complete end-to-end FFTX implementation of the PSATD algorithm for
solving Maxwell’s equations on CPUs, a key component of the ECP WarpX application. This includes:
a FFTX API representation of the PSATD algorithm; SPIRAL code generation of c code; and linking
to a version of the WarpX ECP application that uses PSATD, including coupling of FFTX and AMReX
data representations. We have performed side-by-side comparisons of the results obtained by the standard
FFTW-based WarpX implementation, and that obtained from FFTX, and they agree to within roundoff
error. We have also developed strategies for obtaining high-performance on multi-gpu and multi-node subsets
of summit.

Next Steps Our future efforts will focus on the following areas:

• Deliver high performance on Summit for ECP AD use cases, including plane-wave, PSATD, and periodic
convolutions, both on single-GPU and multi-GPU configurations.

• Code generation for Tulip / Frontier platform, based on the HIP programming tools.

• Complete release version, documentation for release.

Exascale Computing Project (ECP) 103 ECP-RPT-ST-0002-2020–Public

4.3.12 WBS 2.3.3.12 Sub-project: SUNDIALS

Overview This project is enhancing the SUNDIALS library of numerical software packages for integrating
differential systems in time using state-of-the-art time step technologies for use on exascale systems.

The SUNDIALS suite of packages [132] provides efficient and adaptive time integrators and nonlinear
solvers. The packages are written using encapsulation of both data structures and solvers, thus allowing easy
incorporation into existing codes and flexibility to take advantage of new solver technologies and packages.
SUNDIALS provides both multistep and multistage methods designed to evolve stiff or nonstiff ordinary
(ODE) and differential algebraic (DAE) systems with efficient accuracy-driven time step selection. SUNDIALS
also provides both Newton and fixed point (with optional acceleration) nonlinear solvers and scaled Krylov
methods with hooks for user-supplied preconditioners. Users can also supply their own nonlinear and linear
solvers under the integrators. SUNDIALS is released with data structures supporting several programming
environments. Users can employ these supplied structures or provide their own.

Through software infrastructure developments, this project is enabling the efficient and robust SUNDIALS
time integrator packages to easily interoperate with applications evolving time dependent systems as well as
with external linear and nonlinear solver packages developed for exascale computing. In addition, this project
is providing support for integrating several independent ordinary differential equation systems simultaneously
on GPUs as part of multiphysics applications. Lastly, this project is supporting the deployment and use of
SUNDIALS packages within ECP applications, mainly through incorporation into the discretization-based
Co-Design Centers, AMReX and CEED.

Key Challenges Current implementations of efficient time integrators face challenges on many fronts.
First, applications need both efficient integrators and ones that can interface easily with efficient linear algebra
packages to solve subservient linear systems. In addition, integrators and their interfaces to both solver
libraries and applications must be frequently updated to keep up with rapid advances in system architectures.
Some ECP applications require the solution of many small systems of ODEs in parallel on GPUs giving
rise to the need for a GPU-enabled ODE integrator that can be used in parallel for many systems at once
and be able to run on multiple GPU-based architectures with differing programming models. Lastly, ECP
applications require assistance incorporating new linear solvers underneath the integrators and in updating
their interfaces to optimally use integrators on new platforms.

Solution Strategy This project includes a number of implementation activities that will prepare the
SUNDIALS suite of time integrators for systems found in ECP applications. A major activity is developing
support for evolving multiple systems of ODEs in parallel on AMD GPUs with the CVODE multistep
ODE integration package. To meet this need, the SUNDIALS team has added support for assigning data
structures and solvers to a particular GPU stream, thus making it possible for multiple instances of CVODE
to simultaneously utilize the GPU in parallel. CVODE has also been equipped with interfaces to a batched
direct linear solver capable of using an NVIDIA GPU. Currently, new interfaces are being developed to provide
these capabilities on AMD GPUs, as are expected for Frontier. While these interfaces are straightforward for
the vector operations, linear solvers that are AMD-GPU capable are not yet generally available. SUNDIALS
is working with ECP linear solver packages, such as Gingko and MAGMA, to take advantage of HIP-based
solvers that they develop and that will be efficient for the expected systems.

In addition, this project is working to evaluate and optimize integrator performance within its ECP user
applications. A small test suite allowing easier evaluation of performance on new platforms is being developed.
This year, SUNDIALS will stand up this new test suite within the GitLab CI for testing from OLCF systems
with the goal of using this infrastructure to evaluate performance. Moreover, the SUNDIALS team is adding
a performance assessment layer and enabling use of the ECP ST Caliper package for performance testing
underneath that layer. The SUNDIALS team plans to work with the AMPE phase field code (ExaAM
project), PELEC, PELELM, and Nyx users to apply these tools in assessing and optimizing SUNDIALS’
performance within their applications.

Lastly, the SUNDIALS team will provide general support to other ECP applications in interfacing
SUNDIALS packages into their software and in the optimal use of advanced time integration algorithms.
This support will include working with the application teams to help them install SUNDIALS and adjust
their build systems to appropriately link with the SUNDIALS library.

Exascale Computing Project (ECP) 104 ECP-RPT-ST-0002-2020–Public

Recent Progress SUNDIALS had four releases this past year, including new features in direct support of
ECP application needs. In particular, releases in March and May 2020 included a new matrix implementation
that interfaces to the sparse matrix implementation from the NVIDIA cuSparse library, new specialized fused
CUDA kernels in CVODE which offer better performance on smaller problems when using CVODE with
CUDA, new routines that support the ability to control kernel launch parameters for the CUDA vector and
matrix modules, and new diagnostic routines that support load balancing efforts by making information
on the difficulty of solves more accessible to users. These features directly support capabilities needed in
solving many small ODE systems simultaneously and have been integrated into the SUNDIALS use from
AMReX-based applications, including Nyx, PELEC, and PELELM.

In addition, the May 2020 release also included new code to support integration of an ODE system while
projecting onto a constraint manifold. This capability, previously in a one-off package, CPODES, is needed
by the AMPE phase field code in the ExaAM project. The SUNDIALS team has worked with the AMPE
team to incorporate the new version of CVODE into their software stack.

Lastly, the Sept. 2020 release included a new feature in the ARKODE package to support integration of
systems with a time-dependent mass matrix. This feature is needed by the MFEM high order discretization
package in the CEED Co-Design center.

Figure 48: Illustration of SUNDIALS’ hybrid, OpenMP + GPU approach
to integrating the many small ODE systems that arise in the PELE and Nyx
applications. In this example, three distinct groups, formed by grouping the inde-
pendent ODE systems arising in AMR grid cells, of ODE systems are integrated
with CVODE. The groups, each defining a larger ODE system, are distributed
across CPU threads with OpenMP. On each thread, a distinct and independent
CVODE instance solves the larger ODE system. CVODE launches GPU kernels
in streams, allowing some threads to operate simultaneously.

Next Steps During the remainder of FY21, this project team will:

1. Release SUNDIALS with vector and solver support for AMD GPUs.

2. Document performance of SUNDIALS within two ECP applications.

3. Expand SUNDIALS support for Intel GPUs.

4. Develop a performance test suite and document performance of SUNDIALS using GitLab and Caliper.

5. Continue to support AMReX and CEED Co-Design Centers in their use of SUNDIALS.

Exascale Computing Project (ECP) 105 ECP-RPT-ST-0002-2020–Public

4.3.13 WBS 2.3.3.12 Sub-project: hypre

Overview The hypre software library [133, 134] provides high performance preconditioners and solvers for
the solution of large sparse linear systems on massively parallel computers, with particular focus on algebraic
multigrid solvers. One of hypre’s unique features is the provision of a (semi)-structured interface, in addition
to a traditional linear-algebra based interface. The semi-structured interface is appropriate for applications
whose grids are mostly structured, but with some unstructured features. Examples include block-structured
grids, composite grids in structured adaptive mesh refinement (AMR) applications, and overset grids. These
interfaces give application users a more natural means for describing their linear systems, and provide access
to methods such as structured multigrid solvers, which can take advantage of the additional information
beyond just the matrix. Since current architecture trends are favoring regular compute patterns to achieve
high performance, the ability to express structure has become much more important. The hypre library
provides both unstructured and structured multigrid solvers, which have shown excellent scalability on a
variety of high performance computers, e.g Blue Gene systems (unstructured solver BoomerAMG has scaled
up to 1.25 million MPI cores with a total of 4.5 million hardware threads). It is used by many ECP application
teams, including ExaAM, Subsurface, ExaWind, CEED, and more. It requires a C compiler and an MPI
implementation, but it also runs in an OpenMP environment. It also has GPU capabilities.

Key Challenges While hypre’s solvers contain much parallelism, their main focus is the solution of
sparse linear systems, leading to very large demands on memory bandwidth. In addition, the use of
multiple levels, while greatly aiding convergence of the solvers, leads to decreasing systems sizes, number of
operations and parallel efficiencies on coarser levels. Particularly the unstructured algebraic multigrid solver
BoomerAMG[135], which is hypre’s most often used preconditioner, suffers from increasing communication
complexities on coarser levels. Coarse grid operators are generated by multiplying three matrices leading to
increasing numbers of nonzeroes per row in the resulting matrices and with it increasing numbers of neighbor
processes. While BoomerAMG’s solve phase mainly consists of matrix vector products and smoothing
operations, which are fairly straight forward to parallelize, even on a GPU, its setup phase is highly complex,
including many branches, a lot of integer operations as well as some sequential passages. Current interpolation
strategies that lead to best convergence and performance on distributed memory machines are not suitable
for implementation on GPUs or similar architectures requiring extreme parallelism. Since hypre is a mature
product with many solvers and interdependent features, any significant changes that affect the whole library,
are tedious and require much testing to ensure that the library stays backward compatible and no features
are broken.

Solution Strategy Since computer architectures continue to change rapidly, it was important to come up
with strategies that will facilitate future porting of the software. Therefore we developed and implemented
a new memory model that addresses the use of different memory locations. Since the upcoming computer
architectures are heterogeneous with accelerators, we focus on enabling hypre for GPUs. We have looked
into various options, such as the use of CUDA, OpenMP 4.5, as well as RAJA and Kokkos. We limited the
latter three options to the structured interface and solvers which are more natural candidates for such an
approach due to their use of macros, called BoxLoops, for loops. We adopted a modular approach for the
unstructured interface, which relies on the restructuring the solver components to use smaller kernels that
are and/or will be implemented in CUDA for Nvidia GPUs. We will investigate the use of vendor conversion
tools from CUDA to HIP and SYCL to port the unstructured solvers to upcoming exascale computers.

Recent Progress Previously, we enabled the structured solvers, SMG and PFMG[136], both setup and
solve phase, to completely run on GPUs, using both CUDA or OpenMP4.5, or use optional RAJA and
Kokkos. For our unstructured AMG solver BoomerAMG, we had implemented suitable CUDA kernels for
setup and solve phase, which allowed AMG to run on GPUs for specific settings, but did not include our
best interpolation operators. Recently, we added CUDA capabilities to create and assemble IJ matrices and
vectors. Since our best interpolation operators are not suitable for GPU implementation, we designed a new
class of interpolation operators based on sparse matrix operations[137] and implemented it on GPUs. We
also ported aggressive coarsening to the GPU, which leads to decreased memory complexities and can also
reduce overall run times. This included the implementation of a second strength matrix, required to get

Exascale Computing Project (ECP) 106 ECP-RPT-ST-0002-2020–Public

even coarser grids, and several two-stage interpolation operators also based on matrix-matrix operations
and capable to deal with grid points that are further apart. Figure 49 and Figure 50 show two weak scaling
studies comparing GPU and CPU implementations of AMG-PCG on Lassen, using 4 MPI tasks per node
with 1 GPU per MPI task for the GPU version and 10 OpenMP threads per MPI task for the CPU version.

Figure 49: Weak scaling study for AMG-PCG applied to a 3D 27pt diffusion
problem on Lassen with 8M grid points per node comparing total run times
(setup and solve) on GPUs with the new mm-ext+i interpolation (GPU), and on
CPUs using ext+i interpolation (CPU), and adding aggressive coarsening with
multipass interpolation on the first level (opt-CPU)

Figure 50: Weak scaling study for AMG-PCG applied to a system of coupled
Poisson problems with 3 variables per grid point on Lassen with 8M grid points
(24M dofs) per node comparing CPU (dashed) and GPU (solid) total run times
with (red) and without (blue) aggressive coarsening on the first level. Here CPU
and GPU runs use mm-ext+e interpolation and two-stage mm-ext+e interpolation
when using aggressive coarsening.

Next Steps We will pursue the following tasks:

• We will continue to add new GPU capabilities to hypre and improve the performance of current
capabilities. We will thoroughly investigate the performance on Nvidia GPUs and begin porting to
AMD GPUs.

• We also investigate and improve the performance of other unstructured solvers in hypre, such as AMS
and ILU and port components to GPUs where needed.

In addition, we will work with ECP application teams who are using hypre, such as ExaWind, or would like
to use it, to achieve best performance by tuning the solvers for them and potentially implementing suitable
algorithmic changes.

Exascale Computing Project (ECP) 107 ECP-RPT-ST-0002-2020–Public

4.3.14 WBS 2.3.3.13 CLOVER

Mathematical libraries are powerful tools to make better use of Exascale architectural features and are central
for application projects to efficiently exploit the available computing power. The high-level objective of
CLOVER is to provide scalable, portable numerical algorithms that facilitate efficient application simulations
on Exascale computers. With the intention of generating synergies by facilitating vivid cooperation among
the distinct project focus efforts and expert knowledge transfer, CLOVER was designed as a merger of the
SLATE, FFT-ECP, PEEKS, and Kokkos Kernels projects, each being complementary in focus but similar
in the need for hardware-specific algorithm design expertise: SLATE focuses on Exascale-capable dense
linear algebra functionality; FFT-ECP’s scope is providing robust and fast calculation for 2D and 3D FFT
routines; PEEKS delivers production-ready, latency-tolerant and scalable preconditioned iterative solvers;
Kokkos Kernels delivers performance-portable kernels for on-node sparse and dense linear algebra and graph
algorithms. Together, these projects form a robust ecosystem of numerical base functionality for Exascale
computers.

Exascale Computing Project (ECP) 108 ECP-RPT-ST-0002-2020–Public

4.3.15 WBS 2.3.3.13 CLOVER Sub-project FFT-ECP

Overview The FFT-ECP project provides sustainable high-performance multidimensional Fast Fourier
Transforms (FFTs) for Exascale platforms through the Highly Efficient FFTs for Exascale (heFFTe)
library [138]. HeFFTe leverages established but ad hoc software tools that have traditionally been part of
application codes, but not extracted as independent, supported libraries.

The main objective of the FFT-ECP project is to:

• Collect existing FFT capabilities from ECP application teams;

• Assess gaps, extend, and make available various FFT capabilities as a sustainable math library;

• Explore opportunities to build multidimensional FFTs while leveraging on-node concurrency from
batched FFT formulations;

• Focus on capabilities for Exascale platforms.

FFTs are used in many applications including molecular dynamics, spectrum estimation, fast convolution
and correlation, signal modulation and many wireless multimedia applications. The distributed 3D FFT is
one of the most important routines used in molecular dynamics (MD) computations, and its performance can
affect MD scalability. The performance of the first principles calculations strongly depends on the performance
of the FFT solver that performs many FFTs of size ≈ 107 points in a calculation that we call batched FFT.
Moreover, Poisson PDE-type equations arising from many engineering areas, such as plasma simulation and
density fields, need to solve FFTs of size larger than 109. More than a dozen ECP applications use FFT in
their codes. ECP applications that require FFT-based solvers suffer from the lack of fast and scalable 3D
FFT routines for distributed-heterogeneous parallel systems as the ones projected for the upcoming exascale
computing systems. To address these needs, heFFTe functionalities are first delivered to CoPA projects using
LAMMPS (molecular dynamics) and HACC (Hardware Accelerated Cosmology Code).

The heFFTe software stack is illustrated in the left-hand side of Figure 51, while the main components of
the heFFTe framework are illustrated in the right-hand side of Figure 51. The first and last step address the
need for a flexible FFT API to take application-specific input and output (bricks/pencils), including arbitrary
initial decompositions.

1 2 3 4

5 6 7 8

9 10 11 12

20 21 23 24
33 34 35 36

 31 32 33 34 35 36

 1 2 3 4 5 6

1

– – – – – –
– – – – – –

– – – – – –
– – – – – –
– – – – – –

1 2 3 4

5 6 7 8

9 10 11 12

20 21 23 24
33 34 35 36

1

Figure 51: Left: the heFFTe software stack. Right: 3D FFT computational
pipeline in heFFTe with: 1) Flexible API for application-specific input and
output, including bricks/pencils/etc.; 2) Efficient packing/unpacking and MPI
communication routines; 3) Efficient 1D/2D/3D FFTs on the node.

Key Challenges

1. Communication costs: Communication costs are main bottleneck on current systems; this includes
low node bandwidth (relative to high compute capabilities), sub-optimal accelerator-aware MPI com-
munications, and encountered performance degradations in MPI implementations.

2. Application specifics: ECP applications that require FFT-based solvers suffer from the lack of fast
and scalable FFTs for distributed-heterogeneous parallel systems as the ones projected for the upcoming

Exascale Computing Project (ECP) 109 ECP-RPT-ST-0002-2020–Public

exascale computing systems. Also, ECP applications need different application-specific versions of
FFTs, and dictate parallelism and data distributions (where is the data, how is distributed, what is
the parallelism, etc.). This requires application knowledge and API designs with a suitable modular
high-performance implementation that is flexible and easy to use and integrate in ECP applications.

3. Performance portability: Performance portability across different architectures is always a challenge.
This is further exacerbated due to the many application and hardware-specific FFT versions needed.

Solution Strategy

1. Communications and GPU optimizations: FFTs are communication bound and a main focus in
heFFTe is on algorithmic design to minimize communication and efficient GPU implementations [139,
140]. Other strategies include the use of mixed-precision calculations [141, 142] and data compression
for reduced communications (including lossy, e.g., using ZFP compression).

2. Evolving design: heFFTe is designed to support the fftMPI and SWFFT functionalities, which are
already integrated in ECP applications. Thus, heFFTe benefits directly these applications and provides
integrated solutions. More functionalities and application-specific optimizations will be added to support
various ECP applications.

3. Autotuning: Performance portability will be addressed through use of standards (like 1D FFTs from
vendors), portable linear algebra (LA) using MAGMA [143], and parameterized versions that will be
tuned across architectures. We have extensive expertise and well proven track record in the development
and use of autotuning techniques for important LA kernels [144, 145].

Recent Progress The FFT-ECP team completed two main milestones involving software releases adding
numerous stability, performance, and scalability enhancements, as well as new functionalities. HeFFTE 0.2
was released in January 2020 [146], and heFFTe 2.0 was released in September 2020. HeFFTe 2.0 added
support for AMD GPUs and bindings for C, Fortran, and Python. HeFFTe now can be installed through
spack and is compatible with the xSDK community policies, and will be part of the next xSDK release.
HeFFTe is also integrated in CoPA projects using LAMMPS and HACC. HeFFTe 2.0 demonstrates very
good strong scalability and performance that is close to 90% of the roofline peak [147]. (see Figure 52).

TF
lo

p/
s

Number of Summit nodes

0.125

0.250

0.500

1.000

2.000

4.000

8.000

16.000

4 8 16 32 64 128 256

Roofline peak
heffte_GPU (tuned)
heffte_GPU

>90% of roofline peak

Figure 52: Left: heFFTe acceleration of 10243 FFT on 4 Summit nodes. Note:
nodal computations are accelerated 43×. Right: heFFTe strong scalability on
10243 FFT on up to 256 nodes (×6 V100 GPUs; double complex arithmetic;
starting and ending with bricks; performance assumes 5N3log2N

3 flops).

Next Steps Next steps of work are adding multidimensional FFTs and optimizations for real data. This
will include the development of R2C and C2R DFTs and their integration and specific optimizations in
ECP applications. Further integration and use will be added to CoPA applications and the ExaAM project.
Optimizations will be done for AMD GPUs and support added for Intel GPUs.

Exascale Computing Project (ECP) 110 ECP-RPT-ST-0002-2020–Public

4.3.16 WBS 2.3.3.13 CLOVER Sub-project Kokkos Kernels

Overview The Kokkos Kernels 2 subproject primarily focuses on performance portable kernels for
sparse/dense linear algebra, graphs, and machine learning, with emphasis on kernels that are key to
the performance of several ECP applications. We work closely with ECP applications to identify the
performance-critical kernels and develop portable algorithms for these kernels. The primary focus of this
subproject is to support ECP application needs, develop new kernels needed with an emphasis towards
software releases, tutorials, boot camps and user support. The Kokkos Kernels project also works closely
with several vendors (AMD, ARM, Cray, Intel, and NVIDIA) as part of both the ECP collaborations and
NNSA’s Center for Excellence efforts. These collaborations will enable vendor solutions that are targeted
towards ECP application needs.

Key Challenges There are several challenges in allowing ECP applications move to the hardware architec-
tures announced in the next few years. We highlight the four primary challenges here:

1. The next three supercomputers that will be deployed will have three different accelerators from AMD,
Intel and NVIDIA. While we have been expecting diversity of architectures, three different architectures
in such a short timeframe adds pressure on the portability solutions such as Kokkos Kernels to optimize
and support the kernels on all the platforms.

2. The design of several ECP applications and a software stack that rely on a component-based approach
results in an extremely high number of kernel launches on the accelerators, which results in the latency
costs becoming the primary bottleneck in scaling the applications.

3. The change in the needs of applications from device-level kernels to smaller team-level kernels. Vendor
libraries are not ready for such a drastic change in software design.

4. The reliance of ECP applications on certain kernels that do not port well to the accelerator architectures.

These challenges require a collaborative effort to explore new algorithmic choices, working with the vendors
to incorporate ECP needs into their library plans, to develop portable kernels from scratch, and to deploy
them in a robust software ecosystem. The Kokkos Kernels project will pursue all of these choices in an effort
to address these challenges.

Solution Strategy Our primary solution strategy to address these challenges are:

1. Codesign portable kernels with vendors and applications: We rely on codesign of Kokkos
Kernels implementations for specializations that are key to the performance of ECP applications. This
requires tuning kernels even up to the problem sizes that are of interest to our users. Once we have
developed a version, we provide these to all the vendors so their teams can optimize these kernels even
further in vendor-provided math libraries.

2. Emphasis on software support and usability: The Kokkos Kernels project devotes a considerable
amount of time working with ECP applications, integrating the kernels into application codes, tuning for
application needs, and providing tutorials and user support. We invest in delivering a robust software
ecosystem that serves the needs of diverse ECP applications on all platforms of interest.

3. Invest in algorithmic research to reduce latency costs and new accelerator focused ap-
proaches: To resolve latency cost issues, the Kokkos Kernels team is considering several solutions from
computer science perspectives and also from algorithmic applied mathematics perspectives. For example,
from a computer science perspective, we are focusing on the use of streams or other latency reducing
techniques such as cuda graphs. From the applied mathematics perspective we are developing new
algorithms such as cluster-based approaches for preconditioners, such as Gauss-Seidel precondtioners,
to reduce the number of kernel launches.

2https://github.com/kokkos/kokkos-kernels

Exascale Computing Project (ECP) 111 ECP-RPT-ST-0002-2020–Public

Recent Progress

1. Kokkos Kernels has developed team-level linear algebra kernels for several BLAS and LAPACK
operations so that ECP applications can use these foundational operations within their device level code.
This key design championed by the Kokkos Kernels team is becoming more common place with several
vendors adopting such a design. This design reduces synchronization overhead and encourages reuse
of the data in the memory hierarchy between several BLAS or LAPACK operations with team level
synchronization. This has resulted in better performance in applications like SPARC CFD simulation.

2. Kokkos Kernels preconditioners such as Symmetric Gauss Seidel precondtioners are integrated into the
Exawind application. The multicoloring based Symmetric Gauss Seidel precondtioner has resulted in
up to 4.5x improvement in overall solve time of the SGS solver.

3. Kokkos Kernels BLAS and sparse linear algebra kernels were integrated into the spectral partitioner of
the Exagraph project. Using Kokkos Kernels results in faster spectral partitioning than vendor provided
implementations. This was the result of careful tuning of the kernels for Exagraph needs.

4. Kokkos Kernels team has developed and integrated tutorial materials to the Kokkos tutorials. The
tutorials are maintained as a common resource for the entire Kokkos ecosystem.

Next Steps Kokkos Kernels team is focused on:

1. A major software release: Kokkos ecosystem 3.0 release will be available to the ECP applications
in FY 2020. This includes several new kernels that are requested by ECP applications, performance
improvements of kernels that are already being used by ECP applications, support for new architectures
such as ARM based systems, and several software changes such as support of standalone CMake.

2. Developing new kernels to reduce synchronization costs: Kokkos Kernels team is working on
kernels that reduce the number of kernels launches by focusing on block-based approaches. This will
allow further performance in ECP applications such as Exawind and EMPIRE.

3. Collaboration with vendors: Kokkos Kernels team is working with vendor libraries team to incorpo-
rate ECP application needs in the vendor library roadmap. Several changes from vendors are expected
in FY20. These changes will be added to Kokkos Kernels so ECP applications can get access to the
improvements.

4.3.17 WBS 2.3.3.13 CLOVER Sub-project PEEKS

Overview The PEEKS subproject is a focused team effort to advance the capabilities of the ECP software
stack in terms of communication-avoiding Krylov solvers and advanced preconditioning techniques featuring
fine-grained parallelism. Previously developed techniques that are available as prototype codes – as well as
novel algorithm developments – are turned into production-quality implementations and integrated into the
ECP software ecosystem as part of the Trilinos 3 and the Ginkgo 4 software stacks.

Key Challenges Developing preconditioned iterative solvers for the US flagship supercomputers deployed
in ECP, we acknowledge three major challenges coming from the hardware architecture:

1. Fine-grained parallelism in a single node that has to be exploited efficiently by the iterative solver and
the preconditioner.

2. Rising communication and synchronization cost as the computational power is growing much faster
than memory power, resulting in increased pressure on the bandwidth of all cache/memory levels.

All challenges require the redesign of existing iterative solvers with respect to higher parallelism, a reduced
number of communication and synchronization points, favoring computations over communication, and
adopting multiprecision algorithms for efficient hardware utilization.

3https://trilinos.org/
4https://github.com/ginkgo-project/ginkgo

Exascale Computing Project (ECP) 112 ECP-RPT-ST-0002-2020–Public

https://trilinos.org/
https://github.com/ginkgo-project/ginkgo

Solution Strategy The primary thrusts of the PEEKS project are:

1. Architecture-portable software design: In the Ginkgo C++ software [148], we design and develop
a next-generation sparse linear algebra library able to run on multi- and manycore architectures. The
library design decouples algorithm implementations from hardware-specific kernel implementations,
thereby acknowledging the importance of platform portability and allowing for extensibility as well as
architecture-specific kernel optimization.

2. Sustainability efforts: The Ginkgo and Trilinos software development adheres the Better Scientific
Software (BSSw) design principles [149] that ensure production-quality code by featuring unit testing,
automated configuration and installation, Doxygen code documentation, as well as a continuous
integration and continuous benchmarking framework [150]. Ginkgo and Trilinos are open source effort
licensed under BSD 3-clause and included in the xSDK and I4S software packages.

3. Pipelined and CA Krylov methods: We realize pipelined and communication-avoiding Krylov
methods in production-quality code, and we are actively collaborating with the ECP ExaWind project
to integrate our new features into their application [151].

4. Memory Precision Decoupling: In collaboration with the ECP xSDK multiprecision effort, we
are working on sparse linear algebra iterative methods and preconditioners that reduce runtime by
compressing data before invoking memory operations, such as the adaptive precision block-Jacobi
preconditioner [152] and the compressed basis GMRES [153].

Recent Progress

1. The Ginkgo library realized full native support for NVIDIA GPUs (via CUDA) and AMD GPUs (via
HIP) and became a role model for platform portability [154].

2. The production-ready implementation of the first parallel threshold ILU preconditioner (ParILUT [155])
compensates via algorithmic improvement for 5 years of hardware development (see Figure 53).

3. We implemented and released five variations of communication-avoiding and pipelined Krylov solvers in
the Belos Trilinos package.

4. We demonstrated the efficient use of communication-avoiding Krylov methods in Trilinos inside wind
turbine simulations of the ECP ExaWind project [151].

5. We developed an initial implementation of a new polynomial preconditioner based on the GMRES
polynomial [156].

Next Steps Our next efforts are:

1. Block-versions of the parallel Incomplete factorization preconditioner: To better reflect the
properties of the ECP application projects, we will deploy blocked versions of the ParILU and ParILUT
parallel ILU and parallel threshold ILU preconditioners in the Ginkgo software library.

2. Intel GPU backend: We are currently designing a Ginkgo backend for Intel GPU architectures based
on the SYCL language.

3. Compressed Basis Krylov Solvers: Using the memory accessor designed in the xSDK multiprecision
project, we will develop Krylov solvers that reduce the execution time by compressing the Krylov
vectors before invoking memory operations.

4. Problem-specific preconditioners for MFEM: In collaboration with the ECP CEED cluster, we
will design problem-specific preconditioners for matrix-free finite element simulations.

5. Low-synchronous orthogonalization: The success of communication-avoiding Krylov methods
motivates to push the synchronization limits further by deploying low-synchronous orthogonalization
methods. (Collaboration with the ExaWind team at NREL.)

Exascale Computing Project (ECP) 113 ECP-RPT-ST-0002-2020–Public

Figure 53: Time-to-solution performance of anisotropic flow problems of different
sizes on different hardware architectures: standard ILU(0) vs. new ParILUT.

6. Parallel incomplete factorization preconditioner application: With the advances in the par-
allel incomplete factorization preconditioner generation, the focus increasingly turns to the efficient
preconditioner application. We enhance the concept of sparse approximate inverse approximation for
incomplete factorization preconditioners, and extend the scope to novel hardware architectures featuring
attractive performance in the low-precision regimes.

7. Polynomial preconditioners: Polynomial preconditioning is an old idea, but has had limited
popularity since it is hard to find good polynomials in the general case. We believe using the GMRES
polynomial addresses this issue. Polynomials are also cheap to apply and save communication by
reducing the number of inner products. We plan to implement a version using Kokkos that runs on
GPU and exascale systems.

4.3.18 WBS 2.3.3.13 CLOVER Sub-project SLATE

Overview SLATE (Software for Linear Algebra Targeting Exascale) provides fundamental dense linear
algebra capabilities to DOE and the HPC community at large. To this end, SLATE provides parallel basic
linear algebra subprograms (BLAS), norms, linear systems solvers, least square solvers, singular value and
eigenvalue solvers.

The ultimate objective of SLATE is to replace the venerable Scalable Linear Algebra PACKage (ScaLA-
PACK) library, which has become the industry standard for dense linear algebra operations in distributed-
memory environments. After two decades of operation, ScaLAPACK is past the end of its life cycle and
overdue for a replacement, as it can hardly be retrofitted to support GPUs, which are an integral part of
today’s HPC hardware infrastructure.

Primarily, SLATE aims to extract the full performance potential and maximum scalability from modern
HPC machines with large numbers nodes, large numbers of cores per node, and multiple GPUs per node. For
typical dense linear algebra workloads, this means getting close to the theoretical roofline peak performance
and scaling to the full size of the machine. This is accomplished in a portable manner by relying on standards
such as MPI and OpenMP. Figure 54 shows the role of SLATE in the ECP software stack.

While the initial objective of SLATE is to serve as a successful, drop-in replacement for ScaLAPACK with
support for GPU accelerators, the ultimate goal of SLATE is to deliver dense linear algebra capabilities beyond
the capabilities of ScaLAPACK. This includes new features such as communication-avoiding algorithms and
randomization algorithms, as well as the potential to support variable size tiles and block low-rank compressed
tiles.

Key Challenges

Exascale Computing Project (ECP) 114 ECP-RPT-ST-0002-2020–Public

Figure 54: SLATE in the ECP software stack.

1. Designing from the ground up: The SLATE project’s primary challenge stems from the need to
design the package from the ground up, as no existing software package offers a viable path forward for
efficient support of GPUs in a distributed-memory environment.

2. Facing harsh hardware realities: SLATE is being developed in a difficult hardware environment,
where virtually all the processing power is on the GPU side. Achieving efficiency requires aggressive
offload to GPU accelerators and careful optimization of multiple bottlenecks, including interconnect
technology lagging behind the computing capabilities of the GPUs.

3. Facing harsh software realities: SLATE is being developed using cutting-edge software technologies,
and relies on modern C++ features and recent extensions to the OpenMP standard, many of which
are not fully supported by compilers and their runtime environments. In terms of GPU acceleration,
standardized solutions are still in flux.

Solution Strategy

1. Evolving design: Due to the inherent challenges of designing a software package from the ground
up, the SLATE project started with a careful analysis of the existing and emerging implementation
technologies [157], and followed with a phase of laying out the initial design [158]. Since then, the
team has rolled out new computational routines and performance improvements quarterly. While we
continue to refactor as needed to achieve high performance, the basic design has solidified and been
published [159].

2. Focus on GPUs: Efficient GPU acceleration is the primary focus of performance engineering efforts
in SLATE. Where applicable, highly optimized vendor implementations of GPU operations are used,
such as the batched gemm routine. Where necessary, custom GPU kernels are developed, as in the
case of computing matrix norms. Care is taken to hide communication by overlapping it with GPU
computations.

3. Community engagement: The SLATE team interacts on a regular basis with the OpenMP com-
munity, represented in ECP by the SOLLVE project, and with the MPI community, represented in
ECP by the OMPI-X project and the Exascale MPI project. The SLATE team also engages the vendor
community through our contacts at Cray, IBM, Intel, NVIDIA, AMD, and ARM.

Recent Progress During 2020, the SLATE team expanded the Hermitian eigenvalue solver to the general-
ized Hermitian problem of the forms Ax = λBx, ABx = λx, or BAx = λx. These are of strong interest in
mechanics and chemistry applications, among others. We also implemented the polar decomposition with
the QDWH algorithm, wrote a Users’ Guide and Developers’ Guide to document the public and internal
APIs, and added native C and Fortran 2003 APIs that access SLATE’s native matrix types from outside
C++. Further work was done on performance enhancements, with notable gains for BLAS (gemm, herk),
norms, Cholesky and QR factorizations. A new build system using CMake and Spack has been developed, in

Exascale Computing Project (ECP) 115 ECP-RPT-ST-0002-2020–Public

collaboration with the NWChemEx project to help include BLAS++ and LAPACK++ in their project. All
developments are documented in SLATE Working Notes 5

Next Steps

1. Port to AMD and Intel platforms: Originally, SLATE was developed using NVIDIA CUDA and
cuBLAS. We are now abstracting the backend to run on AMD and Intel platforms. BLAS++ will serve
as a portability layer, with calls to NVIDIA cuBLAS, AMD rocBLAS, or Intel oneMKL, as appropriate
for the platform. CUDA kernels will be ported to a combination of HIP, SYCL, and OpenMP offload.

2. Optimizing QR, eigenvalue, and singular value routines: These are fundamental routines used
by many projects. We have observed these routines that are not performing as well as expected. In
some cases, such as eigenvalues, we have already identified improvements to be made to the algorithm,
such as refactoring loops to improve parallelism. In other cases, we will analyze traces to identify and
correct problems.

3. Implementing divide-and-conquer algorithm: For singular value and Hermitian eigenvalue prob-
lems, the divide-and-conquer algorithm exhibits better performance and parallel scalability than the
traditional QR-iteration based algorithm currently used in SLATE.

4. Non-symmetric eigenvalue problem: Computing the non-symmetric eigenvalue problem is signifi-
cantly more computationally expensive than the Hermitian eigenvalue problem. Our implementation
will leverage the latest advances, such as aggressive early deflation, to achieve high performance.

5http://www.icl.utk.edu/publications/series/swans.

Exascale Computing Project (ECP) 116 ECP-RPT-ST-0002-2020–Public

http://www.icl.utk.edu/publications/series/swans

4.3.19 WBS 2.3.3.14 ALExa

Overview The ALExa project (Accelerated Libraries for Exascale) focuses on preparing the ArborX,
DTK, Tasmanian, and ForTrilinos libraries for exascale platforms and integrating these libraries into ECP
applications. These libraries deliver capabilities identified as needs of ECP applications: (1) the ability the
perform performance portable spatial searches between arbitrary sets of distributed geometric objects (ArborX);
(2) the ability to transfer computed solutions between grids with differing layouts on parallel accelerated
architectures, enabling multiphysics projects to seamlessly combine results from different computational grids
to perform their required simulations (DTK); and (3) the ability to construct fast and memory efficient
surrogates to large-scale engineering models with multiple inputs and many outputs, enabling uncertainty
quantification (both forward and inverse) as well as optimization and efficient multi-physics simulations in
projects such as ExaStar (Tasmanian); and (4) the ability to automatically interface Fortran-based codes
to existing large and complex C/C++ software libraries, such as Trilinos advanced solvers that can utilize
next-generation platforms.

These capabilities are being developed through ongoing interactions with our ECP application project
collaborators to ensure they will satisfy requirements of these customers. The libraries in turn take advantage
of other ECP/SW capabilities currently in development, including Trilinos, Kokkos, and SLATE. The final
outcome of the ECP project will be a set of libraries deployed to facilities and also made broadly available as
part of the xSDK4ECP project.

ArborX
Purpose: ArborX is an open-source library designed to provide performance portable algorithms for

geometric search.
Significance: General geometric search capabilities are needed in a wide variety of applications, including

the generation of neighbor lists in particle-based applications (e.g., molecular dynamics or general N-body
dynamics simulations), density-based clustering analysis (e.g., halo finding or DBSCAN in cosmology) and
mesh-mesh interactions such as contact in computational mechanics and solution transfer in multiphysics
simulations.

Performance portable search capabilities: Shared memory and GPU implementations of spatial tree
construction; shared memory and GPU implementations of various spatial tree queries; MPI front-end for
coordinating distributed spatial searches between sets of geometric objects with different decompositions;
communication plan generation based on spatial search results; density-based clustering algorithms (DBSCAN).

URL: https://github.com/arborx/ArborX
DTK (Data Transfer Kit)
Purpose: Transfers computed solutions between grids with differing layouts on parallel accelerated

architectures.
Significance: Coupled applications frequently have different grids with different parallel distributions;

DTK is able to transfer solution values between these grids efficiently and accurately.
Mesh and mesh-free interpolation capabilities: multivariate data interpolation between point clouds and

grids; compactly supported radial basis functions; nearest-neighbor and moving least square implementations;
support for standard finite-element shape functions and user-defined interpolants; common applications
include conjugate heat transfer, fluid structure interaction, and mesh deformation.

URL: https://github.com/ORNL-CEES/DataTransferKit
Tasmanian (Toolkit for Adaptive Stochastic Modeling and Non-Intrusive Approximation)
Purpose: Constructs efficient surrogate models for high-dimensional problems and performs parameter

calibration and optimization geared towards applications in uncertainty quantification (UQ).
Significance: UQ pertains to the statistical properties of the output from a complex model with respect

to variability in multiple model inputs; large number of simulations are required to compute reliable statistics
which is prohibitive when dealing with computationally expensive engineering models. A surrogate model
is constructed from a moderate set of simulations using carefully chosen input values; analysis can then be
performed on the efficient surrogate.

Sparse grids capabilities: surrogate modeling and design of experiments (adaptive multi-dimensional
interpolation); reduced (lossy) representation of tabulated scientific data; high dimensional numerical
quadrature; data mining and manifold learning.

Exascale Computing Project (ECP) 117 ECP-RPT-ST-0002-2020–Public

DiffeRential Evolution Adaptive Metropolis (DREAM) capabilities: Bayesian inference; parameter estima-
tion/calibration; model validation. global optimization and optimization under uncertainty.

URL: http://tasmanian.ornl.gov
ForTrilinos (Fortran Trilinos)
Purpose: ForTrilinos provides a seamless pathway for large and complex Fortran-based codes to access

Trilinos without C/C++ interface code. This access includes Fortran versions of Kokkos abstractions for code
execution and data management. To provide this functionality, this project developed a Fortran-targeted
extension to the SWIG (Simplified Wrapper and Interface Generator) tool. Applied to Trilinos, it generates
object-oriented Fortran 2003 interface code that closely mirrors the Trilinos C++ API.

Significance: The Exascale Computing Project (ECP) requires the successful transformation and porting
of many Fortran application codes in preparation for ECP platforms. A significant number of these codes
rely upon the scalable solution of linear and nonlinear equations. The Trilinos Project contains a large and
growing collection of solver capabilities that can utilize next-generation platforms, in particular scalable
multicore, manycore, accelerator and heterogeneous systems. Since Trilinos is written primarily in C++, its
capabilities are not available to other programming languages. ForTrilinos bridges the gap between the needs
of Fortran app developers and the capabilities of Trilinos. Furthermore, the technology used to generate the
Fortran–C++ bindings in ForTrilinos is capable of exposing any number of C++ libraries to Fortran exascale
app developers.

SWIG capabilities: ForTrilinos provides an inversion of control functionality that enables custom extensions
of the Trilinos solvers implemented in downstream Fortran apps. Although this capability is not yet
comprehensive, the goal of this project is to provide functional and extensible access Trilinos on next-
generation computing systems. Several examples of ForTrilinos are being demonstrated within Fortran-based
ECP codes to help them meet simulation goals and illustrate the technology to other Fortran-based ECP
codes. Additionally, the SWIG technology underpinning ForTrilinos is being applied to other C++-based
ECP ST subprojects to expose their capabilities to Fortran apps.

URL: https://github.com/trilinos/ForTrilinos

Key Challenges
ArborX: Search procedures to locate neighboring points, mesh cells, or other geometric objects require

tree search methods difficult to optimize on modern accelerated architectures due to vector lane or thread
divergence. A flexible interface for calling user kernels on a positive match as well as modifying traversal
algorithms in a task-specific manner are crucial to achieving the best performance.

DTK: General data transfer between grids of unrelated applications requires many-to-many communication
which is increasingly challenging as communication to computation ratios are decreasing on successive HPC
systems. Maintaining high accuracy for the transfer requires careful attention to the mathematical properties
of the interpolation methods and is highly application-specific.

Tasmanian: Extracting statistical information from a Tasmanian surrogate (or using the surrogate in a
multi-physics simulation) requires the collection of a large number of samples, which is not feasible without
GPU acceleration. The GPU accelerated surrogate evaluations require both custom kernels corresponding to
the different types of basis functions as well as both sparse and dense linear algebra methods (BLAS level 2
and 3). Porting the capabilities and optimizing the performance across different divergent architectures is
challenging.

ForTrilinos: Developing the interfaces to the C++ libraries that provide access to cutting-edge research,
such as Trilinos, is of significant benefit to Fortran community. However, such interfaces must be well
documented, sustainable and extensible, which would require significant amount of resources and investment.
This is further complicated by the requirements to support heterogeneous platforms (e.g., GPUs) and
inversion-of-control functionality. The manual approach to such interfaces has been shown to be unsustainable
as it requires interface developers to have in-depth expertise in multiple languages and the peculiarities in
their interaction on top of the time commitment to update the interfaces with changes in the library.

ForTrilinos addresses both the issue of reducing interface generation cost through investment in tool
configuration and usage to make the process as automatic as possible, and the issue of providing the full-
featured interface to Trilinos library, including access to manycore, accelerator and heterogeneous solver
capabilities in Trilinos.

Exascale Computing Project (ECP) 118 ECP-RPT-ST-0002-2020–Public

Solution Strategy
ArborX: ArborX builds on a MPI+Kokkos programming model to deploy to all DOE HPC architectures.

Extensive performance engineering has yielded implementations that are both as performant in serial as
state-of-the-art libraries while also expanding on the capability provided by other libraries by demonstrating
thread scalability on both GPU and multi-core CPU architectures. Working with both synthetic as well as
real data from applications (e.g., HACC) ensures wide performance testing coverage.

DTK: State-of-the-art, mathematically rigorous methods are used in DTK to preserve accuracy of
interpolated solutions. Algorithms are implemented in a C++ code base with extensive unit testing on
multiple platforms. Trilinos packages are used to support interpolation methods. Kokkos is used to achieve
performance portability across accelerated platforms.

Tasmanian: The C++ kernels within Tasmanian (currently tuned for Nvidia Volta architecture) are
templated exposing numerous performance tweaks and tuning parameters that can be adjusted to perform
well on a corresponding AMD system. The kernels also need to be ported to DPC++/SYCL to allow for the
utilization of Intel GPUs. Tasmanian requires a general GPU-BLAS interface that can utilize any of the
accelerated backends, e.g., cuBlas, rocBlas, MKL and MAGMA.

ForTrilinos: ForTrilinos defines several SWIG-Fortran modules that generate Fortran-2003 interfaces to
C++ Trilinos solver classes. ForTrilinos provides a “high-level” interface for applications to access nonlinear
and eigenvalue solvers in addition to low-level Trilinos classes.

Recent Progress
ArborX: Collaboration with partner application ExaSky (WBS 2.2.3.02) resulted in significant advances

for the in-situ density-based clustering algorithm (halo finding) using Nvidia GPUs.

Figure 55: ArborX progress on halo finding algorithm on Nvidia Volta. The
baseline is a serial implementation of CosmoTools. Numbers indicate speedup
compared to the baseline. The solid lines show improvements that were already
merged. Dashed lines show improvements that are in active development.

DTK: DTK’s build system has been rewritten. DTK now depends on Trilinos instead of being built as
an external package. DTK is now a separate package in spack. In the future this will allow a decoupling
between Trilinos version and DTK version. A new spline interpolation method has been added.

Tasmanian: Work with partner application ExaStar (2.2.3.01) created a reduced representation of
neutrino opacities used by the Thornado simulation software. The classical representation uses dense tables
that do not fit in GPU memory and lead to unnecessary and expensive data movement for each time-step.
The reduced representation by Tasmanian preserved the accuracy of the simulations and dramatically reduces
the memory footprint by removing redundancies and exploiting smoothness in the data.

ForTrilinos: As with DTK, ForTrilinos now has an independent build system with Trilinos as a
dependency. This improves robustness of the build and makes ForTrilinos available to app developers even if a
system installation of Trilinos does not enable Fortran. ForTrilinos is now independently available through the
Spack package manager. New ST libraries including Tasmanian have been wrapped with the SWIG-Fortran
utility.

Exascale Computing Project (ECP) 119 ECP-RPT-ST-0002-2020–Public

Figure 56: The resulting neutrino and antineutrino distributions in a delep-
tonization wave simulation using sparse grid opacities, which require only 6% of
the memory used in the dense approach, with relative L2 error less than 1%.

Next Steps
ArborX: Incorporate non axis-aligned bounding volumes to accommodate stretched inclined geometries

such as those coming from wind turbine simulations from ExaWind (WBS 2.2.2.01). Further improve
performance of density-based algorithms.

DTK: Continue performance engineering campaign and deploy in a variety of applications.
Tasmanian: Port the surrogate evaluation kernels to AMD and Intel GPUs and optimize the performance

on the next generation architectures (including next generation Nvidia GPUs).
ForTrilinos: Extend ForTrilinos native Fortran interface documentation and prioritize Fortran app

customer needs. Integrate SWIG into ECP ST projects that desire Fortran interfaces.

Exascale Computing Project (ECP) 120 ECP-RPT-ST-0002-2020–Public

4.4 WBS 2.3.4 DATA & VISUALIZATION

End State: A production-quality storage infrastructure necessary to manage, share, and facilitate analysis
of data in support of mission critical codes. Data analytics and visualization software that effectively supports
scientific discovery and understanding of data produced by Exascale platforms.

4.4.1 Scope and Requirements

Changes in the hardware architecture of Exascale supercomputers will render current approaches to data
management, analysis and visualization obsolete, resulting in disruptive changes to the scientific workflow
and rendering traditional checkpoint/restart methods infeasible. A major concern is that Exascale system
concurrency is expected to grow by five or six orders of magnitude, yet system memory and input/output (I/O)
bandwidth/persistent capacity are only expected to grow by one and two orders of magnitude, respectively.
The reduced memory footprint per FLOP further complicates these problems, as does the move to a
hierarchical memory structure. Scientific workflow currently depends on exporting simulation data off the
supercomputer to persistent storage for post-hoc analysis.

On Exascale systems, the power cost of data movement and the worsening I/O bottleneck will make it
necessary for most simulation data to be analyzed in situ, or on the supercomputer while the simulation is
running. Furthermore, to meet power consumption and data bandwidth constraints, it will be necessary
to sharply reduce the volume of data moved on the machine and especially the data that are exported
to persistent storage. The combination of sharp data reduction and new analysis approaches heighten
the importance of capturing data provenance (i.e., the record of what has been done to data) to support
validation of results and post-hoc data analysis and visualization. Data and Visualization is the title for Data
Management (DM) & Data Analytics and Visualization (DAV) activities in the Exascale project.

Data management (DM) activities address the severe I/O bottleneck and challenges of data movement
by providing and improving storage system software; workflow support including provenance capture; and
methods of data collection, reduction, organization and discovery.

Data analytics and visualization (DAV) are capabilities that enable scientific knowledge discovery. Data
analytics refers to the process of transforming data into an information-rich form via mathematical or
computational algorithms to promote better understanding. Visualization refers to the process of transforming
scientific simulation and experimental data into images to facilitate visual understanding. Data analytics and
visualization have broad scope as an integral part of scientific simulations and experiments; they are also a
distinct separate service for scientific discovery, presentation and documentation purposes, as well as other
uses like code debugging, performance analysis, and optimization.

The scope of activities falls into the following categories:

• Scalable storage software infrastructure – system software responsible for reliable storage and retrieval
of data supporting checkpointing, data generation, and data analysis I/O workloads

• Data collection, reduction, and transformation – enabling complex transformation and analysis of
scientific data where it resides in the system and as part of data movement, in order to reduce the cost
to solution

• Data organization and discovery – indexing and reorganizing data so that relevant items can be identified
in a time- and power-efficient manner, and complex scientific data analysis can be performed efficiently
on Exascale datasets

• In situ algorithms and infrastructure – performing DAV while data is still resident in memory as the
simulation runs enabling automatic identification, selection and data reduction for Exascale applications.

• Interactive post-hoc approaches – on data extracts that produced in situ and support post-hoc under-
standing through exploration.

• Distributed memory multi-core and many-core approaches, for the portable, performant DM and DAV
at Exascale.

Exascale Computing Project (ECP) 121 ECP-RPT-ST-0002-2020–Public

4.4.2 Assumptions and Feasibility

• Scaling up traditional DM and DAV approaches is not a viable approach due to severe constraints on
available memory and I/O capacity, as well as dramatically different processor and system architectures
being at odds with contemporary DAV architectures.

• Simulations will produce data that is larger and more complex, reflecting advances in the underlying
physics and mathematical models. Science workflows will remain complex, and increasing requirements
for repeatability of experiments, availability of data, and the need to find relevant data in Exascale
datasets will merit advances in workflow and provenance capture and storage.

• The expense of data movement (in time, energy, and dollars) will require data reduction methods,
shipping functions to data, and placing functionality where data will ultimately reside.

• Solid-state storage will become cheaper, denser, more reliable, and more ubiquitous (but not cheap
enough to replace disk technology in the Exascale timeframe). Exascale compute environments will have
in-system nonvolatile storage and off-system nonvolatile storage in addition to disk storage. Applications
will need help to make use of the complex memory/storage architectures.

• Disks will continue to gain density but not significant bandwidth; disks will become more of a capacity
solution and even less a bandwidth one.

• Industry will provide parts of the overall data management, data analysis and visualization solution,
but not all of it; non-commercial parts will be produced and maintained.

• This plan and associated costs were formulated based on the past decade of DOE visualization and data
analysis activities, including the successful joint industry/laboratory-based development of open-source
visualization libraries and packages (VTK, VisIt, and ParaView).

4.4.3 Objectives

Data management, analysis and visualization software must provide:

• production-grade Exascale storage infrastructure(s), from application interfaces to low-level storage
organization, meeting requirements for performance, resilience, and management of complex Exascale
storage hierarchies;

• targeted research to develop a production-grade in situ workflow execution system, to be integrated
with vendor resource management systems, meeting science team requirements for user-defined and
system-provided provenance capture and retention;

• production-grade system-wide data transfer and reduction algorithms and infrastructure, with user
interface and infrastructure for moving/reducing data within the system, to be integrated with vendor
system services and meeting science and national security team requirements; and

• production-grade metadata management enabling application and system metadata capture, indexing,
identification, and retrieval of subsets of data based on complex search criteria and ensures that
technologies target science and national security team requirements.

• targeted research to develop a production-grade in situ algorithms, to be integrated with open source
visualization and analysis tools and infrastructure, meeting science team data reduction requirements

• targeted research to develop a production-grade algorithms for the new types of data that will be
generated and analyzed on Exascale platforms as a result of increased resolution, evolving scientific
models and goals, and increased model and data complexity.

• targeted research to develop a production-grade post-hoc approach that support interactive exploration
and understanding of data extracts produced by in situ algorithms

• production-grade Exascale data analysis and visualization algorithms and infrastructure, meeting
requirements for performance, portability and sustainability for evolving hardware architectures and
software environments.

Exascale Computing Project (ECP) 122 ECP-RPT-ST-0002-2020–Public

4.4.4 Plan

Productization of technologies is a necessary step for adoption, research-quality software is not enough.
One approach we will take is to fund vendors of products in related areas to integrate specific technologies
into their product line. When developing objectives for this activity, a focus was placed on the availability
of products that deliver these technologies on platforms of interest. Activities can be separated into two
categories:

• Community/Coordination – designed to build the R&D community, inform ourselves and the community
regarding activities in the area, track progress, and facilitate coordination.

• Targeted R&D – filling gaps in critical technology areas (storage infrastructure, workflow, provenance,
data reduction and transformation, and organization and discovery).

Portions of the DAV software stack are being productized and supported by industry, which will help to
control costs in the long term. Activities to achieve the DAV objectives are heavily dependent on developments
across the Exascale project, and thus close coordination with other teams is essential. Close engagement with
application scientists is crucial to the success of DAV, both in terms of understanding and addressing the
requirements of science at scale and ensuring that computational scientists are able to adopt and benefit
from the DAV deliverables.

Many objectives need initial research projects to define plausible solutions. These solutions will be
evaluated and progressively winnowed to select the best approaches for the Exascale machine and the needs
of science. Selected projects will continue to receive support to extend their research and development efforts
to integrate their solutions into the open-source Exascale software stack.

4.4.5 Risks and Mitigations Strategies

There are specific risks identified for the Data and Visualization portfolio. These risks are tracked in the risk
register .

• Application teams may continue to employ ad hoc methods for performing data management in their
work, resulting in increased I/O bottlenecks and power costs for data movement. Application team
engagement, working within the overall software stack, and input into Hardware Integration will be
necessary if results are to be deployed, adopted, and significantly improve productivity.

• Despite funding vendor activities, industry partners may determine the market is insufficient to warrant
meeting Exascale requirements.

• If vendor integration and targeted R&D activities are not closely coordinated, gaps will not be effectively
identified and targeted, or successful R&D will not be integrated into industry products in the necessary
timeframe.

• Vendors supplying data management solutions are likely to be distinct from Exascale system vendors.
Additional coordination will be necessary, beyond DM productization, in order to ensure interoperability
of DM solutions with specific Exascale platforms.

• Data management from an application perspective is tracked in one of the identified risks. Additionally,
the software stack tracks several risks indirectly related to data management as well.

• Failure of scientists to adopt the new DAV software is a major risk that is exacerbated if the DAV
software is research quality. Mitigating this risk depends on close engagement with domain scientists and
supporting layers of the software stack through co-design activities, as well as investment in development
and productization of DAV codes.

• Redundant efforts in domain science communities and within ASCR-supported activities such as
SciDAC result in wasted resources. Communication and close coordination provide the best strategy
for mitigation.

Exascale Computing Project (ECP) 123 ECP-RPT-ST-0002-2020–Public

• Fierce industry and government competition for DAV experts creates a drain on laboratory personnel in
DAV and makes lab hiring in this area difficult. Stable funding and a workforce development program
would help to mitigate these risks.

• A skilled workforce is required for a successful Exascale project.

4.4.6 Future Trends

Graphics Architectures and Approaches Graphics architectures are improving in terms of raw compu-
tational power and through the addition of specialized libraries for accelerating ray-tracing, volume rendering,
and denoising. Nvidia has added specialized hardware processing units for ray-tracing and machine learning
to their GPU offerings. Intel has developed a suite of CPU accelerated libraries that support OpenGL
(OpenSWR), ray-tracing (Embree, OSPRay), volume rendering (Open Volume Kernel Library) and de-noising
(Open Image Denoise). From a visualization and rendering perspective, ray-tracing provides significantly
improved rendered results over traditional scan-conversion based approaches. A near-term opportunity is to
take advantages of such functionality for our rendering needs. Longer term, we will look into leveraging these
hardware accelerated approaches to accelerate visualization and analysis tasks.

In Situ Analysis and Automation A key thrust of the Data and Visualization area is the focus on in
situ analysis in order to filter important information as it is being generated by the simulations. In addition
to our algorithmic and infrastructure efforts, automatic techniques and workflows must be developed to guide
the overall in situ analysis process.

Workflows Slowly, more complex workflows are becoming a more significant component of the job mix
on ECP-relevant platforms, partially driven by the increased use of these systems for machine learning
applications. Workflows can drive degenerate use cases in the storage stack, such as the use of the file system
for communication between tasks, when tools from outside the HPC community are adopted without change.
Alternative approaches to enable communication between tasks exist but must be adapted to facility contexts,
and technical roadblocks (e.g., difficulty in communicating between separate jobs) must be overcome.

AI AI applications will appear more frequently in the job mix. This impacts the requirements for
data storage, as new classes of data become more prominent in application input datasets. It also impacts
technologies for understanding application behavior, as these jobs are often not using MPI, a common
assumption in tool sets. Finally AI-focused applications do not exhibit the common pattern of alternating
phases of I/O and computation seen in simulation codes, driving a need for attention on methods of I/O
optimization that do not rely on explicit collective I/O phases.

Networks Network architectures are still in flux, and specific new technologies such as Slingshot from
Cray will bring new capabilities such as more advanced congestion detection and mitigation that change how
networks will behave in the face of mixed communication and I/O traffic or the impact of communication-
heavy applications on other applications in the system, etc. Assumptions regarding how I/O traffic fits into
this picture may need to be reexamined. The libfabric interface for accessing networks appears to be the
most promising portable interface for use outside of MPI, and teams will need to assess how to best use
libfabric across platforms of interest as well as possibly advocating for specific capabilities in libfabric that
fall outside of traditional MPI use cases, such as the common pattern of clients connecting and detaching
from long-running services.

Object stores Facilities are planning deployments of non-POSIX storage solutions. One of the first of
these will be the DAOS deployment on the A21 system at Argonne. The DAOS interfaces are available for
teams to begin to understand, an HDF5 front-end for DAOS is available, and there are some examples of
DAOS use for scientific codes. It is likely that the highest performance will come from applications directly
using the DAOS APIs, and work to allow understanding of how these APIs are used would be beneficial.

Compression Compression will continue to play an important role in computation as a vehicle for
addressing the explosion in size of datasets and outputs. Improved integration of compression capabilities
in libraries supporting parallel I/O will continue to be a topic for further development, and techniques for
allowing concurrent updates while compression is enabled specifically need more exploration. The use of
lower precision data types has the potential of speeding up the visualization and analysis process as well as
reducing data sizes without significantly degrading the accuracy of results.

Storage technologies and architectures Even in systems that will continue to employ POSIX file
systems as the main ”scratch” store, the hardware on which these file systems are stored will be changing. For

Exascale Computing Project (ECP) 124 ECP-RPT-ST-0002-2020–Public

example, the Perlmutter system will provide a 30 PB nonvolatile storage tier using Lustre. The file system
teams (e.g., Lustre team) will be working to maximize performance on these new storage back-ends, but
simultaneously higher software layers must consider how this significant change impacts their assumptions
about the relative costs of communication and data storage for common patterns of access.

Computing Platform

Embedded
Storage

Platform
Storage

Facility or
Site Network

Platform
Storage
Fabric

Archival
Storage

The World

Center-Wide
Storage

Data
Transfer
Nodes

Storage in and around the platform

Data transfer
nodes facilitate bulk
data movement
in/out of the facility.

Archival storage
holds infrequently
accessed data for
extended time periods.

Center-wide
storage allows
sharing of data
between systems.

Embedded storage is
high BW, low latency, and
located on node or in the
platform fabric.

Platform storage
provides high
capacity storage for
data between runs.

Figure 57: A notional diagram of DOE facility storage resources. Not all
systems have each role filled, and often additional network connections exist to
accelerate specific data flows.

Figure 57 depicts a notional diagram of the storage resources surrounding a leadership class platform
at a DOE facility. In this diagram, “platform” is the HPC system itself: Theta, Summit, Cori, Frontier,
Perlmutter, Aurora, etc.

Note that this is a notional diagram. There are often additional connections to speed specific transfers,
and some sites augment one resource while omitting another. Data transfer nodes provide access to data
stored on facility storage from the outside world: Typically this is enabled using GridFTP, Globus Online,
htar, or similar.

There are lots of roles that storage might play:

• Archival storage holds “cold” data. Currently tape is still the dominant media for archival storage, but
disk is also used, both as cache and as permanent storage (sometimes spun down).

• Center-wide storage allows for easy data access between systems. This might include home directories
and some other shared data volumes. Often performance is limited compared to platform storage.

• Platform storage is storage that is connected to a limited number of platforms in the facility and is
meant to be a high-performance, high-capacity store for data that will be used for multiple runs. While
disk drives are still used in some platform storage deployments, increasingly solid-state storage (e.g.,
SSDs) is being employed in this role.

• Embedded storage is located very close to the platform itself, either as node-local storage or tightly
integrated into the fabric. Technologies used include NVMe and SSDs. Embedded storage that is
available across the system is perhaps best thought of as a special kind of platform storage.

Table 12 captures the salient characteristics of the storage deployments for the current generation of
systems: Theta, Cori, and Summit. These systems largely reflect trends in DOE storage over the last decade:
HPSS archival storage coupled with a POSIX center-wide file system provided by GPFS or Lustre and backed
by hard disk drives (HDDs). In two cases, a faster, platform-specific POSIX file system is deployed, while
at OLCF the team chose to instead concentrate on a very high performance center-wide file system that is
available on other resources as well.

Of note in these systems are some embedded storage options that have provided the community with
some early experiences with SSD storage. On Theta and Summit, local SSDs are available that have seen
limited use by specific teams. On Cori, the DataWarp service allows for SSD-backed storage pools to be

Exascale Computing Project (ECP) 125 ECP-RPT-ST-0002-2020–Public

Table 12: Storage system specifications for current platforms.Current Platforms
ALCF Theta NERSC Cori OLCF Summit

Archive Center Platform Embedded Archive Center Platform Embedded Archive Center Platform Embedded

SW HPSS Lustre Lustre ext3 HPSS GPFS Lustre DataWarp HPSS GPFS N/A XFS

HW LTO8
Tape/
HDD

SSD/HDD HDD SSD 3592
Tape/
HDD

HDD HDD SSD 3592 D
Tape/
HDD

HDD SSD

Capacity 305 PB 200 PB 10 PB 549 TB 230 PB 128 PB 30 PB 1.8 PB 130 PB 250 PB 7.3 PB

BW 90 GB/s
(cache)

650 GB/s 240 GB/s 6.6-9.2
TB/s

100 GB/s
(cache)

100 GB/s 700
GB/s

1.7 TB/s 120
GB/sec
(cache)

2.2-2.5
TB/s

9.7-27
TB/s

Usability Medium High
(POSIX)

High
(POSIX)

Low
(per-
node)

Medium
(hsi, htar,
ftp,
globus)

High
(POSIX)

High
(POSIX)

Medium
(POSIXy)

Medium
(his, htar,
globus)

High
(POSIX)

Low (per-
node)

Note: No effort has been taken to try to uniformly measure BW or IOPS; consider these as estimates.

Table 13: Projected storage specifications for upcoming platforms.
Upcoming Platforms

ALCF Aurora NERSC Perlmutter OLCF Frontier
Archive Center Platform Embedded Archive Center Platform Embedded Archive Center Platform Embedded

SW HPSS Lustre DAOS N/A HPSS GPFS Lustre N/A TBD Lustre N/A XFS

HW LTO8
Tape/
HDD

SSD/HDD PM/
NVME

3592
Tape/
HDD

HDD NVME SSD/HDD TBD

Capacity 305 PB 200 PB 220 PB 230 PB 200 PB 35 PB 700 PB TBD

BW 90 GB/s
(cache)

650 GB/s 25+ TB/s 100 GB/s
(disk)

500 GB/s 5 TB/s 10 TB/s TBD

Usability Medium High
(POSIX)

?
(non-
POSIX)

Medium
(hsi, ftp,
globus)

High
(POSIX)

High
(POSIX)

High
(POSIX)

Low
(per-node
POSIX)

Note: These systems haven’t been deployed, so configurations may change.allocated that are visible to an entire job or workflow. This functionality is close to the model that users are
accustomed to, and the resource has seen significant use.

Table 13 captures the current, public understanding of storage characteristics for the next generation of
systems: Aurora, Perlmutter, and Frontier. A number of observations can be made from this data. First,
POSIX will remain the dominant (at least low-level) API for interacting with the primary storage resources
(embedded, platform, and center-wide). Obtaining peak performance will likely remain a challenge for users,
but with node counts somewhat stalled, storage software scalability is not further pressured. Second, DAOS,
will appear as a POSIX alternative. DAOS is an Intel product that will provide a form of globally accessible
key-value style of storage. However, a POSIX “veneer”, or compatibility layer, will be provided that will give
users an easy way to make use of the resource. With all the major ST I/O libraries already having the ability
to implement alternative back-ends, the challenge will be more about how to persist things outside DAOS
efficiently (e.g., converting back to POSIX files). Finally, there will still be a non-global, embedded storage
resource on Frontier. The best ways to utilize this resource need to be studied, but systems like UnifyFS
could play a role.

Exascale Computing Project (ECP) 126 ECP-RPT-ST-0002-2020–Public

4.4.7 WBS 2.3.4.01 Data & Visualization Software Development Kits

DataViz SDK Overview

The Data & Visualization (DataViz) SDK aims to create a production-quality infrastructure necessary
to manage, share, and facilitate data analysis of mission-critical codes at scale. The project focuses on
community development and a commitment to success via quality improvement policies, better build and
deployment processes, and the ability to use diverse, independently developed DataViz SDK projects, in
combination, for data analysis and visualization problems.

The DataViz SDK’s responsibility is to coordinate the disparate documentation, development, testing,
deployment activities, and develop the necessary tooling and shared infrastructure to serve these goals. This
coordination’s resulting product is a unified set of usable, standardized, and interoperable packages ready for
the upcoming exascale machines. We have designed the efforts to support the DataViz SDK to fit within the
overarching goal to leverage and integrate data management, analysis, and visualization techniques developed
across the ECP Software Technology ecosystem to support scientific discovery and understanding.

In addition, DataViz SDK provides a capability supporting collaborative analysis and visualization software
development, helping independent teams accelerate the adoption of best practices, enabling interoperability
of independently developed software, and improving developer productivity and sustainability of the software
products.

Key Challenges

Scientists and engineers from various research cultures and significantly different software engineering
maturity levels develop Data & Visualization software packages. In addition to the challenges outlined in
Section 4.5.7, ECP Data & Visualization software packages will use different combinations of dependency
software in various configurations. Visualization applications and libraries, in particular, utilize lower-level
graphics libraries from an OpenGL stack needing reliably mapped to a diverse set of underlying hardware.
These applications demand the deployment infrastructure support the appropriate combination of software
and hardware-based rendering on NVIDIA, AMD, or Intel GPUs and accelerated offscreen rendering APIs
like EGL. Requirements such as these place the DataViz SDK between the hardware teams and the analysis
and visualization software developers preparing to run on new architectures yet delivered by ECP.

DataViz SDK software packages also have, on average, a much deeper dependency chain than is typical
within HPC. As of this writing, an optimized set of twelve ECP DataViz SDK packages requires over
160 dependencies. Many packages share these dependencies, each with their own set of constraints. This
combination presents a unique challenge to ensure compatibility, interoperability, and reliability of the entire
stack as a whole, beyond the individual packages.

Solution Strategy

First, the DataViz SDK solution strategy involves pursuing usability, standardization, interoperability, and
sustainability goals through a set of community policies to improve software practices. The DataViz SDK
community policy tasks have required us to define a common terminology for effective communication.

Second, we leverage shared infrastructure, such as the Spack [1] package manager and CI testing at ECP
facilities. We built the SDK release and delivery deployment goals on Spack as a unifying package manager,
while our reliability and sustainability goals benefit from and leverage the facilities’ CI testing infrastructure.

Finally, we define a set of spack meta-packages, ecp-vis-sdk and ecp-io-sdk, to enable the delivery of
ECP targeted configurations of data and visualization packages through E4S. These meta-packages establish
dependencies for the packages within the DataViz SDK, and serve as the backbone of our interoperability
testing and deployment efforts.

• ecp-vis-sdk includes data analysis and visualization packages such as ASCENT, Catalyst, Cinema,
ParaView, VTK-m along with data reduction and compression libraries like SZ, and ZFP.

• ecp-io-sdk includes input and output (I/O) services like ADIOS, Darshan, hdf5, parallel-netcdf, unifyfs,
and veloc.

Exascale Computing Project (ECP) 127 ECP-RPT-ST-0002-2020–Public

The packages contained in the two meta-packages represent software at different maturity and readiness
for release. The early release strategy was to push product readiness for inclusion in the E4S releases by
assisting packages with Spack packaging and CI testing. We will continue to evolve the maturity level and
interoperability of the packages while preparing for subsequent releases.

Recent Progress

In pursuit of establishing a baseline set of software quality across the entire ECP ST area, the SDK
projects have been collectively developing a set of community policies a given package must adhere to be an
E4S member package. These community policies cover areas including publicly accessible documentation,
mandatory spack packaging, testing practices, and other policy areas. The DataViz SDK has played an
active role in this panel by proposing new policies, refining language on official policies, and soliciting
community feedback. We are nearing a final set of initial guidelines required by the E4S project for packages
to be accepted as a first-class E4S Member Package. These community policies intended to be an ongoing
collaborative effort to elevate the standard of software quality, reliability, and sustainability for the entire
ECP software ecosystem.

In addition, recent progress included the completion of the following three milestones during the fiscal
year 2020.

STDV01-06 — Improved CI capabilities. During this milestone, we worked to ensure that all of the
packages within the DataViz SDK were utilizing Continuous Integration in some way as part of their
development workflow and software process. While the packages span a wide range of maturity and robustness
of the software process, they all have incorporated at least a baseline CI capability (some far more extensive
than others). Most leverage a public cloud CI like Travis or GitHub Actions, while others rely on internal
resources from an internal GitLab or BitBucket ser er. We also improved the spack packaging for several of
the SDK projects and integrated the remaining projects into the SDK meta-packages.

STDV01-08 — HDF Virtual Object Layer Architecture (VOL) documentation and ECP HPC-CI inte-
gration. During this time, we worked directly within the ADIOS and VTK-m projects to enable the newly
developed ECP HPC-CPI capability. These two projects served as early adopters of the Gitlab-CI environment
running directly on HPC resources at ORNL. The SDK coordinated directly with ORNL facilities personnel
to debug the CI environment worked to identify issues other Data & Viz projects are likely to encounter, and
develop the initial capability for ADIOS and VTK-m. From this work, the SDK can assist other data and
visualization projects in implementing the ECP HPC CI capability through both guidance and best practice
recommendation and direct technical development assistance.

STDV01-14 — Optimized Spack configurations and CI. The default configuration of most spack packages
is intended to produce the most compatible version, but not necessarily the most optimal for large scale
HPC. In particular, packages may have key features disabled by default essential to HPC, such as MPI
support and FORTRAN language bindings. The two meta-packages were enhanced to ensure that an
optimized configuration explicitly targets ECP target platforms for every direct data and visualization
package dependency.

Next Steps

We highlight our next steps in the follow on project milestones.
STDV01-17 — Cross SDK CI testing. The focus of this release is to demonstrate successful interoperable

CI testing. The DataViz SDK is building out a CI infrastructure to allow all ST products within the Data
& Visualization focus area to be regularly built and tested with each other to ensure interoperability. This
milestone is to have the CI system running with as many ST products in the DataViz SDK successfully
building together, satisfying each other’s dependencies.

STDV01-29 — Hardening to ensure SENSEI is deployable and reliable at scale. Establishing Spack
recipes for the SENSEI software coupled with the hardening of the in transit code-base will go a long way in
mitigating the risks associated with availability and defects for ECP applications.

HDF5

Exascale Computing Project (ECP) 128 ECP-RPT-ST-0002-2020–Public

Overview

HDF5 is a data model, I/O library, and file format to store and manage data. It supports an unlimited
variety of datatypes, and is designed for flexible and efficient I/O for high volume and complex data. HDF5
is portable and is extensible, allowing applications to evolve in their use of HDF5. The HDF5 software suite
includes tools and applications for managing, manipulating, viewing, and analyzing data in the HDF5 format.
Numerous ECP applications use HDF5 or high-level libraries built on top of HDF5 (for example, netCDF-4,
H5Part) for managing application’s data. Therefore, HDF5 is a critical part of the Data & Visualization
SDK. It is developed and maintained by a nonprofit organization, The HDF Group.

Under the Data & Visualization SDK effort, The HDF Group releases HDF5 new features that enhance
workflow, productivity and ECP applications performance. Such features, for example, include ExaHDF5
productized Virtual Object Layer Architecture (VOL) and HDF5 VOL connectors, which allow ECP
applications to access data on different storage devices, including Tiered Memory and to access data in
various file formats. In this activity, we focus on:

• Identifying and prioritizing components of SDK that could benefit from current underutilized HDF5
features and newly released features and recommending changes to the identified components.

• Assisting other Data & Visualization SDK team, ADIOS, ExaIO and DataLib teams, in requirements
gathering for integration with HDF5 APIs.

• Assuring that the latest released HDF5 software and non-integrated features developed under ExaIO
(e.g., Async I/O VOL), are part of CI testing on the ECP platforms, including integrating HDF5 into
the SDK CI testing framework (GitLab).

• Addressing any HDF5 related CI testing issues, in addition to any HDF5 bug or deficiently affecting
parallel I/O performance, sustainability, and/or utility on ECP platforms.

The HDF Group is performing outreach activities as described here:

• Reaching out to the ECP science application teams that use or intend to use HDF5 and assess
applications’ usage of HDF5 or I/O needs, recommend best practices and existing HDF5 features to
achieve scalable performance and to avoid I/O bottlenecks when using SDK components.

• Identifying necessary improvements to data organization in HDF5, to the usage of HDF5 library features,
and assisting applications to implement identified improvements.

• Integrate ECP supported ZFP and SZ compression library with the HDF5 maintenance releases.

• Series of HDF5 Tutorials for new and advanced HDF5 users, and seminars for the HDF5 applications
developers on the HDF5 best practices and performance.

Key Challenges

HDF5 is a complex software used not only to perform I/O, but also to manage complex data in one HDF5
file. Very often, developers of HDF5 applications are challenged to find the right balance between optimum
I/O performance and data organization in the HDF5 file for further processing and sharing. It is unreasonable
to expect scientists to go over more than 500 HDF5 C functions to find the right tuning knobs. As a result,
some application teams continue using home-grown ASCII and binary formats and not taking advantage of
HDF5 features and especially the features developed for ECP.

Solution Strategy

To lower the barrier for adopting HDF5 by ECP applications, The HDF Group has to provide quality
HDF5 software that works on ECP platforms, integrate newly developed features into mainstream HDF5 and
make them available to ECP applications promptly, educate HDF5 users on major HDF5 features, tuning
tools and tuning techniques, and work closely with ECP applications teams on application tuning.

Exascale Computing Project (ECP) 129 ECP-RPT-ST-0002-2020–Public

Recent Progress

During 2020 HDF5 develop branch and HDF5 1.12.0 and 1.10.7 maintenance releases were fully integrated
with Spack and ECP CI testing using Gitlab on Ascent, Cori and several machines at LLNL. Test results are
sent to The HDF Group public CDash.

We studied I/O access patterns of several ECP applications, including HACC, and summarized our
findings in the white paper ”An I/O Study of ECP Applications”. We summarize below the observations and
some unexpected behaviors we found for each application along, with the suggestions on how to fix them.
Detailed results and analysis can be found in the paper.

• FLASH: Unnecessary HDF5 metadata operations H5Acreate(), H5Aopen() and H5Aclose() are used
during every checkpointing step. Those operations can be expensive, especially when running a large
number of iterations. This can be easily fixed at the price of losing some code modularity.

• NWChem: File-per-process patterns are found for writing local temporary files. This is undesired
and will cause a lot of pressures on parallel file systems for large scale runs. Conflicting patterns are
found for the runtime database file, which can lead to consistency issues when running on non-POSIX
file systems.

• Chombo: The Same file-per-process pattern is observed for Chombo too. Moreover, by default,
Chombo uses independent I/O to write the final result to a shared HDF5 file. Depending on the
problem scale and underlying file system configurations, collective I/O can further optimize the I/O
performance.

• QMCPack: One unexpected pattern is found for checkpoint files. QMCPACK overwrites the same
checkpoint file for each computation section. This could lead to an unrecoverable state if a failure
occurred during the checkpointing step.

• HACC-IO: HDF5 can use different data layout to achieve similar MPI-IO access patterns. Stripe
settings of the parallel file system have a big impact on the write performance. Also, the default
metadata header can greatly slow down the write performance. However, carefully setting the alignment
or metadata data block size, HDF5 can deliver similar performance as the pure MPI-IO implementation.

We hold several Webinars and Tutorials for HDF5 users. The recordings and corresponding materials are
available from The HDF Group Website. Our goal was to introduce new and experienced HDF5 application
developers to HDF5 tuning techniques and tools such as Darshan and Recorder to identify I/O performance
bottlenecks. One of the Webinars was devoted to showing how HACC can achieve highly scalable performance
when using HDF5. Setting right HDF5 metadata block size and Lustre or GPFS file system parameters
allowed to match native HACC’s MPI I/O approach when writing to a shared HDF5 file. Along with giving
the Webinar: An Introduction to HDF5 in HPC Environments we created hands-on materials for the HDF5
Parallel Tutorial that is available from the GitHub repository. The Tutorial provides a quick start with
parallel HDF5 and shows major techniques to get a good performance. We also created a hands-on Tutorial
on how to troubleshoot HDF5 performance. Both Tutorials were presented at the second HDF User Group
Meeting on October 13-16, 2020.

Next Steps

The HDF Group activities will continue in two areas: productization of the HDF5 features developed for
ECP applications and outreach.

The HDF Group will continue working with the ExaIO, ADIOS and DataLib teams enhancing the HDF5
library and bringing HDF5 VOL connectors developed for ECP applications to production quality. We will
also continue integrating developed features into HDF5 maintenance releases and CI testing. We are working
to add CI testing to Theta and Summit.

ZFP and SZ HDF5 compression filters will be made more visible through HDF5 filter packages added to
Spack and integrated with CI testing on the ECP systems. We plan to release HDF5 1.12.1 and integrate it
with Spack and ECP CI testing. The release will address HDF5 library’s issues discovered by the ExaIO team

Exascale Computing Project (ECP) 130 ECP-RPT-ST-0002-2020–Public

cdash.hdfgroup.org
http://portal.hdfgroup.org/display/HDF5/Parallel+HDF5
http://https://www.hdfgroup.org/category/webinar
https://www.hdfgroup.org/2020/08/a-study-of-hacc-io-benchmarks/
https://www.hdfgroup.org/2020/06/webinar-an-introduction-to-hdf5-in-hpc-environments-supporting-materials/
https://github.com/HDFGroup/Tutorial/tree/main/Parallel-hands-on-tutorial
https://github.com/HDFGroup/Tutorial/tree/main/HDF5-troubleshooting
https://github.com/HDFGroup/Tutorial/tree/main/HDF5-troubleshooting
https://www.hdfgroup.org/hug/2020-hug/hdf5-users-group-2020-agenda/
https://www.hdfgroup.org/hug/2020-hug/hdf5-users-group-2020-agenda/

during the development of the Asynchronous HDF5 VOL connector and the DataLib team when developing
the HDF5 logging VOL connector. We will also integrate a subfiling feature developed by the ExaIO team
into the HDF5 maintenance releases.

We will continue working with the ECP HDF5 applications teams on I/O performance, and we will give
Tutorials and Webinars, and create additional documentation on efficient usage of HDF5 in the ECP HPC
environment.

Exascale Computing Project (ECP) 131 ECP-RPT-ST-0002-2020–Public

4.4.8 WBS 2.3.4.09 ADIOS

Overview The Adaptable I/O Systems, ADIOS [160, 161], is designed to tackle I/O and data management
challenges posed by large-scale computational science applications running on DOE computational resources.
ADIOS has dramatically improved the I/O performance of Petascale applications from a wide range of science
disciplines, thereby enabling them to accomplish their missions. The ADIOS ECP project is working on
goal of transforming the ADIOS 1.x version, which has been used successfully on Petascale resources into a
tool that will efficiently utilize the underlying Exascale hardware, and create a community I/O framework
that can allow different ECP software to be easily “plugged” into the framework. The cornerstone of this
project are to 1) efficiently address Exascale technology changes in compute, memory, and interconnect for
Exascale applications; 2) develop a production-quality data staging method to support Exascale applications
and software technologies that require flexible in situ data reduction and management capabilities; and 3)
use state of the art software engineering methodologies to make it easier for the DOE community to use,
maintain, and extend ADIOS. More precisely, our aim is to develop and deploy a sustainable and extensible
software ecosystem. To make this into an ecosystem (rather than a point solution),this effort must result in
an infrastructure than can be used effectively, customized, and shared among a variety of users, Exascale
applications, and hardware technologies. Technically, we are achieving this goal by: refactoring ADIOS with
the goal of improving modularity, flexibility, and extensibility by using C++; and extending, tuning, and
hardening core services, such as I/O and staging that supports Exascale applications, architectures, and
technologies.

Key Challenges The core challenge of ADIOS is in its name – adaptability. In order to present a uniform
user interface while also being able to harness the performance improvements available in the wide variety of
storage and interconnect capabilities, the internal structure of the ADIOS framework must address a number
of portability, functionality, and performance tuning challenges. The internals should be constructed so that
with no more than a small flag or runtime configuration a science code can move from doing I/O into a large
Lustre parallel file system (with automatic calculation of file striping and number of files per directory) to
utilizing burst buffer storage (with controls for delayed synchronization between the buffer and an archival
store) or feeding the data directly into a concurrent application

The challenge of supporting hardware portability and runtime performance tuning also impose a third
related challenge for software engineering of the system. In order for the code to be sustainable in the long
term, while also offering guarantees of service to the end user, requires special attention to the architecture of
the code base. The consequences of trying to address these three challenges, hardware portability, runtime
performance, and sustainable engineering, have driven our approach and deliverable schedule for ADIOS in
ECP.

Solution Strategy The ADIOS effort has two primary thrusts:

1. Scalable I/O: ADIOS has a data format designed for large scale parallel I/O and has data transport
solutions to write/read data from/to the storage system(s) efficiently.

2. Scalable data staging support: ADIOS includes data transport solutions to work on data in transit,
that is, to move data memory-to-memory, from one application stage to another without using file
system I/O.

The challenges of portability and performance apply for both of these thrusts; to a certain extent, the
third challenge around software engineering emerges from the need to support these two very different
categories under a single user interface. Capitalizing on the experiences and performance expertise from our
initial ADIOS platform, the ECP project wraps and extends this functionality to make it more sustainable,
maintainable, and hopefully also more approachable for a wide community of users and developers. The
project approach focuses on doing deep dives with end scientist users and developers in order to make sure
that the computer science development process leads to specific, verifiable results that impact the customers.

Recent Progress A new version of the Application Programming Interface unifies staging I/O and file
I/O [162], and the new, object-oriented, code framework [163] supports writing and reading files in two

Exascale Computing Project (ECP) 132 ECP-RPT-ST-0002-2020–Public

different file formats (ADIOS BP format and HDF5 format) and in situ with different staging implementations
for various use cases. The new framework focuses on sustainable development and code reusability. The team
also created the new scalable staging transport learning from the many lessons from using ADIOS for data
staging and code coupling by applications in the past. As can be seen in Figure 58, this past experience with
methods and deep science engagements has led to demonstrations at leadership computing scale (on Titan
and Summit).

Figure 58: An example of using ADIOS to support ECP science. This sketch
represents the demonstration at the February 2018 ECP Meeting, which featured
WDM Fusion, CODAR, ADIOS, and other joint ECP activities. Note that all of
the green arrows in the figure represent data communication or storage handled
by the ADIOS infrastructure.

The new design focuses on stability and scalability so that applications can rely on it in daily production
runs just as they have relied on the high performance file I/O of ADIOS. The new code base is governed with
state-of-the art software development practices, including GitHub workflow of Pull-Requests with reviews,
continuous integration that enforces well-tested changes to the code only, and nightly builds to catch errors on
various combinations of architecture and software stack as soon as possible. Static and dynamic analysis are
integrated to the GitHub workflow to catch errors before they cause trouble. Code coverage tools also help
with increasing code quality. The team has access to and the code is continuously tested on DOE machines
(Summit, Cori and Theta) using several ECP application codes and realistic science simulation setups (e.g.
for WDMApp, E3SM-MMF and EXAALT application setups).

For interoperability with the other main I/O library used in the ECP program, HDF5, we have added
compatibility in various ways. ADIOS has an engine to write/read HDF5 files using the original HDF5 library
linked with ADIOS. A user can just change an option to switch from ADIOS-BP output to HDF5 output.
On the other hand, ADIOS provides an HDF5-VOL layer, so that an HDF5 application can choose ADIOS
as the underlying driver to write ADIOS-BP files from an application using HDF5.

Next Steps In the fifth year of the project we will be focusing on some special application cases, where the
internal metadata of the ADIOS data representation leads to performance problems. Notably, the E3SM-MMF
and WarpX applications need a better management of ADIOS metadata and blocks of the simulation data to
achieve high write and read performance at scale. We will also have effort to prepare ADIOS for the exascale
machines, Frontier and Aurora.

Exascale Computing Project (ECP) 133 ECP-RPT-ST-0002-2020–Public

4.4.9 WBS 2.3.4.10 DataLib

Overview The Data Libraries and Services Enabling Exascale Science (DataLib) project has been pushing
on three distinct and critical aspects of successful storage and I/O technologies for ECP applications: enhancing
and enabling traditional I/O libraries used by DOE/ECP codes on leadership platforms, establishing a nascent
paradigm of data services specialized for ECP codes, and working closely with facilities to ensure the successful
deployment of our tools. In FY20-23 we plan to continue to focus on these three complementary aspects
of storage and I/O technologies, adjusting in response to changing needs and bringing these three aspects
together to provide the most capable products for end users. DataLib activities ensure that facilities have
key production tools, including tools to debug I/O problems in ECP codes; enable multiple I/O middleware
packages through Mochi and ROMIO; and will provide high performance implementations of major I/O APIs
in use by ECP codes.

We strongly support ECP management’s shift of focus towards Hierarchical Data Format (HDF). In
response to ECP guidance to prioritize the HDF5 API, we propose to emphasize enhanced HDF5 capabilities
for ECP codes on current and future DOE leadership platforms, strengthening HDF as a core technology for
the future. We propose to shift our focus away from ROMIO and PnetCDF development work to enable
rapid progress on this topic. We will continue to support the use of Mochi tools for development of data
services and I/O middleware, including assisting other ECP AD, ECP ST, and vendor teams in providing the
best storage services possible for ECP applications. We will also continue to work closely with the facilities
to ensure the availability and quality of our tools on critical platforms.

The Darshan I/O characterization toolset is an instrumentation tool deployed at facilities to capture
information on I/O behavior of applications running at scale on production systems. It has become popular
at many DOE facilities and is usually “on by default”. Darshan data dramatically accelerates root cause
analysis of performance problems for applications and can also (in some cases) assist in correctness debugging.
Our work in this project focuses on extending Darshan to new interfaces and ensuring readiness on upcoming
platforms.

The ROMIO and Parallel netCDF (PnetCDF) activities focus on existing standards-based interfaces
in broad use, assisting in performance debugging on new platforms and augmenting existing implementations
to support new storage models (e.g., “burst buffers”). In addition to being used directly by applications,
ROMIO and PnetCDF are also indirectly used in HDF5 and netCDF-4. Our work is ensuring that these
libraries are ready for upcoming platforms and effective for their users (and ready as alternatives if other
libraries fall short).

The Mochi and Mercury software tools are building blocks for user-level distributed HPC services. They
address issues of performance, programmability, and portability in this key facet of data service development.
Mercury is being used by Intel in the development of their DAOS storage service and in other data service
activities, while within ECP the HXHIM and UnifyCR projects also have plans to leverage these tools. In
addition to working with these stakeholders and ensuring performance and correctness on upcoming platforms,
we are also working with ECP application teams to customize data services for their needs (e.g., memoization,
ML model management during learning). These are supporting tools that are not represented as official
products in the ECP ST portfolio.

Key Challenges Each of these subprojects has its own set of challenges. Libraries such as HDF, ROMIO,
and PnetCDF have numerous users from over a decade of production use, yet significant changes are needed
to address the scale, heterogeneity, and latency requirements of upcoming applications. New algorithms and
methods of storing data are required. For Darshan, the challenge is to operate in a transparent manner in
the face of continuing change in build environments, to grow in functionality to cover new interfaces while
remaining “lean” from a resource utilization perspective, and to interoperate with other tools that use similar
methods to hook into applications. Mochi and Mercury are new tools, so the challenge in the context of these
tools is to find users, adapt and improve to better support those users, and gain a foothold in the science
community.

Solution Strategy HDF enhancement. HDF is the most popular high-level API for interacting with storage
in the DOE complex, but users express concerns with the current The HDF Group (THG) implementation.

Exascale Computing Project (ECP) 134 ECP-RPT-ST-0002-2020–Public

We propose to perform an independent assessment and systematic software development activity targeting
the highest possible performance for users of the HDF5 API on ECP platforms of interest.

Directly supporting ECP applications and facilities. We currently have ongoing interactions with E3SM
(PnetCDF), CANDLE (FlameStore/Mochi), and ATDM/Ristra (Quantaii/Mochi), and we routinely work
with the facilities as relates to Darshan deployments. Our work with these teams is targeted on specific
use cases that are inhibiting their use of current pre-exascale systems, such as E3SM output at scale using
the netCDF-4/PIO/PnetCDF preferred code path. We will continue to work with these teams to address
concerns, to maintain portability and performance, and may develop new capabilities if needs arise.

Supporting data services. Mochi framework components are in use in multiple ECP related activities,
including in the UnifyCR and Proactive Data Containers (PDC) in ExaHDF5 (WBS 2.4.x) and in the
Distributed Asynchronous Object Storage and other services in the Intel storage software stack. The VeloC
and DataSpaces teams (WBS 2.4.x and x.y.z as part of CODAR, respectively) are also strongly considering
adoption of our tools. Mochi components enhance the performance, portability, and robustness of these
packages, and our common reliance on Mochi components means that as Mochi improves, so do all these
users.

Integration and Software QA. DataLib has actively pursued integration with the ECP ST software stack
through the development and upstreaming of Spack packages and the development and deployment of
automated testing for DataLib technologies, so we are already well positioned in this aspect of our work.
We anticipate this effort to continue throughout the FY20-23 timeframe, with the addition of pull requests
submitted to THG to upstream HDF5 enhancements and effort applied to address identified issues in our
technologies as appropriate.

Recent Progress STDM12-22: Deliver Darshan/HDF and CAR input, establish calls with Mochi users.
Discussion occurred with ExaHDF team regarding their understanding of interesting HDF access characteristics.
Basic Darshan capabilities for tracking HDF dataset use have been implemented in a (public) branch of
Darshan for inclusion in a future release.

Unify, DataSpaces, and VeloC teams were contacted regarding regular communication. All teams were
interested in a quarterly ”open call” for all Mochi users. The first of these is planned for April and will
be advertised on the mochi-devel mailing list. DataSpaces and VeloC teams were also interested in regular
one-on-one calls. We will be meeting with the VeloC team in person next week to discuss cadence of these.
We have the first one-on-one call with the DataSpaces team on Feb. 14. B. Robey is in touch with Ristra
and ExaFEL.

STDM12-23: Analyze HDF use and improve Mochi services for ECP applications. Characterize per-
formance and overhead of HDF use in specific ECP codes: we have been focusing on the FleCSI synthetic
I/O benchmark developed for Ristra. A number of improvements have been made as a result of this work,
including adjusting to use of collective metadata operations under HDF5, which help performance of this
application use case. This exercise has led us to further consider how to improve how we present the new
HDF5 data that can be captured as a result of our prior work (STDM12-22).

A synthetic benchmark has been developed that stores FleCSI data for Ristra in the HDF format. This
benchmark is being used as a test environment for new output options for Ristra. The code, known as the
flecsi-hdf5proxy, is available in the flecsi-incubator project. Our work in this benchmark has formed the basis
for the Ristra HDF I/O design. Departing from the traditional approach of developing a proxy application
for an already implemented capability, the initial version of the flecsi-hdf5proxy was developed prior to any
implementation within Ristra codes. This allowed rapid design space exploration prior to implementation in
a production code base and a more rapid development cycle in Ristra.

Early in the year, we initiated discussions with the CODAR team building Chimbuko, an effort to create
a provenance and performance analysis service for HPC. Through discussion on their use case, we determined
that a new Mochi microservice was needed. The Sonata microservice has been developed to provide convenient
storage and processing of their JSON record data.

STDM12-24: Improve HDF use in ECP code, deliver report on Mochi use and CAR input. Regarding
HDF performance, a summary was compiled, including some discussion of PnetCDF performance, which is
still critical to E3SM. Additional notes on improving HDF performance can be found in our meeting notes.

Regarding Mochi use, feedback was compiled from our many users into a Mochi Customer Responses
document, available in Jira. Regarding Ristra, the merged HDF proxy is in github as part of the FleCSI

Exascale Computing Project (ECP) 135 ECP-RPT-ST-0002-2020–Public

incubator.
Regarding CAR input, we have gathered initial data from ALCF, NERSC, and OLCF and identified

personnel through which updates can be obtained as we get closer to the next CAR deliverable.
STDM12-25: Deliver design of HDF5 VOL plug-in and improve I/O capabilities for ECP application.

HDF5 VOL design is complete, and we have an initial prototype with which we are performing early
performance testing. The design document and developer notes will be attached to the end of this report for
convenience.

As a reminder, our HDF VOL implementation layers on top of the “native” VOL implementation provided
by HDF. We capture write operations as a log of changes, and currently we persist both the description of
the writes (in our documentation simply the “metadata”, stored in the “metadata table”) and the contents of
the writes (in our documentation the “log data”, stored in the “log dataset”) as HDF datasets. Additionally,
another table (the “offset table”) stores the offsets of specific datasets in the metadata table, allowing one to
skip over unrelated datasets when looking for specific log entries. We’re investigating the storage of metadata
in memory, for performance reasons.

I/O Improvement in E3SM. We have previously extracted an I/O kernel from the E3SM code, and we are
now working on a branch of this code that can write directly into HDF51. As background, the netCDF4
API is missing a key capability to describe I/O to multiple datasets as a single operation, and this limits the
performance of netCDF4 for many scientific codes regardless of the underlying I/O API being used (e.g.,
PnetCDF, HDF). The E3SM team is aware of this deficiency, but to our knowledge there is no plan to address
it at this time. Meanwhile, the HDF Group has been looking at multi-dataset writes of this type, although it
is unclear when the capability might be made part of a production release. Never the less, working around the
netCDF4 deficiencies allows us to isolate HDF performance/API challenges from the higher-level netCDF4
ones, and allows us to better explore our HDF VOL implementation.

I/O Improvement in xRAGE. Many applications use HDF5 to write extremely large single files used for
checkpoint restart and/or data analysis. Even on pre-exascale systems such as Sierra it can be difficult to
achieve high performance (bandwidth) for these workloads. Applications writing single shared files must
carefully align I/O operations to avoid file locking overheads and balance I/O operations across multiple
writers to ensure high performance. To help diagnose issues and optimize I/O in production Sierra applications
the DataLib team has been working closely with LANL scientists to employ Darshan analysis capabilities that
capture more detailed information about how HDF5, MPI-IO and POSIX are being used by the application
and lower level software stacks. LANL has begun using Darshan on Sierra for a variety of applications
including the xRAGE application and have worked with the DataLib team to identify potential bottlenecks
in this and other applications.

Next Steps Our plan for FY21 includes: STDM12-32: Evaluate HDF prototype and build new Darshan
capabilities. We will build a DAOS module and continue evaluation of HDF VOL prototype, adjusting design
in response.

STDM12-33: Hold Mochi boot camp and release HDF VOL prototype. We will hold a Mochi training
session, likely at the Annual Meeting, and we will release the HDF VOL prototype with a Spack package for
others to work with.

STDM12-34: Enhance HDF VOL implementation and evaluate Darshan and Mochi performance. We
will revisit Darshan overheads on flagship platforms to ensure correctness and low-overhead operation, and
we will incorporate new enhancements into the HDF VOL implementation for further evaluation. We will
also perform a performance evaluation of key Mochi use cases on available test hardware.

STDM12-35: Deliver UCX plug-in for Mercury in support of ECP applications and services. We will
provide a tested UCX plug-in for Mercury, tuned for performance on ECP relevant platforms (e.g., Summit
test systems), with appropriate nightly tests.

Exascale Computing Project (ECP) 136 ECP-RPT-ST-0002-2020–Public

4.4.10 WBS 2.3.4.13 ECP/VTK-m

Overview The ECP/VTK-m project is providing the core capabilities to perform scientific visualization
on Exascale architectures. The ECP/VTK-m project fills the critical feature gap of performing visualization
and analysis on processors like graphics-based processors. The results of this project will be delivered in tools
like ParaView, VisIt, and Ascent as well as in stand-alone form. Moreover, these projects are depending on
this ECP effort to be able to make effective use of ECP architectures.

One of the biggest recent changes in high-performance computing is the increasing use of accelerators.
Accelerators contain processing cores that independently are inferior to a core in a typical CPU, but these
cores are replicated and grouped such that their aggregate execution provides a very high computation rate
at a much lower power.

Current and future CPU processors also require much more explicit parallelism. Each successive version
of the hardware packs more cores into each processor, and technologies like hyper threading and vector
operations require even more parallel processing to leverage each core’s full potential.

VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VTK-m
supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme
scale computing by providing abstract models for data and execution that can be applied to a variety of
algorithms across many different processor architectures.

The ECP/VTK-m project is building up the VTK-m codebase with the necessary visualization algorithm
implementations that run across the varied hardware platforms to be leveraged at the Exascale. We will
be working with other ECP projects, such as ALPINE, to integrate the new VTK-m code into production
software to enable visualization on our HPC systems.

Key Challenges The scientific visualization research community has been building scalable HPC algorithms
for over 15 years, and today there are multiple production tools that provide excellent scalability. However,
our current visualization tools are based on a message-passing programming model. More to the point, they
rely on a coarse decomposition with ghost regions to isolate parallel execution [164, 165]. However, this
decomposition works best when each processing element has on the order of a hundred thousand to a million
data cells [166] and is known to break down as we approach the level of concurrency needed on modern
accelerators [167, 168].

DOE has made significant investments in HPC visualization capabilities. For us to feasibly update this
software for the upcoming Exascale machines, we need to be selective on what needs to be updated, and we
need to maximize the code we can continue to use. Regardless, there is a significant amount of software to
be engineered and implemented, so we need to extend our development resources by simplifying algorithm
implementation and providing performance portability across current and future devices.

Solution Strategy The ECP/VTK-m project leverages VTK-m [169] to overcome these key challenges.
VTK-m has a software framework that provides the following critical features.

1. Visualization building blocks: VTK-m contains the common data structures and operations required
for scientific visualization. This base framework simplifies the development of visualization algorithms
[170].

2. Device portability: VTK-m uses the notion of an abstract device adapter, which allows algorithms
written once in VTK-m to run well on many computing architectures. The device adapter is constructed
from a small but versatile set of data parallel primitives, which can be optimized for each platform
[171]. It has been shown that this approach not only simplifies parallel implementations, but also allows
them to work well across many platforms [172, 173, 174]. Within the device adapter we are leveraging
Kokkos [175] to rapidly port to ECP hardware.

3. Flexible integration: VTK-m is designed to integrate well with other software. This is achieved with
flexible data models to capture the structure of applications’ data [176] and array wrappers that can
adapt to target memory layouts [177].

Even with these features provided by VTK-m, we have a lot of work ahead of us to be ready for Exascale.
Our approach is to incrementally add features to VTK-m and expose them in tools like ParaView and VisIt.

Exascale Computing Project (ECP) 137 ECP-RPT-ST-0002-2020–Public

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525. SAND 2020-8674 R

Figure 59: Examples of recent progress in VTK-m include (from left to right)
optimized structured grid contouring, contouring of extended cell types, and
representation of an extruded cell set.

Recent Progress The VTK-m project is organized into many implementation activities. The following
features have been completed in the FY20 fiscal year.

• VTK-m Releases: VTK-m 1.5 was released in October 2019.

• Kokkos: Device adapters in VTK-m can now leverage the Kokkos programming model to more rapidly
port to ECP hardware.

• Improved Contouring: VTK-m now implements the Flying Edges implementation of structured grid
contouring [178]. The contouring in VTK-m, demonstrated in Figure 59, is now measured as one of
the fastest implementations in existence. VTK-m has also contour support for expanded cell types to
support more mesh types, also demonstrated in Figure 59.

• Data Control Thread Safety: The initial implementation of VTK-m assumed that all control
would be on a single thread and all parallelism would be handled internally. However, several VTK-m
customers need to launch GPU algorithms from multiple different threads. The internal management of
array data has been redesigned to safely manage data from multiple control threads.

• Spack Package: Spack [179] is the package manager used to distribute the ECP ST software to the
ECP platforms. The VTK-m package in Spack has been updated to the latest version of VTK-m.

• Random Numbers: Many algorithms rely on pseudo-random numbers. VTK-m now uses Salmon, et
al’s algorithm [180] to provide “random” arrays that allow algorithms to use numbers with random
properties that are correct both within a thread and across threads of execution.

• Extruded Cell Sets: ECP’s XGC simulation code uses an extrusion of a surface mesh for its data
representation as demonstrated in Figure 59. A similar representation is added to VTK-m for zero-copy
data ingestion.

Next Steps Our next efforts include:

• Demonstrate VTK-m on Pre-Exascale Hardware: With pre-exascale hardware available for O21
(Tulip) and A21 (Iris), VTK-m will be demonstrated on these platforms. For FY21 we expect to be able
to compile VTK-m, run the regression tests, and use the benchmarking code to compare performance.

• Support New Compiler Types: VTK-m uses CMake to support cross-platform compilation. Using
CMake with compilers that are not directly supported can be challenging. CMake will be updated for
new compiler types as necessary, and VTK-m’s build system will be similarly updated.

• Resource Management: Add general mechanisms to VTK-m that allow resource management (such
as selecting which GPU to use when multiple GPUs are available on a node). Providing a general
interface prevents code using VTK-m from having to use device-specific API’s to control the resource.

Exascale Computing Project (ECP) 138 ECP-RPT-ST-0002-2020–Public

4.4.11 WBS 2.3.4.14 VeloC: Very Low Overhead Checkpointing System

Overview. The VeloC-SZ project aims to provide VeloC, a high-performance, scalable checkpoint/restart
framework that leverages multi-level checkpointing (the combination of several resilience strategies and
heterogeneous storage) to ensure that ECP applications run to completion with minimal performance
overhead. It delivers a production-ready solution that increases development productivity by reducing the
complexity of having to deal with a heterogeneous storage stack and multiple vendor APIs. VeloC offers
a client library that can be used by the applications to capture local application states, which are then
coordinated and persisted using a resilience engine. VeloC runs the resilience engine asynchronously, which
overlaps a large part of the checkpointing with the application runtime, thereby reducing its overhead. An
overview of the architecture of VeloC is depicted in Figure 60.

VeloC has been released and shows significant lower checkpointing overhead for several ECP applications,
such as HACC, LatticeQCD, EXAALT.

Key Challenges. VeloC faces several key challenges:

I/O bottlenecks: applications typically employ simple checkpoint-restart mechanisms to survive failures
that directly use a parallel file system. With diminishing I/O bandwidth available per core, this leads to high
checkpointing overhead and is not sustainable.

Deep heterogeneous storage: To compensate for diminishing parallel file system I/O bandwidth per
core, the storage stack is becoming increasingly deeper and heterogeneous: node-local NVRAM, burst buffers,
key-value stores, etc. However, the variety of vendors and performance characteristics make it difficult for
application developers to take advantage of it.

Restart-in-place: a majority of failures affect only a small part of the nodes where the job is running.
Therefore, reusing the surviving nodes to restart from the latest checkpoint immediately after a failure is
more efficient than submitting a new job, which may wait in the batch queue.

Portability and robustness: applications need to run on a variety of supercomputing architectures, each
featuring distinct capabilities. Their critical data structures that need to be checkpointed are constantly
growing in size and complexity. Therefore, a flexible checkpointing solution is needed that can adapt to a
variety of scenarios and configurations without sacrificing performance and scalability.

Solution Strategy To address these challenges, VeloC adopts the following principles:

Multi-level checkpointing: is based on the idea that a majority of failures can be mitigated without
involving the parallel file system: node-local checkpoints can be used to recover from software bugs, repli-
cation/erasure coding can be used to recover from most combinations of node failures. This reduces the
frequency of checkpointing to the parallel file system and therefore the I/O bottlenecks.

Asynchronous mode: once a node-local checkpoint has been written, applications do not need to wait
for replication, erasure coding or writes to the parallel file system: these can be applied in the background,
while the application continues running. However, in this case, it is important to minimize interference with
the application execution.

Transparent use of heterogeneous storage: we developed several techniques that can leverage a variety
of local storage (in-memory file systems, flash storage) and external storage (burst buffers, key-value stores,
parallel file systems) options. These techniques select the best available storage options, tune them with the
optimal parameters and leverage any vendor-specific API if needed to transfer data.

Job scheduler integration: to implement restart-in-place, we have developed a series of scripts that
interact with a variety of job schedulers to run jobs with spare nodes, continue execution on failures, restart
on the surviving nodes and spares using the fastest possible recovery strategy (which ideally avoids reading
checkpoints from the parallel file system). This is transparent to the users.

Declarative API and automated serialization: we offer a simple API that enables users to either
manually capture checkpoints into files or to define memory regions that are automatically serialized into
checkpoint files.

Exascale Computing Project (ECP) 139 ECP-RPT-ST-0002-2020–Public

Modular design: applications link with a client library that is responsible to manage local checkpoints,
while a separate engine is responsible to employ the rest of the resilience

strategies as plugable modules. This simplifies the implementation of the asynchronous mode, it en-
ables users the flexibility to choose any combination of resilience strategies, as well as, to customize their
checkpointing pipeline (e.g., add new post-processing operations such as analytics or compression).

Recent Progress We met and closely collaborated with several ECP application teams in an effort to
address their checkpointing needs. Most of our current efforts involve the HACC, LatticeQCD, and EXAALT
teams. Starting from our previous efforts to isolate the checkpointing code into an optional plugin within
the application (which is notably the case of HACC, where we integrated VeloC as a CosmoTools plugin),
we developed an automated deployment for the components of VeloC, which has two advantages: (1) it
eliminates the need to change the application deployment scripts to launch the active backend; (2) it enables
the application to decide the VeloC configuration dynamically at runtime.

Figure 60: VeloC: Architecture

Furthermore, we added several new capabilities.
First, we have added a checksumming module that
verifies the integrity of the checkpoints This is done
asynchronously to minimize the overheads of using this
capability. Second, we have refactored the control plane
that facilitates the communication between the VeloC
clients and the active backends to include two new alter-
natives: (1) a lightweight communication protocol based
on UNIX sockets for the case when the active backend
is co-deployed with the VeloC clients; an RPC-based
communication protocol based on Mercury/Thallium
that enables the active backend to be deployed on sep-
arate nodes. Both alternatives complement the existing
default control plane implemented using POSIX shared
memory.

In addition, we have added several new features that
facilitate better integration with the ECP ecosystem.
In addition to continuous integration based on Travis
(linked to our public GitHub repository), we designed
and developed a test suite for VeloC that verifies the
correctness in a multi-node setup on the ECP testbeds

using the continuous integration platform provided by ECP (which is configured to mirror the GitHub
repository). We are also providing a Spack installation package that is part of the OpenHPC distribution.

We also started several exploratory directions that resulted in several research publications. Notably,
we explored how to optimize the checkpoint interval for our multi-level checkpointing strategies used in
VeloC. In this context, we devised a technique to reduce the simulation cost of various failure scenarios
for a wide range of parameters using machine learning [181]. Furthermore, we also developed specialized
checkpointing approaches for deep learning applications. In particular, we explored how to take advantage of
specific properties (e.g. multiple model replicas in the case of data-parallel training) in order to reduce the
asynchronous checkpointing overhead. Our work DeepFreeze [182] illustrates such techniques based on the
idea of augmenting the execution graph with fine-grain tensor copy operations, which then be asynchronously
flushed to stable storage. We plan to integrate such approaches with ECP CANDLE, which relies primarily
on deep learning.

Next Steps We are working towards several goals: (1) providing a set of C++ client interfaces as well as
automated serialization support for common C++ data structures (notably from the STL); (2) investigate
and apply mitigation mechanisms for features that are missing or perform suboptimally (notably multiple
concurrent MPI instances); (3) continue hardening the integration with existing ECP applications and
automated testing infrastructure. In parallel, we will continue to collaborate with the ECP application teams
to address new requirements should they arise.

Exascale Computing Project (ECP) 140 ECP-RPT-ST-0002-2020–Public

4.4.12 WBS 2.3.4.14 ECP SZ: Fast, Effective, Parallel Error-bounded Exascale Lossy Com-
pression for Scientific Data

Overview Extreme scale simulations and experiments are generating more data than can be stored,
communicated and analyzed. Error-bounded lossy compressor is critical because it can get a very high
compression ratio while still respecting data fidelity based on user’s requirement on compression errors.

The VeloC-SZ project is extending and improving the SZ error-bounded lossy compressor for structured
and unstructured scientific datasets. SZ offers an excellent compression ratio as well as very low distortion
and compression time. Further work is essential, however, to improve our SZ lossy compressor for ECP
scientific datasets, while ensuring that user-set error controls are respected. Specifically, we are: (i) optimizing
SZ compression ratios, accuracy and speed based on end-user needs (ii) refactoring SZ in C++ to support a
composable compression framework and all data types used in ECP applications, (iii) integrating SZ in ECP
client applications, (iv) developing the GPU version of SZ which supports multiple supercomputers with
different architectures (such as Aurora, Frontier and Summit), and (v) improving robustness and testability.
We are working with multiple ECP application teams, including ExaSky cosmology teams (HACC), molecular
dynamics simulations groups (EXAALT), x-ray laser imaging experimentalists (ExaFEL), and computational
chemists (NWChem-X, GAMESS) to optimize SZ for their applications and to harden SZ.

Key Challenges SZ faces several key challenges:

• Parameter tuning: One challenge in optimizing lossy compression for scientific applications is the
large diversity of scientific data, dimensions, scales, and dynamic data changes in both space and time.
Each application requires specific parameters tuning and in some cases, a specific compression pipeline,
which is non-trivial to implement.

• Implementation & optimization over GPU: A second challenge is the sophisticated design in
different stages of the SZ (such as data prediction, Huffman tree construction, Huffman encoding),
which makes the development of efficient GPU kernels non-trivial.

• Diverse integration schemes: A third challenge is the diversity of the integration schemes for the
different ECP client applications: HACC integrates SZ in a proprietary I/O library (GIO), Exafel
integrates SZ directly in the LCLS data processing pipeline. GAMESS integrates SZ in the application
directly replacing some code sections. NWChem-X integrates SZ for checkpoint/restart.

• Portable support for GPU: Optimization of SZ for Aurora and Frontier requires writing portable
accelerator codes that are non trivial for complex compression pipeline.

• Improve development robustness and testability: The SZ testing infrastructure (unit test,
correctness test, performance test, regression test, continuous integration) will need to be adapted and
its performance optimized for the new C++ implementation. A template based approach must be used
to improve robustness, debugging and testability.

Solution Strategy As for the first challenge, we keep a close communication with ECP application users
to understand their specific demands on the lossy compression. For instance, we have a weekly meeting with
ECP application teams to discuss the required error bounds, compression speed and quality and integration.
We also exploit an adaptive prediction method to optimize the compression quality for diverse datasets.

As for the second challenge, we keep exploring the new strategies to improve the GPU kernel performance
for different stages of SZ. This requires in-depth understanding of SZ compression principles, the pros and
cons of each step and thorough knowledge about efficient GPU kernel implementation.

As for the third challenge, we refactor SZ in C++, starting from the current C version. This refactoring
is the perfect occasion to implement a new more modular design of SZ, capable of integrating more stages in
the compression pipeline and of selecting compression stages based on specific application data features.

Concerning the fourth challenge, we are in contact with ALCF and OLCF as well as with vendors to
access simulators and early systems that will help to optimize the accelerator implementations. The portable
GPU implementation of SZ relies on Kokkos.

Exascale Computing Project (ECP) 141 ECP-RPT-ST-0002-2020–Public

-10
-6

-4
-3

-4
-2

1
-1

3
4

3
4

-1
3

4
10 0

0
2

5
7

1

0
2

5
-2

1
-3

-1
-4

3

3
2

5
- 0

- 0
- 2

- 5
- 7

- 1

- 0
- 2

- 5
-2

1
-1

4
3

4

3
4

10

root

1

1

0

1

0

0 0

1

1

1 0

0

1

0

0

1 0

0

0

…

fixed-length representation

deflated unused in deflating

•
•
•

t0

t1

t2

tn

concatenating
to dense format

msb lsb

bitwidth Hu�man code
quant.code bitwidth ... Huff-code

508 00000110 ... 00001010
509 00000101 ... 00000100
510 00000011 ... 00000100
511 00000010 ... 00000001
512 00000010 ... 00000011
513 00000011 ... 00000101
514 00000011 ... 00000000
515 00000110 ... 00001100

range freq.
|----------------+ 442-- 512 76%
|-----+ 512-- 582 24%
|+ 582-- 652 0.14%
|+ 652-- 722 0.073%
|+ 722-- 793 0.026%
|+ 793-- 863 0.0095%
|+ 863-- 933 0.0021%
|+ 933 --1024 0.00014%

floating-point representation
original data

in units of eb
prequantization (no raw)

on prequantization set
`-prediction results in unit weight
prediction (no raw)

in units of eb (unchanged)
postquantization (no raw)

histograming build Hu�man codebook
and canonize

memcpy fixed-length
Hu�man code

deflating Hu�man codes

D
ual-Q

uantization
and

Prediction
C
ustom

ized
H
uffm

an
Encoding

Figure 61: cuSZ: Design Overview

Concerning the robustness and testability, we are continuously developing and improving it. We will need
to adapt it for C++ as part of the SZ refactoring. We will use ECP testing environment when it becomes
available. We also often discuss potential solutions with application teams when needed.

Recent Progress We have created an official website (http://szcompressor.org) to organize different
versions/products of SZ (such as CPU version, GPU version). The current flagship products include CPU
version of SZ (the classic C version), composable version of SZ (a.k.a., SZ3 in C++), CUDA version of SZ,
and Kokkos version of SZ. They are all open source libraries under the BSD3 license.

The CPU version of SZ is the classic state-of-the-art version (a.k.a., SZ 2), whose latest version number is
2.1.10. We keep improving SZ 2 to fit user’s diverse requirements from different applications. For example, the
new features in 2.1.10 include: the support of user-parameters in python binding particularly for EXAFEL,
support for compressing data according to the highest dimension for the specific 3D datasets with high
smoothness on the highest dimension; support for fix-value-range; support for printing the statistics related
to compression for a better understanding of the compressibility.

SZ 3 breaks down different stages of SZ to form a loosely-coupled model, such that the users can
construct a new compressor by customizing each compression step conveniently. By leveraging SZ 3, the new
compression method (published in HPDC2020) leverages a more advanced prediction method by combining
the second-order Lorenzo and second-order regression. The compression ratio can be improved by 51% with
the same data distortion level (PSNR) for the ECP QMCPack application dataset.

We also significantly improved the GPU kernel performance of SZ. We have released the cuda-based
SZ (cuSZ) 0.1.1 and tested its performance on V100 GPU (adopted by Summit). The cuSZ is optimized
on each compression stage in the SZ framework, including the data prediction, quantization, and Huffman
encoding. Specifically, we developed a dual-quantization scheme to entirely remove the data dependency
in the prediction step of SZ such that this step can be performed efficiently on GPUs. We developed an
efficient customized Huffman coding for the SZ compressor on GPUs. We implemented cuSZ using CUDA and
optimized its performance by improving the utilization of GPU memory bandwidth. Figure 61 presents the
design overview, and the technical details can be found in our paper published in PACT2020. Experiments
on V100 GPU show that the overall compression performance reaches up to 37GB/s based on both HACC
and NYX simulation datasets.

We also developed the first prototype of kSZ (short for kokkosSZ), and compared its performance to
cuSZ (the CUDA version of SZ) on Summit with CUDA GPUs (i.e., NVIDIA Tesla V100) at OCLF. Kokkos
provides a good abstraction for both parallel execution of code and data management, which can be used to
support portable implementation across different accelerator technologies. The kSZ exhibits performance
very similar (∼1% difference) to cuSZ based in our experiments on Summit.

Next Steps Our next efforts are: (1) Improve compression quality and performance for both cuSZ and
kSZ, as well as their stability, (2) keep refactoring SZ in C++ (the first version will be released in Jan, 2021),
(3) keep working on the compression quality improvement and integration of SZ in more ECP applications
such as EXAALT, and (4) evaluate the portable GPU version of SZ on more ECP platforms.

Exascale Computing Project (ECP) 142 ECP-RPT-ST-0002-2020–Public

4.4.13 WBS 2.3.4.15 ExaHDF5

Overview Hierarchical Data Format version 5 (HDF5) is the most popular high-level I/O library for
scientific applications to write and read data files. The HDF Group released the first version of HDF5 in
1998 and over the past 20 years, it has been used by numerous applications not only in scientific domains
but also in finance, space technologies, and many other business and engineering fields. HDF5 is the most
used library for performing parallel I/O on existing HPC systems at the DOE supercomputing facilities.
NASA gives HDF5 software the highest technology readiness level (TRL 9), which is given to actual systems
“flight-proven” through successful mission operations.

In this project, we have developed various HDF5 features are in development to address efficiency and
other challenges posed by data management and parallel I/O on exascale architectures. The ExaIO-HDF5
team is productizing features and techniques that have been previously prototyped, exploring optimization
strategies on upcoming architectures, maintaining and optimizing existing HDF5 features tailored for ECP
applications. Along with supporting and optimizing I/O performance of HDF5 applications, new features in
this project include transparent data caching in the multi-level storage hierarchy, topology-aware I/O related
data movement in exascale systems, full single-writer / multi-reader (SWMR) for workflows, asynchronous
I/O, querying data and metadata, and scalable sub-file I/O.

Many of the funded exascale applications and co-design centers require HDF5 for their I/O, and enhancing
the HDF5 software to handle the unique challenges of exascale architectures will play an instrumental role in
the success of the ECP. For instance, AMReX, the AMR co-design center, is using HDF5 for I/O, and all the
ECP applications that are collaborating with AMReX will benefit from improvements to HDF5. The full
SWMR feature will support the needs of ExaFEL’s workflow in appending data incrementally. The virtual
Object Layer (VOL) and interoperability features with netCDF and ADIOS data open up the rich HDF5
data management interface to science data stored in other file formats. The project will be releasing these
new features in HDF5 for broad deployment on HPC systems. Focusing on the challenges of exascale I/O,
technologies will be developed based on the massively parallel storage hierarchies that are being built into
pre-exascale systems. The enhanced HDF5 software will achieve efficient parallel I/O on exascale systems in
ways that will impact a large number of DOE science as well as industrial applications.

Key Challenges

There are challenges in developing I/O strategies for using a hierarchy of storage devices and topology of
compute nodes efficiently, developing interoperability features with other file formats, and integrating existing
prototyped features into production releases.

Efficient use of hierarchical storage and topology. Data generation (e.g., by simulations) and consumption
(such as for analysis) in exascale applications may span various storage and memory tiers, including near-
memory NVRAM, SSD-based burst buffers, fast disk, campaign storage, and archival storage. Effective
support for caching and prefetching data based on the needs of the application is critical for scalable
performance. Also, support for higher bandwidth transfers and lower message latency interconnects in
supercomputers is becoming more complex, in terms of both topologies as well as routing policies. I/O
libraries need to fully account for this topology in order to maximize I/O performance, and current I/O
mechanisms fail to exploit the system topology efficiently.

Asynchronous I/O : Asynchronous I/O allows an application to overlap I/O with other operations. When
an application properly combines asynchronous I/O with nonblocking communication to overlap those
operations with its calculation, it can fully utilize an entire HPC system, leaving few or no system components
idle. Adding asynchronous I/O to an application’s existing ability to perform nonblocking communication is
a necessary aspect of maximizing the utilization of valuable exascale computing resources.

Solution Strategy Utilizing complex compute and storage hardware. To take advantage of multiple levels
of faster storage layers between memory and medium- to long-term storage, we developed Data Elevator.
The Data Elevator library intercepts HDF5 file access calls and redirects them to intermediate faster caching
storage layers, which future application reads or writes will then access. Data Elevator was extensively tested
on burst buffers that were shared by all compute nodes. We are currently testing it with node-local burst
buffer layer using UnifyFS.

Exascale Computing Project (ECP) 143 ECP-RPT-ST-0002-2020–Public

Taking the usage of multiple levels of memory and storage to the next level, we have designed a new virtual
object layer (VOL) connector, called “Cache VOL”. With the usage of VOL infrastructure in HDF5, Data
Elevator as well as Cache VOL intercept data read and write calls and move the data transparently between
source and destination storage levels. As a result, applications can take advantage of these VOL connectors
without modifying their source code and avoid placing a burden on users to move the data explicitly to and
from intermediate caching storage layers.

Start

Fopen

Async Init Start

Application
thread

Background
thread

Async Task
Queue

Create, copy, insert

Dcreate

Dwrite

Fclose

End

Async Finalize
End

Async Task
Execution

App status
check

Main
thread

idle

No

Yes

Figure 62: An overview of asynchronous I/O as a HDF5
VOL connector

Asynchronous I/O Virtual Object Layer (VOL)
Connector : Implementation of asynchronous I/O
operations can be achieved in different ways. Since
the native asynchronous interface offered by most
existing operating systems and low-level I/O frame-
works (POSIX AIO and MPI-IO) does not include
all file operations, we chose to perform I/O oper-
ations in a background thread. With the recent
increase in the number of available CPU threads
per processor, it is now possible to use a thread to
execute asynchronous operations from the core that
the application is running on without a significant
impact on the application’s performance. As shown
in Figure 62, when an application enables asyn-
chronous I/O, a background thread is started. Each
I/O operation is intercepted, and an asynchronous
task is created, storing all the relevant information
before inserting it into the asynchronous task queue.
The background thread monitors the running state
of the application, and only starts executing the
accumulated tasks when it detects the application
is idle or performing non-I/O operations. When all
I/O operations have completed and the application
issues the close file call, the asynchronous I/O related resources, as well as the background thread itself, are
freed.

Recent Progress Integration of the VOL framework into the HDF5 develop branch. The VOL feature
branch has been integrated into the main HDF5 development branch. Earlier in the project, an older VOL
branch was brought in sync with the latest development branch, but this has been enhanced to allow stacking
multiple VOL connectors. The development branch with the VOL feature has been tested with various VOL
connector codes. A pass-through VOL connector also has been developed to test the stack-ability of multiple
VOL connectors.

Developed methods to use multi-level storage. The project team has developed a prototype implementation
of using memory and storage layers for caching data. The team previously demonstrated that using the burst
buffers on Cori, the Data Elevator achieves 1.2–3X performance improvement over a highly tuned HDF5 code
in reading data. Performance evaluation included representative I/O of convolution on climate modeling
data, gradient computation of a plasma physics data, and vorticity computation of a combustion dataset.
The team extended testing Data Elevator to use UnifyFS, a system for managing node-local storage, to take
advantage of this storage layer. The team also developed “Cache VOL” connector for take advantage of
RAM, node-local cache or any other layer between application buffer and longer-term storage.

Supporting ECP application I/O The ExaIO-HDF5 team has been working with various applications in
the ECP portfolio. Applications in the AMReX co-design center have seen some performance issues, mainly
because of less optimal configurations, such as using too few file system servers (e.g. Lustre Object Storage
Targets or OSTs), producing a large number of metadata requests, using MPI collective buffering that was
observing poor performance on NERSC’s Cori. By simply changing these configurations, HDF5 achieved
higher performance in writing files. The team also tuned HDF5’s I/O performance by more than 10X by
setting the alignment parameter that matches the block size of the GPFS file system on Summit at OLCF.

Asynchronous I/O The ExaHDF5 team evaluated the asynchronous I/O VOL connector on Cori at NERSC

Exascale Computing Project (ECP) 144 ECP-RPT-ST-0002-2020–Public

and on Summit at OLCF with several I/O kernels and ECP application I/O benchmarks. Experimental results
show that asynchronous I/O can effectively mask the I/O cost when the application is idle or performing
non-I/O operations.

Next Steps The ExaIO-HDF5 team is developing subfiling for reducing locking and contention on parallel
file systems, fine-tuning asynchronous I/O and the Cache VOL connectors for caching and prefetching, and
supporting ECP AD and ST teams and facilities in improving the overall performance of HDF5.

4.4.14 WBS 2.3.4.15 UnifyCR – A file system for burst buffers

Overview The view of storage systems for HPC is changing rapidly. Traditional, single-target parallel file
systems have reached their cost-effective scaling limit. As a result, hierarchical storage systems are being
designed and installed for our nation’s next-generation leadership class systems. Current designs employ
“burst buffers” as a fast cache between compute nodes and the parallel file system for data needed by running
jobs and workflows. Burst buffers are implemented as compute-node local storage (e.g., SSD) or as shared
intermediate storage (e.g., SSD on shared burst buffer nodes).

Because burst buffers present an additional complexity to effectively using supercomputers, we developed
UnifyFS, a user-level file system, highly-specialized for shared file access on HPC systems with distributed
burst buffers. UnifyFS addresses a major usability factor of current and future systems, because it enables
applications to gain the performance advantages from distributed burst buffers while providing ease of use
similar to that of a parallel file system. To use UnifyFS from within an MPI application, one only needs
to change the paths for files that the application uses from the parallel file system to the mount point for
UnifyFS, /unifyfs. Then the application performs I/O as it normally would, using POSIX I/O or a high
level I/O library, e.g., HDF5 or MPI-IO. The UnifyFS library intercepts all I/O operations and manages the
file data locally on the compute nodes with high performance.

Figure 63: Using UnifyFS Using UnifyFS from an MPI application is as
easy as using the parallel file system. Simply change the file path to point to the
UnifyFS mount point /unifyfs, and then perform I/O as normal.

Key Challenges The hierarchical storage of current and future HPC systems includes compute-node local
SSDs as burst buffers. This distributed burst buffer design promises fast, scalable I/O performance because
burst buffer bandwidth and capacity will automatically scale with the compute resources used by jobs and
workflows. However, a major concern for this distributed design is how to present the disjoint storage devices
as a single storage location to applications that use shared files. The primary issue is that when concurrent
processes on different compute nodes perform I/O operations, e.g., writes, to a shared file, the data for the
file are scattered across the separate compute-node local burst buffers instead of being stored in a single
location. Consequently, if a process wants to access bytes from the shared file that exist in the burst buffer
of a different compute node, that process needs to somehow track or look up the information for locating
and retrieving those bytes. Additionally, there is no common interface across vendors for accessing remote

Exascale Computing Project (ECP) 145 ECP-RPT-ST-0002-2020–Public

burst buffers, so code for cross-node file sharing will not be easily portable across multiple DOE systems with
different burst buffer architectures, further increasing programming complexity to support shared files.

For the reasons outlined above, it is clear that without software support for distributed burst buffers,
applications will have major difficulties utilizing these resources.

Figure 64: UnifyFS Overview. Users can give commands in their batch
scripts to launch UnifyFS within their allocation. UnifyFS works transparently
with POSIX I/O, common I/O libraries, and VeloC. Once file operations are
intercepted by UnifyFS, they are handled with specialized optimizations to ensure
high performance.

Solution Strategy To address this concern, we have developed UnifyFS, a user-level file system, highly-
specialized for shared file access on HPC systems with distributed burst buffers. In Figure 64, we show a high
level schematic of how UnifyFS works. Users load UnifyFS into their jobs from their batch scripts. Once
UnifyFS is instantiated, user applications can read and write shared files to the mount point just like they
would the parallel file system. File operations to the UnifyFS mount point will be intercepted and handled
with specialized optimizations that will deliver high I/O performance.

Because bulk-synchronous I/O dominates the I/O traffic most HPC systems, we target our approach
at those workloads. Examples of bulk-synchronous I/O include checkpoint/restart and periodic output
dumps by applications. Thus, UnifyFS addresses a major usability factor of current and future systems.
We designed UnifyFS such that it transparently intercepts I/O calls, so it will integrate cleanly with other
software including I/O and checkpoint/restart libraries. Additionally, because UnifyFS is tailored for HPC
systems and workloads, it can deliver high performance.

Recent Progress Recently, the UnifyFS team has focused on support for I/O libraries and on read
performance. For I/O libraries, we evaluated and improved support for HDF5 and MPI-IO. We rigorously
tested UnifyFS with extensive test suites from the two I/O libraries and uncovered and corrected numerous
bugs and issues. We also performed a complete overhaul of our metadata infrastructure to improve read
performance. With our old infrastructure, read performance was limited by the need to look up data
locations in a distributed fashion. Now, most data lookups can be performed locally, resulting in orders
of magnitude improvement in read performance. Our source code for UnifyFS is available on GitHub at
https://github.com/LLNL/UnifyFS.

Next Steps For our next year’s effort, we are focused on delivering an implementation of our UnifyFS
API that can be used by high level I/O libraries for improved performance. We will also turn our attention
to portability to pre-exascale platforms. Additionally, we will continue to improve our support for ECP
collaborator software including: I/O libraries HDF5, MPI-IO, PnetCDF, and ADIOS; improving VeloC; and
targeting integration with ECP applications such as E3SM, GEOS, and Chombo.

Exascale Computing Project (ECP) 146 ECP-RPT-ST-0002-2020–Public

https://github.com/LLNL/UnifyFS

4.4.15 WBS 2.3.4.16 ALPINE

Overview ECP ALPINE/zfp will deliver in situ visualization and analysis infrastructure and algorithms
along with lossy compression for floating point arrays to ECP Applications.

ALPINE infrastructure developers come from the ParaView [183, 184] and VisIt [185] teams and ALPINE
solutions will deliver in situ DAV functionality in those tools, as well as through Ascent [186], a new in situ
infrastructure framework that focuses on flyweight processing. ALPINE focuses on four major activities:

1. Deliver Exascale visualization and analysis algorithms that will be critical for ECP Applications as the
dominant analysis paradigm shifts from post hoc (post-processing) to in situ (processing data in a code
as it is generated).

2. Deliver an Exascale-capable infrastructure for the development of in situ algorithms and deployment
into existing applications, libraries, and tools.

3. Engage with ECP Applications to integrate our algorithms and infrastructure into their software.

4. Engage with ECP Software Technologies to integrate their Exascale software into our infrastructure.

Key Challenges Many high performance simulation codes are using post hoc processing. Given Exascale
I/O and storage constraints, in situ processing will be necessary. In situ data analysis and visualization
selects, analyzes, reduces, and generates extracts from scientific simulation results during the simulation runs
to overcome bandwidth and storage bottlenecks associated with writing out full simulation results to disk.
The ALPINE team is addressing two problems related to Exascale processing — (1) delivering infrastructure
and (2) delivering performant in situ algorithms. The challenge is that our existing infrastructure tools need
to be made Exascale-ready in order to achieve performance within simulation codes’ time budgets, support
many-core architectures, scale to massive concurrency, and leverage deep memory hierarchies. The challenge
for in situ algorithms is to apply in situ processing effectively without a human being in the loop. This means
that we must have adaptive approaches to automate saving the correct visualizations and data extracts.

Solution Strategy A major strategy for our team is to leverage existing, successful software, ParaView
and its in situ Catalyst [187] library and VisIt, and then to integrate and augment them with ALPINE data
and analysis capabilities to address the challenges of Exascale. Both software projects represent long-term
DOE investments, and they are the two dominant software packages for large-scale visualization and analysis
within the DOE Office of Science (SC) and the DOE National Nuclear Security Agency (NNSA). Our VisIt
team is also developing an additional in situ framework, Ascent. Ascent is a “flyweight” solution, meaning
that it is focused on a streamlined API, minimal memory footprint, and small binary size. Our solution
strategy is two-fold, in response to our two major challenges: infrastructure and algorithms.

For infrastructure, we have developed a layer on top of the VTK-m library for ALPINE algorithms. This
layer is where all ALPINE algorithms will be implemented, and it is deployed in ParaView/Catalyst, VisIt,
and Ascent. Thus all development effort by ALPINE will be available in all of our tools and by leveraging
VTK-m, we will be addressing issues with many-core architectures.

ALPINE is developing a suite of in situ algorithms designed to address I/O and data output constraints
and enable scientific discovery. These algorithms include:

Topological analysis can be used to detect features in the data and adaptively steer visualizations with no
human in the loop. For example, contour trees can identify the most significant isosurfaces in complex
simulations and then the resulting visualizations can use these isosurfaces [188].

Adaptive sampling can be used to guide visualizations and extracts to the most important parts of the
simulation, significantly reducing I/O [189, 190, 191].

Statistical feature detection models data using distribution-based approaches and statistical similarity
measures to identify and isolate features of interest [192, 193]. Significant data reduction is possible by
only saving the statistical representations of the data. Figure 65 illustrates the use of the statistical
feature detection approach to identifying bubbles in situ in an MFiX-Exa simulation.

Task-based feature extraction uses segmented merge trees to encode a wide range of threshold based
features. An embedded domain specific language (EDSL) can describe algorithms using a task graph
abstraction [194, 195] and execute it using different runtimes (e.g., MPI, Charm++, Legion).

Exascale Computing Project (ECP) 147 ECP-RPT-ST-0002-2020–Public

Optimal Viewpoint Optimal viewpoint metrics can be used to automate visualization decisions while
running in situ. The initial algorithm implementation will choose the best camera placement for a
scene, minimizing visualizations written to disk [196, 197].

Lagrangian analysis of vector flow allows more efficient and complete tracking of flow. It can save vector
field data with higher accuracy and less storage than the traditional approaches [198, 199, 200].

Recent Progress During this past year, ALPINE has made considerable progress in core functionality
in infrastructure and algorithms, and in creating a robust software stack to meet exascale data and viz
needs. ALPINE rolled out continuous integration for ParaView and Ascent, improving the Spack build
systems. Documentation has been rolled out for algorithms (https://alpine-dav.readthedocs.io/en/latest/)
and algorithm teams have added robust unit tests. ALPINE team members have ported ParaView and VisIt
to Summit, built Ascent on Iris and are working to port core ALPINE functionality to Tulip. ALPINE is
working closely with the VTK-m team to ensure cross-platform portability and the current set of algorithms
has been ported to or prototyped in VTK-m.

ParaView utilized the Ascent python extract feature to add in situ visualization in Ascent via ParaView
and redesigned the Catalyst in situ library for greater ease of use. As more simulations have adapted in situ
approaches, infrastructure integration has shifted from the domain of a small set of VTK-cognizant developers
to application scientists who may not have experience with the VTK data model. The new Catalyst adaptor
leverages Ascent’s Conduit API to describe data and provides schema to convert Conduit mesh descriptions
to VTK data objects.

New functionality in Ascent includes Jupyter notebook integration and new derived field quantities,
enabling simulations instrumented with Ascent to connect to Jupyter and simulation users to interact with
their data in situ using Jupyter Notebooks. Building on its existing query system, Ascent added a production-
oriented in situ derived field system leveraging just-in-time (JIT) compilation to target heterogeneous HPC
architectures. Ascent’s new derived quantities include topological functions, gradients, and basic math
functions.

Algorithms have focused on providing new functionality and integration with clients has continued apace.
The Ascent < − > ExaSky:Nyx integration pipeline has been upgraded to fully run on the GPU. A filter has
been developed to allow in situ extraction of visualization slices for Nyx. Two sampling algorithms are now
available within Ascent. The initial version uses scalar field values to assign importance to regions of the
data while the upgraded algorithm uses both scalar fields and gradient magnitudes.

The Ascent < − > PeleC integration has expanded to include ExaLearn. The teams are jointly developing
a workflow for tensor-based in situ anomaly detection in high-fidelity combustion Direct Numerical Simulations
(DNS). ExaLearn tensor kernels are integrated into the Pele combustion application via Ascent. This workflow
has been run on the Summit GPUs for Ascent, ExaLearn, and PeleC and current effort is focusing on the
development of specific science use cases.

ALPINE and MFiX-Exa teams are collaborating on bubble finding with the statistical feature detection
algorithm and a Catalyst integration. An initial C++ implementation of the statistical feature detection
algorithm was integrated directly into the MFiX-Exa simulation to extract bubbles in situ with greater
temporal resolution and a factor of 300 in data reduction. A pipeline consisting of the in situ bubble extraction
and post hoc Cinema workflow enables interactive exploration of bubble dynamics, Figure 65. The Kitware
team recently finished the Catalyst integration into MFiX-Exa while the algorithm team finished an updated
VTK-m version. These are currently being merged for testing on Summit’s GPU.

The contour tree algorithm recently completed an upgrade and VTK-m port for its distributed parallel
version and will circle back to its integration with WarpX. An Ascent < − > NekRS integration has been
demonstrated on Iris’ CPUs and this effort is now looking at science use cases and in situ analysis needs.
ALPINE and ExaWind have recently prototyped an Ascent < − > AMR:Wind integration and the teams
are assessing in situ analysis approaches.

Next Steps Plans for FY21-23 will continue the focus on integration and delivery to ECP applications.
The emphasis will shift to porting the team’s software products to early hardware and performance studies
relevant to ECP applications. The team will also continue outreach and prototyping integrations with ECP
application codes in order to facilitate full integration in later years.

Exascale Computing Project (ECP) 148 ECP-RPT-ST-0002-2020–Public

Figure 65: The ALPINE statistical feature detection algorithm is used to
identify bubbles in situ in an MFiX-Exa fluidized bed simulation. The raw
particle data is converted to a particle density field. A threshold is applied to
the density field to create a feature similarity field, separating the bubbles from
uninteresting regions. Saving only the statistical representation allows greater
temporal resolution while significantly reducing output data size. A preliminary
study shows a factor of 300 reduction in data size compared to the raw particle
fields. The statistical bubble representation becomes the input to a post hoc
Cinema-based workflow to track bubbles and explore bubble dynamics.

4.4.16 WBS 2.3.4.16 ZFP: Compressed Floating-Point Arrays

Overview One of the primary challenges for Exascale computing is overcoming the performance cost of
data movement. Far more data is being generated than can reasonably be stored to disk and later analyzed
without some form of data reduction. Moreover, with deepening memory hierarchies and dwindling per-core
memory bandwidth due to increasing parallelism, even on-node data motion between RAM and registers
makes for a significant performance bottleneck and primary source of power consumption.

zfp is a floating-point array primitive that mitigates this problem using very high-speed, lossy (but
optionally error-bounded) compression to significantly reduce data volumes. zfp reduces I/O time and
off-line storage requirements by 1–2 orders of magnitude depending on accuracy requirements, as dictated
by user-set error tolerances. Unique among data compressors, zfp also supports constant-time read/write
random access to individual array elements from compressed storage. zfp’s compressed arrays can often
replace conventional arrays in existing applications with minimal code changes. This allows the user to
store tables of floating-point data in compressed form that otherwise would not fit in memory, either using
a desired memory footprint or a prescribed level of accuracy. When used in numerical computations, zfp
arrays provide a fine-grained knob on precision while achieving accuracy comparable to IEEE floating point
at half the storage, reducing both memory usage and bandwidth.

This project is extending zfp to make it more readily usable in an Exascale computing setting by
parallelizing it on both the CPU and GPU while ensuring thread safety; by providing bindings for several
programming languages (C, C++, Fortran, Python); by adding new functionality, e.g., for unstructured data
and spatially adaptive compressed arrays; by hardening the software and adopting best practices for software
development; and by integrating zfp with a variety of ECP applications, I/O libraries, and visualization and
data analysis tools.

Key Challenges There are several challenges to overcome on this project with respect to implementing
compressed floating-point arrays:

• Data dependencies. Compression by its very nature removes redundancies, often by deriving
information from what has already been (de)compressed and learned about the data. Such data
dependencies can usually be resolved only by traversing the data in sequence, thus complicating random
access and parallelism.

• Random access. For inline compression, on-demand random access to localized pieces of data is

Exascale Computing Project (ECP) 149 ECP-RPT-ST-0002-2020–Public

essential. However, compression usually represents large fixed-length records using variable-length
storage, which complicates random access and indexing.

• Parallelism. Manycore architectures allow for massively concurrent execution over millions or billions
of array elements. Yet compression is usually a process of reducing such multidimensional arrays to a
single-dimensional sequence of bits, which requires considerable coordination among parallel threads of
execution.

• Unstructured data. Unstructured data, such as independent particles and arbitrarily connected
nodes in a mesh, has no natural ordering, repeated structure, or regular geometry that can be exploited
for compression.

• Performance. For inline compression to be useful, both compression and decompression have to be
extremely fast (simple), yet effective enough to warrant compression. Moreover, the complexities of
compression must be hidden from the user to promote adoption, while allowing sufficient flexibility to
support essentially arbitrary data access patterns.

These challenges often suggest conflicting solutions and are further complicated by the extreme demands of
Exascale computing applications.

Solution Strategy zfp is unique in supporting read and write random access to multidimensional data,
and was designed from the outset to address some of the above challenges. The following strategies are
employed on this project to overcome the remaining challenges:

• Partitioning. d-dimensional arrays are partitioned into small, independent blocks of 4d scalars each.
This enables both fine-grained random access and a large degree of data parallelism.

• Fixed-size storage. Instead of storing fixed-precision values using variable-size storage, zfp uses
fixed-size storage to represent values at the greatest precision afforded by a limited bit budget.

• Adaptive storage. For applications that demand error tolerances, this project is developing adaptive
representations that allocate bits to where they are most needed, which involves efficient management
of variable-length records that might expand and shrink in size over time.

• Parallelism. OpenMP and CUDA implementations of zfp have been developed that exploit fine-
grained data parallelism. Opportunities for task parallelism have also been identified.

• Preconditioning. The irregularity and unpredictability of unstructured data is improved using
preconditioners that “massage” the data to make it more amenable to compression by zfp. Strategies
include sorting, binning, structure inference, transposition, pre-transforms like wavelets, etc.

• Abstraction. Concrete details about compression, caching, parallelism, thread safety, etc., are
abstracted away from the user by providing high-level primitives that make zfp arrays appear like
uncompressed arrays, in part via C++ operator overloading. We are designing classes and concepts
commonly available for uncompressed arrays, such as proxy references and pointers into compressed
storage that act like their uncompressed counterparts; views into and slices of arrays; and iterators
compatible with STL algorithms. Such primitives make it easier to write generic code for which zfp
arrays may easily be substituted for uncompressed arrays.

Recent Progress Recent work has focused on extending the capabilities of zfp’s compressed-array C++
classes. We have refactored these classes to reduce code redundancy between the fixed- and variable-rate
representations, added support for 4D arrays, and provided new C and Python language bindings to these
classes. This refactoring effort has also decoupled concepts such as array, cache, compression codec, and
data store, enabling a more modular design that allows incorporating new codecs and mixed-precision
representations under the same array interface. In addition, mutable and immutable proxy references,
pointers, and iterators are now available, both for arrays and views into arrays. We have further made
progress on parallel decompression of variable-rate streams [201] and released zfp version 0.5.5 [202] as Conda

Exascale Computing Project (ECP) 150 ECP-RPT-ST-0002-2020–Public

and PIP Python packages. In addition to ST integrations with adios, hdf5, strumpack, and vtk-m, we
are integrating zfp with ceed, eqsim (Figure 66), qmcpack, and warpx.

The results of our R&D efforts have been documented through publications [203, 204, 205, 206, 201, 207],
and significant efforts have been made to reach out to customers and the HPC community at large through
one-on-one interactions and tutorials, both at ECP meetings and conferences [208, 209, 210, 211, 212, 213].
Together with the sz team, we will be giving a tutorial and panel at SC20 [214, 215].

Figure 66: 112:1 zfp compression of sw4 seismic displacement data to 80µm accuracy.

Next Steps Next year’s effort will focus on (1) extending zfp to support parallel (de)compression of
variable-rate streams, and (2) readying zfp for Frontier by porting our CUDA implementation to HIP. We
will also continue our integration efforts with ECP applications and ECP software technologies.

Exascale Computing Project (ECP) 151 ECP-RPT-ST-0002-2020–Public

4.5 WBS 2.3.5 SW ECOSYSTEM & DELIVERY

End State: A production-ready software stack delivered to our facilities, vendor partners, and the open
source HPC community.

4.5.1 Scope and Requirements

The focus of this effort is on the “last mile” delivery of software that is intended to be supported by DOE
Facilities and/or vendor offerings. The scope of this effort breaks down into the following key areas:

• Hardening and broad ST and facility adoption of Spack for easy build of software on all target platforms

• Delivery of formal software releases (Extreme-Scale Scientific Software Stack, or E4S) in multiple
packaging formats technologies – from-source builds, modules, and containers

• Oversight of the ST SDKs (Software Development Kits) developed in all five ST L3 areas, with a goal
of ensuring the SDKs are deployed as production-quality products at the Facilities, and available to the
broader open-source HPC community through coordinated releases

• Development of testing infrastructure (e.g., Continuous Integration) in collaboration with HI 2.4.4
(Software Deployment at the Facilities) for use by ECP teams at the Facilities

• Development and hardening of methods for software deployment through the use of container technology

• Development and hardening of a toolkit of reusable components for scientific workflow management
systems

• Informal partnerships with the Linux Foundation’s OpenHPC project for potential broader deployment
of ST technologies in the OpenHPC ecosystem

A major goal of ST is to ensure that applications can trust that ST products will be available on DOE
Exascale systems in a production-quality state, which implies robust testing, documentation, and a clear line
of support for each product. This will largely be an integration effort building on both the SDKs project
elements defined in each ST L3 area, and tight collaboration and coordination with the Hardware Integration
L3 area for Deployment of Software on Facilities (WBS 2.4.4). We will work to develop, prototype, and
deliver foundational infrastructure for technologies such as continuous integration and containers in tight
collaboration with our DOE facility partners. The ultimate goal is ensuring that the ECP software stack is
robustly supported, as well as finding a reach into the broader HPC open-source community – both of which
provide the basis for long-term sustainability required by applications, software, Facilities, and vendors who
rely upon these products.

Spack has broad adoption in the open-source community as an elegant solution toward solving many
of the challenges presented by building software with many dependencies. Spack is one of the most visible
outward-facing products in this L3 area, and is the basis for the SDK and E4S efforts.

4.5.2 Assumptions and Feasibility

Success in this effort will require a coordinated effort across the entire hardware and software stack — in
particular with HI 2.4.4 (Delivery of Software to Facilities) and in some cases, our vendor partners. This
cooperation is a critical first step in enabling our goals, and this area will drive toward ensuring those
partnerships can flourish for mutual gain.

Given the project timelines and requirements of production systems at our Facilities, we do not envision a
wholly new software stack as a feasible solution. We do however recognize that in many cases the software
of today’s HPC environments will very likely need to either be evolved or extended to meet the mission
goals. This will require first, proof-of-concept on existing pre-Exascale hardware, and ultimately adoption of
technologies by system vendors where required, and by other application and software teams.

Exascale Computing Project (ECP) 152 ECP-RPT-ST-0002-2020–Public

4.5.3 Objectives

This area will focus on all aspects of integration of the ECP software stack embodied in E4S and the
development of SDK Community Policies, and building the workflows community and deploying a toolkit of
hardened, reusable components for workflow management systems, with a focus on putting the infrastructure
in place (in partnership with HI and the SDKs) for production-quality software delivery through technologies
such as Spack, continuous integration, and containers.

4.5.4 Plan

Version 1.2 of the Extreme-Scale Scientific Software Stack (E4S) was released in October, which includes 67
ST products that have Spack packages. This release is downloadable from DockerHub under the ecpe4s area.
The E4S Spack Build Cache now includes binaries for ppc64le as well as x86 64 and includes over 22,000
total binaries. The E4S containers now support custom images for ECP applications, such as WDMApp
and Pantheon. A regular cadence of E4S releases will continue, with updated ST products, broader facility
adoption, and potentially inclusion in vendor offerings.

In close coordination with E4S, a number of SDKs are being developed across the other L3 ST areas,
building on the years of experience the xSDK (Math Libraries). These SDKs will become a prime vehicle for
our delivery strategy, while also providing ST products with a standard set of community policies aimed at
robust production-ready software delivery. In October 2020, Version 1 of the E4S Community Policies was
announced. The E4S Community Policies will serve as membership criteria for E4S member packages. The
E4S Community Policies will continue to evolve as we work toward release of Version 2 of them.

Spack continues to gain penetration across the ECP, and will be the de facto delivery method for ST
products building from source. We provide Spack packaging assistance for ST users and DOE Facilities, and
are developing new capabilities for Spack that enable automated deployments of software at Facilities, in
containerized environments, and as part of continuous integration. A new effort to support running test suites
within Spack environments via the spack test functionality is underway and will be integrated with GitLab
continuous integration to display dashboards for E4S tests. Concurrently, we are developing technologies
and best practices that enable containers to be used effectively at Facilities, and are pushing to accelerate
container adoption within ECP.

We filled a gap in the ST portfolio by instantiating a new project on scientific workflows, which is currently
in an initial development phase. Within this project, we are establishing the ExaWorks toolkit by assembling
shared components from existing workflow projects. The ExaWorks toolkit will provide a robust, well-tested,
documented, and scalable set of components that can be combined to enable diverse teams to produce scalable
and portable workflows for a wide range of exascale applications. Importantly, the project will not create a
new workflow system nor does it aim not to replace the many workflow solutions already deployed and used
by scientists, but rather it will provide well engineered and scalable components which can be leveraged by
new and existing workflows.

4.5.5 Risks and Mitigation Strategies

• Deploying E4S on unknown architectures – use Spack for deployment to decrease installation complexity

• Keeping updated versions of ST and dependent software in synch after initially achieving SDK interop-
erability

• Delays in deploying a common CI infrastructure lead to subsequent delays in an integrated software
release

• Multiple container technologies in flight will make it hard to come to agreement on a “common” looking
solution; may not be possible to generate containers that are both portable and performant

• ECP Application Reliance on workflow management systems that may not be scalable and performant
at exascale – mitigate by adopting robust, well-tested, and scalable components

• OpenHPC partnership is ill-defined, and unfunded

• Sustainability of ECP ST capabilities after ECP has ended

Exascale Computing Project (ECP) 153 ECP-RPT-ST-0002-2020–Public

4.5.6 Future Trends

Software development kits will gain further traction in their communities as the benefits of interoperability and
community policies are demonstrated. We believe these processes will become embedded into the communities
and become one of the lasting legacies of ECP and critical for sustainability beyond ECP.

Software deployments will continue to become more complex, especially when we require optimized builds
for the unique and complicated exascale architectures. Keeping dependencies updated and the software tested
on these systems using continuous integration will tax the resources at the Facilities. Software testing that
includes interoperability and scalability tests will require further resources, both in terms of people to write
the tests and the hours to regularly run them. These put greater emphasis on using and updating Spack
as a solution strategy for large collections of software and tight coordination with HI and Facilities on CI
infrastructure and resources.

Containers will become more popular and usable as a way to package the entire environment necessary to
run an application on the exascale machines, thereby managing some of the complexity of an application
deployment. We expect that performance of an application within a container will be nearly as fast or faster
than running the application on bare metal. Application build time will be reduced by using the associated
build caches.

Workflows will continue to become more complex to complete their science missions, requiring orchestration
of many applications and scripts, executed at various scales across many different resource types, and often
reliant on machine learning algorithms for guidance. We expect that hardening workflow management systems
and building a community centered around robust and scalable components will be foundational for addressing
these complexities. Moreover, we expect that container-based scientific workflows will begin to take off as we
transition from demonstrations of applications at scale to performing science with them.

Exascale Computing Project (ECP) 154 ECP-RPT-ST-0002-2020–Public

4.5.7 WBS 2.3.5.01 Software Development Kits

Overview The ST Software Development Kit (SDK) project supports a set of activities focused on

• establishing Community Policies aimed at increasing the interoperability between and sustainability of
ST software packages, using the xSDK [126] community package and installation policies [3] as a model.

• coordinating the delivery of ECP ST products through the Extreme-Scale Scientific Software Stack
(E4S) [216], a comprehensive and coherent set of software tools, to all interested stakeholders on behalf
of ECP ST, including ECP applications and the broader open source community.

An ECP ST SDK is a collection of related software products (called packages) where coordination across
package teams will improve usability and practices and foster community growth among teams that develop
similar and complementary capabilities. SDKs have the following attributes:

• Domain scope: Collection makes functional sense.

• Interaction model: How packages interact; compatible, complementary, interoperable.

• Community policies: Value statements; serve as criteria for membership.

• Community interaction: Communication between teams. Bridge culture. Common vocabulary.

• Meta-infrastructure: Encapsulates, invokes build of all packages (Spack), shared test suites.

• Coordinated plans: Inter-package planning. Does not replace autonomous package planning.

• Community outreach: Coordinated, combined tutorials, documentation, best practices.

The SDK project is needed within ECP because it will make it simpler for ECP applications to access
required software dependencies on ECP target platforms and drastically lower the cost of exploring the
use of additional ECP ST software that may be of benefit. In addition, the SDK effort will decrease the
ECP software support burden at the major computing facilities by ensuring the general compatibility of ST
packages within a single software environment, providing tool support for the installation of ST packages on
Facility machines, communicating common requirements for ST software and facilitating the set up of CI
testing at the Facilities. This project works closely with the HI 2.4.4 Deployment of Software at the Facilities
project.

Key Challenges ST software packages have been developed in a variety of very different cultures and are
at significantly different levels of software engineering maturity and sophistication. The experience of some of
the SDK staff during the formation of the xSDK showed that in this situation, it is challenging to establish
common terminology and effective communication, and these are prerequisites to community policies and a
robust software release.

Deciding exactly how to deploy the SDKs at the Facilities is itself a challenge. ECP applications will
use different combinations of ST software in different configurations. For example, applications will want
mathematical libraries capabilities from the xSDK build on top of both MPICH and OpenMPI, and will
want different configurations of those mathematical libraries.

Solution Strategy The SDK solution strategy involves pursuing interoperability and sustainability goals
by grouping ST software projects into logical collections whose members will benefit from a common set of
community policies as well as increased communication between members to standardize approaches where
sensible and establish better software practices.

The SDK effort will also facilitate the use of common infrastructure, such as CI testing at the major
computing Facilities and the Spack [1] package manager. SDK release and delivery goals will benefit from
common package manager and testing infrastructure, including the E4S initiative to provide prebuilt binaries
for a variety of architectures.

Recognizing the release readiness and broader maturity differences between ECP ST products, the early
release strategy has been to include only those products ready for a joint release in the E4S releases, but to
also continue to work with other products in preparing for subsequent release opportunities.

Exascale Computing Project (ECP) 155 ECP-RPT-ST-0002-2020–Public

Figure 67: WDMapp documentation for how to use the E4S WDMapp Docker
container to speed up WDMapp installation by leveraging the E4S Spack build
cache.

Recent Progress E4S release 1.0 was announced in November 2019 on the external E4S website [216].
The release supports 50 ST products under Linux x86 64. In February 2020, E4S release 1.1 extended support
to both NVIDIA and AMD GPUs with the inclusion of CUDA and ROCm in a single image under Linux
x86 64. Release 1.1 also introduced support for the Linux ppc64le platform that supports CUDA 10.1. E4S
releases contain HPC as well as AI/ML software including TensorFlow and PyTorch. The E4S DocPortal,
accessible from the E4S website, was created to rake information from E4S product GitHub pages and provide
it in a single location with the most up-to-date information about releases, installation instructions, etc. The
E4S validation testsuite [217] was introduced with support for LLVM and other ST products.

In October 2020, E4S v1.2 included an x86 64 image with 67 E4S products. E4S images are now available
for download on DockerHub under the ecpe4s area for testing and will be released on the E4S website in
November 2020. The E4S Spack Build Cache now includes binaries for ppc64le as well as x86 64 and includes
over 22,000 total binaries. E4S containers now support custom images for ECP applications such as WDMapp
and Pantheon (see Figure 67). The E4S build cache has improved the build times for these codes significantly.

Also in October 2020, Version 1 of the E4S Community Policies was announced [8]. The E4S Community
Policies will serve as membership criteria for E4S member packages. The E4S Community Policies have
their genesis in the xSDK Community Policies, and have a similar purpose. Their purpose is to help address
sustainability and interoperability challenges within the complex software ecosystem that ECP ST is a part
of.

Exascale Computing Project (ECP) 156 ECP-RPT-ST-0002-2020–Public

Figure 68: Two examples of policy feedback received from the ECP ST develop-
ment community. Comments commonly touched on issues such as appropriateness,
both broadly and to specific types of software found within ST, as well as clarity
and feasibility.

The process of establishing Version 1 of the E4S Community Policies was a multi-year effort led by the
ECP SDK team, including representation from Programming Models and Runtimes, Development Tools,
Math Libraries, Data and Vis, and Software Ecosystem and Delivery. This team reviewed the existing xSDK
Community Policies and selected those policies that were most generally applicable to all of ECP ST, and
not specific to math libraries. From there, the chosen policies were refined and gaps were analyzed.

An early draft was presented to ECP ST leadership, after which an updated draft was socialized with
all of ECP ST. The feedback gathered was incorporated into another draft that was again shared broadly
across ECP ST. Feedback examples can be seen in Figure 68. After considering the latest feedback, the first
version of the policies was finalized. A strong effort was made to involve all interested community members
and seriously consider the feedback received.

In addition to the policies shown in Figure 9 a second list of Future Revision policies was also created.
These policies are not currently E4S membership criteria, but will be very seriously considered in future
versions. In most cases, these policies require further refinement or planning prior to adoption. The topics
that these policies address provide information about likely subject areas for E4S policies going forward and
are critical to ongoing communication with the E4S community.

Next Steps Current and near-term efforts include:

• Defining a process for documenting and verifying compatibility with E4S Community Policies.

• Assisting with E4S deployment to computing Facilities.

• Adding additional ST software to E4S.

• Assisting with establishing workflows around the maintenance of multi-package CI builds at computing
facilities.

• Starting work on Version 2 of the E4S Community Policies.

• Supporting SDK-specific efforts focused on the needs of each SDK, with a particular emphasis on
sustainability.

Exascale Computing Project (ECP) 157 ECP-RPT-ST-0002-2020–Public

4.5.8 WBS 2.3.5.09 Software Packaging Technologies

Overview ECP is tasked with building the first capable exascale ecosystem, and the foundation of this
ecosystem, per ECP’s mission statement, is an integrated software stack. Building and integrating software for
supercomputers is notoriously difficult, and an integration effort for HPC software at this scale is unprecedented.
Moreover, the software deployment landscape is changing as containers and supercomputing-capable software
package managers like Spack emerge. Spack holds the promise to automate the builds of all ECP software,
and to allow it to be distributed in new ways, including as binary packages. Containers will enable entire
application deployments to be packaged into reproducible images, and they hold the potential to accelerate
development and continuous integration (CI) workflows.

This project will build the tooling required to ensure that packaging technologies can meet the demands
of the ECP ecosystem. The project provides Spack packaging assistance for ST users and ECP facilities,
and it develops new capabilities for Spack that enable automated deployments of software at ECP facilities,
in containerized environments, and as part of continuous integration. Concurrently, the “Supercontainers”
sub-project is investigating and developing technologies and best practices that enable containers to be
used effectively at ECP facilities. Supercontainers will ensure that HPC container runtimes will be scalable,
interoperable, and integrated into Exascale supercomputing across DOE.

Key Challenges Historically, building software to run as fast as possible on HPC machines has been a
manual process. Users download source code for packages they wish to install, and they build and tune it
manually for high performance machines. Spack has automated much of this process, but it still requires that
users build software. Spack needs modifications to enable it to understand complex microarchitecture details,
ABI constraints, and runtime details of exascale machines. This project will enable binary packaging, and it
will develop new technologies that enable the same binary packages to be used within containers or in bare
metal deployments on exascale hardware.

The Supercontainer effort faces similar challenges to deploying containers on HPC machines. Container
technology most notably enables users to define their own software environments, using all the facilities of
the containerized host OS. Users can essentially bring their own software stack to HPC systems, and they
can snapshot an entire application deployment, including dependencies, within a container. Containers also
offer the potential for portability between users and machines. The goal of moving an HPC application
container from a laptop to a supercomputer with little or no modification is in reach, but there are a number
of challenges to overcome before this is possible on Exascale machines. Solutions from industry, such as
Docker, assume that containers can be built and run with elevated privileges, that containers are isolated from
the host network, filesystem, and GPU hardware, and that binaries within a container are unoptimized and
can run on any chip generation from a particular architecture. These go against the multi-user, multi-tenant
user environment of most HPC centers, and optimized containers may not be portable across systems.

Solution Strategy The Spack project supports ST teams by developing portable build recipes and
additional metadata for the ECP package ecosystem. The end goal is to provide a packaging solution
that can deploy on bare metal, in a container, or be rebuilt for a new machine on demand. Spack bridges
the portability divide with portable package recipes; specialized packages can be built per-site if needed,
or lowest-common denominator packages can be built for those cases that do not need highly optimized
performance. Packages are relocatable and can be used outside their original build environment. Moreover,
Spack provides environments that enable a number of software packages to be deployed together either on an
HPC system or in a container.

The Supercontainer project seeks to document current practice and to leverage existing container runtimes,
but also to develop new enabling technologies where necessary to allow containers to run on HPC machines.
Several HPC container runtimes (Shifter, Charliecloud, and Singularity) already exist, and this diversity
enables wide exploration of the HPC container design space, and the Supercontainers project will work
with their developers to address HPC-specific needs, including container and job launch, resource manager
integration, distribution of images at scale, use of system hardware (storage systems, network and MPI
libraries, GPUs and other accelerators), and usability concerns around interfacing between the host and
container OS (e.g., bind-mounting, etc. required for hardware support).

The project will document best practices and produce a technical report to help educate new users and

Exascale Computing Project (ECP) 158 ECP-RPT-ST-0002-2020–Public

developers to the advantages of containers, as well as a best-practices report to help ensure efficient container
utilization on supercomputers. Both of these will be living documents, periodically updated in response to
lessons learned and feedback. In addition, we will identify gaps, and implement changes and automation in
one of the three existing runtimes, as needed. The project will also interface with the E4S and SDK teams,
as well as AD teams interested in containerizing their applications. We will work to enable these teams to
deploy reproducible, minimally-sized container images that support multiple AD software ecosystems.

Recent Progress

1. Released archspec6, a library for labeling and distributing CPU microarchitectures, as a spin-off project
from Spack.

2. Developed the spack containerize command that enables users to easily build lightweight containers
from Spack environments.

3. Worked with the E4S team to get E4S packages building on the Ascent machine at OLCF, on NERSC’s
Cori machine, and in continuous integration in Amazon Web Services (on optimized skylake instances).

4. Continued to support ECP ST teams and conducted a survey to better understand their usage of Spack.

5. Developed optimized E4S container images for ppc64le, x86 64, as well as CUDA and ROCm GPUs.
Solutions for heterogeneous hardware usage via containers are ahead of available solutions in industry.
7.

6. Continued to test multiple container runtimes on pre-exascale systems.

Next Steps

1. Implement support for running test suites within Spack environments, and develop ways for teams to
build portable tests associated with Spack packages (“spack test”).

2. Integrate spack test with GitLab continuous integration to display dashboards for E4S tests run on
EA systems.

3. Work with the E4S team to implement initial package smoke tests for E4S on EA systems.

4. Improve automation on GitHub by implementing a change notification bot for Spack package maintainers,
to tell them when others have proposed changes to their packages.

5. Implement pull request testing for Spack GitHub, so that every pull request to Spack has its package
builds tested in a sandboxed environment to ensure that the develop branch continues to build.

6. Investigate unprivileged container builds at ECP facilities and determine which runtimes provide the
best support for this.

7. Continue container training sessions, outreach efforts, and tutorials.

6https://github.com/archspec/archspec/
7https://hub.docker.com/u/ecpe4s

Exascale Computing Project (ECP) 159 ECP-RPT-ST-0002-2020–Public

4.5.9 WBS 2.3.5.10 ExaWorks

Overview Exascale computing capacity reinforces the need for workflows and also creates a slew of new
workflow challenges. Most notably, the increasing scale and hardware heterogeneity demands higher level
programming environments, such as workflows, to enable a broad range of scientists, students, and developers
to describe complex computational procedures and manage their execution at enormous scales in intuitive
and productive ways. Further, in addition to the changing system architectures, application patterns are also
changing: no longer is research conducted with a single invocation of a lone executable, instead it typically
requires orchestration of many applications and scripts, executed at various scales across many different
resource types, and often reliant on machine learning algorithms for guidance. As a result, exascale Workflow
Management Systems (WMSs) will need to support high performance execution of significant numbers of
short-duration tasks (e.g., inference tasks), efficient scheduling of tasks with varying resource (e.g., single
core, multiple nodes, and accelerators) and time-sensitive (e.g., coupling data analysis with simulations)
constraints, and flexible coordination and communication patterns between many concurrent jobs and/or
tasks.

Key Challenges Emerging exascale workflows pose significant challenges to the creation of portable,
repeatable, and performant workflows. These challenges are both technical and non-technical. On the
technical side, WMSs are currently incapable of supporting the needs of heterogeneous co-scheduled and
high-throughput workflows, as well as enabling communication between fine grain tasks in dynamic workflows.
On the non-technical side, the myriad WMSs that exist, lack of reusable WMS components, and the lack of
clear user guidance when selecting a WMS has resulted in a disjoint workflows community that tends toward
building ad hoc or bespoke solutions rather than adopting and extending existing solutions.

Specific challenges include:

1. Workflows community: the workflows, applications, and facility communities are disjoint. Efforts are
needed to bring these groups together to agree on common workflow components and interfaces, and to
work together to develop, integrate, and support these components.

2. Scheduling: exascale workflows must manage the efficient execution of diverse tasks (e.g., in runtime,
resource requirements, single/multi-node) with complex interdependencies on increasingly heterogeneous
resources.

3. Scale and performance: emerging workflows feature huge ensembles of short-running jobs, which can
create millions or even billions of tasks that need to be rapidly scheduled and executed.

4. Coordination and communication: workflows depend on coordination between the workflow and the tasks
within the workflow, a need that requires efficient exchange of data following various communication
patterns.

5. Fault tolerance: the enormous number of computing elements and workflow tasks increases the likelihood
of encountering faults within a workflow both at the system level and also from the millions of concurrent
tasks.

6. Portability: most WMSs are tested on a handful of systems and the frequency by which system hardware
and software change makes it impossible to guarantee that a workflow will work on even the same
system in the future.

Solution Strategy The ExaWorks project will lay the foundation for an inherently new approach to
workflows: establishing the ExaWorks toolkit (see Figure 69) by assembling shared components from existing
workflow projects. The ExaWorks toolkit will provide a robust, well-tested, documented, and scalable set of
components that can be combined to enable diverse teams to produce scalable and portable workflows for a
wide range of exascale applications. Importantly, the project will not create a new workflow system nor does
it aim not to replace the many workflow solutions already deployed and used by scientists, but rather it will
provide well engineered and scalable components which can be leveraged by new and existing workflows.

Exascale Computing Project (ECP) 160 ECP-RPT-ST-0002-2020–Public

Figure 69: ExaWorks Toolkit

The goals of the initial phase of the project are
to instantiate the ExaWorks community, bringing
together workflow tool developers, ECP applications,
and DOE compute facility representatives. Specifi-
cally, it will:

1. Engage the facilities to survey the state of
workflow tools and capabilities and ways in
which ExaWorks can enhance their capabilities;

2. Establish an advisory board composed of rep-
resentatives of DOE compute facilities, ECP
applications, and workflow tools, to guide and
advise ExaWorks;

3. Survey ECP applications teams to identify the
tools currently being used and to identify com-
mon challenges and needs;

4. Assemble a functional design working group to
develop a community-centered draft function
design; and

5. Collaborate with ECP applications to develop
a proof-of-concept integration using a shared
functional component as defined by the draft
design, in an ECP application.

Recent Progress In this first period of the project we have assembled our advisory committee, started a
functional design working group, and distributed a workflows survey to the ECP community. The results of
this survey are helping to prioritize in-person interviews as well as informing the functional design process
and helping to identify initial ExaWorks components. Our team have started prototyping efforts to explore
component-based approaches in existing workflow systems. Specifically, we have developed prototype Balsam
and RADICAL-Pilot executors for Parsl which enable Parsl workflows to leverage the resource management
capabilities of these external systems.

Next Steps The remainder of this initial effort focuses on four important areas. First, continuing to grow
the ExaWorks community by engaging with ECP applications, facilities, and WMS teams. Second, working
with these partners and stakeholders to produce a draft functional design document that outlines ExaWorks
components and potential interfaces to these components. Third, we will produce a report, derived from
interviews from the broad ECP community that outlines ECP workflows needs, challenges, and potential
solutions. Finally, we will demonstrate the technical feasibility of the ExaWorks approach via application of
preliminary components to at least one ECP application.

Exascale Computing Project (ECP) 161 ECP-RPT-ST-0002-2020–Public

4.6 WBS 2.3.6 NNSA ST

End State: Software used by the NNSA/ATDM National Security Applications and associated exascale
facilities, hardened for production use and made available to the larger ECP community.

4.6.1 Scope and Requirements

The NNSA ST L3 area was created in FY20, although the projects included have all been part of the ECP
before its creation. The capabilities of these software products remains aligned with the other Software
Technology L3 areas from which they were derived, but are managed separately for non-technical reasons out
of scope of this document.

The resulting products in this L3 area are open source, important or critical to the success of the NNSA
National Security Applications, and are used (or potentially used) in the broader ECP community. The
products in this L3 span the scope of the rest of ST (Programming Models and Runtimes, Development
Tools, Math Libraries, Data Analysis and Vis, and Software Ecosystem), and will be coordinated with those
other L3 technical areas through a combination of existing relationships and cross-cutting efforts such as the
ST SDKs and E4S.

4.6.2 Objectives

The objective of these software products is to support the development of new from-scratch applications
within the NNSA that were started just prior to the founding of the ECP under the ATDM (Advanced
Technology Development and Mitigation) program element within NNSA and ASC. While earlier incarnations
of these products may have been more research-focused, by the time of the ECP ST restructuring in 2019 that
resulted in this L3 area, these products are in regular use by their ATDM applications, and have matured to
the point where they are ready for use within the broader open source community.

4.6.3 Plan

NNSA ST products are developed with and alongside a broader portfolio of ASC products in an integrated
program, and are planned out at high level in the annual ASC Implementation Plan, and in detail using
approved processes within the home institution/laboratory. They are scoped to have resources sufficient for
the success of the NNSA mission, as well as a modicum of community support (e.g., maintaining on GitHub,
or answering occasional questions from the community).

For ECP products not part of the NNSA portfolio that have critical dependencies on these products,
there are often other projects within ECP that provide additional funding and scope for those activities. In
those cases, there may be additional information within this document on these products.

4.6.4 Risks and Mitigation Strategies

One risk associated with the NNSA ST projects is the programming environment of the El Capitan system.
The programming environment on this system will be a departure from what the NNSA software teams have
used before, so there is a risk that it will present challenges that cause delays in porting the software to the
system. That said, the probability of this risk is low because the programming environment of El Capitan
will also be installed on DOE predecessor machines so it is likely that it challenges will be identified and
addressed by the time of El Capitan. NNSA ST projects can mitigate this risk by evaluating their software
on the predecessor systems to identify challenges early.

Another risk associated with the NNSA ST L3 is that the projects rely on multiple sources of funding
outside of ECP. The budget priorities of those external sources may not always be aligned with those of ECP.
In general, this risk is low because the L4 leads strive to align their project goals across all funding sources.
However, it is possible that funding expected to be leveraged to develop a feature to later be used for ECP
purposes may be dropped. If this occurs, the L4 leads will need to mitigate the situation according to their
individual project needs, perhaps by renegotiating deliverable time lines.

Another risk is that others in the community will pick up these products as open source, and expect
additional support beyond the scope of the primary NNSA mission. If those dependent products are within
the ECP, the main mitigation is to use ASCR contingency funding to provide additional development and

Exascale Computing Project (ECP) 162 ECP-RPT-ST-0002-2020–Public

support - potentially through support of teams outside of the home institution. If those dependent products
are in the broader community, mitigations are generally outside of the scope of the ECP - although each
NNSA lab typically has some sort of project (or possibly even a policy) on how to deal with external demands
on open source products.

Exascale Computing Project (ECP) 163 ECP-RPT-ST-0002-2020–Public

4.6.5 WBS 2.3.6.01 LANL ATDM Software Technologies

Overview

The LANL ATDM PMR effort is focusing on the development and use of advanced programming models
for Advanced Technology Development and Mitigation (ATDM) use-cases. Our current focus is on research
and development of new programming model capabilities in the Legion data-centric programming system.
Legion provides unique capabilities that align well with our focus on the development of tools and technologies
that enables a separation of concerns of computational physicists and computer scientists. Within the ATDM
PMR effort we have focused on the development of significant new capabilities within the Legion runtime
that are specifically required to support LANL’s ATDM applications. Another key component of our work is
the co-design and integration of advanced programming model research and development within FleCSI,
a Flexible Computational Science Infrastructure. A major benefit to the broader ECP community is the
development of new features in the Legion programming system which are available as free open-source
software https://gitlab.com/StanfordLegion/legion.

The Kitsune Project, provides a compiler-focused infrastructure for improving various aspects of the
exascale programming environment. At present, efforts are primarily focused on advanced LLVM compiler
and tool infrastructure to support the use of a parallel-aware intermediate representation. In addition, we
are actively involved in the Flang Fortran front-end that is now an official sub-project within the overall
LLVM infrastructure. All these efforts include interactions across ECP as well as with the broader LLVM
community and industry.

The LANL ATDM Cinema project develops scalable solutions for data analysis as part of the Data and
Visualization software stack. Cinema is a novel database approach to saving data extracts in situ which are
then available for post hoc interactive exploration. These data extracts can include metadata, parameters,
data visualizations, small meshes, output plots, etc. Cinema workflows enable flexible data analysis using a
fraction of the file storage. Cinema ECP workflows that integrate applications, in situ and post-processing
analysis are captured and curated through the Pantheon project, which is focused on reproducible ECP
workflows. By integrating E4S caches of both applications and dependent capabilities (Ascent, etc.), Pantheon
workflows can be downloaded, built and run quickly enough to be useful in a variety of applications such as
CI, prototyping functionality or testing analyses.

The BEE/Charliecloud subproject is creating software tools to increase portability and reproducibility
of scientific applications on high performance and cloud computing platforms. Charliecloud [218] is an
unprivileged Linux container runtime. It allows developers to use the industry-standard Docker [219]
toolchain to containerize scientific applications and then execute them on unmodified DOE facility computing
resources without paying any performance penalty. BEE [220] (Build and Execution Environment) is a toolkit
providing users with the ability to execute application workflows across a diverse set of hardware and runtime
environments. Using Bee’s tools, users can build and launch applications on HPC clusters and public and
private clouds, in containers or in containers inside of virtual machines, using a variety of container runtimes
such as Charliecloud and Docker.

Key Challenges

Legion: Applications will face significant challenges in realizing sustained performance on next-generation
systems. Increasing system complexity coupled with increasing scale will require significant changes to our
current programming model approaches. This is of particular importance for large-scale multi-physics
applications where the application itself is often highly dynamic and can exhibit high variability in resource
utilization and system bottlenecks depending on what physics are currently in use (or emphasized). Our
goal in the LANL ATDM PMR project is to support these highly dynamic applications on Exascale systems,
providing improvements in productivity, long-term maintainability, and performance portability of our
next-generation applications.

FleCSI Legion integration: FleCSI is a Flexible Computational Science Infrastructure whose goal is
to provide a common framework for application development for LANL’s next-generation codes. FleCSI is

Exascale Computing Project (ECP) 164 ECP-RPT-ST-0002-2020–Public

https://gitlab.com/StanfordLegion/legion

required to support a variety of different distributed data structures and computation on these data structures
including structured and unstructured mesh as well as mesh-free methods. Our work in the LANL ATDM
PMR project is focused on co-designing the FleCSI data and execution model with the Legion programming
model to ensure the latest advancements in the programming model and runtimes research community
are represented in our computational infrastructure. A significant challenge in our work is the additional
constraint that FleCSI must also support other runtime systems such as MPI. Given this constraint, we have
chosen an approach that ensures functional correctness across both runtimes but that also leverages and
benefits from capabilities in Legion that are not directly supported in MPI (such as task-based parallelism as
a first-class construct).

Kitsune: A key challenge to our efforts is reaching agreement within the broader community that a
parallel intermediate representation is beneficial and needed within LLVM. This not only requires showing
the benefits but also providing a full implementation for evaluation and feedback from the community. In
addition, significant new compiler capabilities represent a considerable effort to implement and involve many
complexities and technical challenges. These efforts and the process of up-streaming potential design and
implementation changes do involve some amount of time and associated risk.

Additional challenges come from a range of complex issues surrounding target architectures for exascale
systems. Our use of the LLVM infrastructure helps reduce many challenges here since many processor vendors
and system providers now leverage and use LLVM for their commercial compilers.

Cinema Interfacing to a large number of ECP applications with the Cinema software and the manage-
ment of the voluminous data from these applications.

Bee/CharlieCloud Other HPC-focused container runtimes exist, such as NERSC’s Shifter [221] and
Singularity [222]. These alternative runtimes have characteristics, such as complex setup requirements and
privileged user actions, that are undesirable in many environments. Nevertheless, they represent a sizable
fraction of the existing HPC container runtime mindshare. A key challenge for BEE is maintaining support
for multiple runtimes and the various options that they require for execution. This is especially true in the
case of Singularity, which evolves rapidly. Similarly, there is a diverse collection of resources that BEE and
Charliecloud must support to serve the ECP audience. From multiple HPC hardware architectures and HPC
accelerators such as GPUs and FPGAs, to differing HPC runtime environments and resource managers, to
a multitude of public and private cloud providers, there is a large set of available resources that BEE and
Charliecloud must take into consideration to provide a comprehensive solution.

Solution Strategy

Legion: In funded collaboration with NVIDIA, LANL and NVIDIA are developing new features in
Legion to support our applications. Necessary features are identified through direct engagement with
application developers and through rapid development, evaluation, and refactoring within the team. Major
features include Dynamic Control Replication for improved scalability and productivity and Dynamic Tracing
to reduce runtime overheads for applications with semi-regular data dependencies such as applications with
stencil-based communication patterns.

FleCSI Legion integration: LANL staff work on co-design and integration of the Legion programming
system into the FleCSI framework. We have regular milestones that align well with application needs and
the development of new features within Legion.

Kitsune: Given the project challenges, our approach takes aspects of today’s node-level programming
systems (e.g. Kokkos) and programming languages (e.g. C++) into consideration and aims to improve
and expand upon their capabilities to address the needs of ECP and LANL’s mission critical applications.
This allows us to attempt to strike a balance between incremental improvements to existing infrastructure

Exascale Computing Project (ECP) 165 ECP-RPT-ST-0002-2020–Public

Figure 70: Productivity features such as Dynamic Control Replication
scales well across multi-GPU systems in unstructured mesh computa-
tions.

and more aggressive techniques that seek to provide innovative solutions, thereby managing risk while also
providing the ability to introduce new technologies via the toolchain.

Unlike current designs, our approach introduces the notion of explicit parallel constructs into the LLVM
intermediate representation, building off of work done at MIT on Tapir [223] and the OpenCILK effort
(urlhttps://cilk.mit.edu). We are working with MIT to extend this work as well as making some changes
to fundamental data structures within the LLVM infrastructure to assist with and improve analysis and
optimization passes.

Cinema: The LANL Cinema project is focused on delivering new visualization capabilities for creating,
analyzing, and managing data for Exascale scientific applications and Exascale data centers.

Cinema [224] is being developed in coordination with LANL’s ECP application NGC to ensure that
data collected during the simulation execution is of appropriate frequency, resolution, and viewport for later
analysis and visualization by scientists. Cinema is an innovative way of capturing, storing and exploring
extreme scale scientific data. Cinema is essential for ECP because it embodies approaches to maximize insight
from extreme-scale simulation results while minimizing data footprint

Bee/CharlieCloud: The BEE/Charliecloud project is focusing first on providing support for container-
ized production LANL scientific applications across all of the existing LANL production HPC systems. The
BEE/Charliecloud components required for production use at LANL will be documented, released and fully
supported. Follow-on development will focus on expanding support to additional DOE platforms. This
will mean supporting multiple hardware architectures, operating systems, resource managers, and storage
subsystems. Support for alternative container runtimes, such as Docker, Shifter, and Singularity is planned.

Recent Progress

Legion: One of the strengths of Legion is that it executes asynchronous tasks as if they were executed
in the sequence they occur in the program. This provides the programmer with a mental model of the
computation that is easy to reason about. However, the top-level task in this tree-of-tasks model can often
become a sequential bottleneck, as it is responsible for the initial distribution of many subtasks across large
machines. In earlier work NVIDIA developed the initial implementation of control replication, which allows
the programmer to write tasks with sequential semantics that can be transparently replicated many times, as
directed by the Legion mapper interface, and run in a scalable manner across many nodes. Dynamic control
replication is an important capability for LANL’s ATDM effort, allowing our application teams to write

Exascale Computing Project (ECP) 166 ECP-RPT-ST-0002-2020–Public

Figure 71: New Legion features such as Tracing will improve strong
scaling in unstructured mesh computations.

applications with apparently sequential semantics while enabling scalability to Exascale architectures. This
approach will improve understandability of application code, productivity, and composability of software and
ease the burden of optimization and porting to new architectures. New dynamic tracing ability has been
added to Legion to allow debugging and insight in to performance optimization activities.

FleCSI Legion Integration: A key component of LANL’s Advanced Technology Development and
Mitigation effort is the development of a flexible computational science infrastructure (FleCSI) to support a
breadth of application use cases for our Next Generation Code. FleCSI has been co-designed with the Legion
programming system in order to enable our Next Generation Code to be performance portable and scalable
to future Exascale systems. Legion provides the underlying distributed and node-level runtime environment
required for FleCSI to leverage task and data parallelism, data dependent execution, and runtime analysis
of task dependencies to expose parallelism. We completed testing of Legion on Sierra with a Visco-Plastic
Self-Consistent, VSCP, application to investigate initial performance on GPU systesm.

Kitsune: Our primary focus is the delivery of capabilities for LANL’s ATDM Ristra application (AD
2.2.5.01). In support of the requirements for Ristra, we are targeting the lowering of “forall” constructs,
including Kokkos parallel for construct, directly into the parallel representation. At present, this works for
many C++ constructs (e.g., for and for-range statements). We can target this code to different runtimes and
architectures via the compiler and thus avoid reimplementation of Kokkos or fundamental C++ constructs. In
addition we are working to replace LLVM’s dominator tree, a key data structure for optimizations including
parallelization and memory usage analysis, with a dominator directed-acyclic-graph (DAG). This capability
is still in its early evaluation state and we continue to explore correctness and compatibility within the
overall LLVM infrastructure. We are actively watching recent events within the LLVM community around
multi-level intermediate representations (MLIR) and the relationship they have with parallel semantics,
analysis, optimization, and code generation.

At present we are successfully compiling our full applications using the new toolchain. We continue to
test, debug, and work towards improved optimizations and performance.

Exascale Computing Project (ECP) 167 ECP-RPT-ST-0002-2020–Public

Cinema: Recent Cinema progress has focused on development of exascale workflows, development of
python-based Cinema functionality, and supporting Cinema export capabilities through ALPINE’s exascale-
capable infrastructure. ParaView’s v5.9 release includes a significant rewrite to create extract generators
to output images and other extracts. The creation of Cinema databases is part of the extract generator
workflow both in post hoc ParaView usage or via the in situ Catalyst library. Cinema export is also available
via ALPINE’s Ascent infrastructure and through VisIt. Cinema capabilities provide scientists more options
in analyzing and exploring the results of large simulations by providing a workflow that 1) detects features
in situ, 2) captures data artifacts in Cinema databases, 3) promotes post-hoc analysis of the data, and
4) provides data viewers that allow interactive, structured exploration of the resulting artifacts. In our
milestones during FY20, we extended two end-to-end reproducible simulation pipelines with ECP applications
at scale to generate Cinema databases and ran Cinema-based workflows with Cinema algorithms to produce
secondary set of artifacts. We ran (1) Nyx integrated with Ascent, running an ALPINE adaptive sampling
algorithm; and (2) SW4 integrated with Ascent, running a VTK-m isocontour algorithm. We ran scaling and
performance testing for typical ECP-based Cinema use cases. Lastly we did the annual release of the Cinema
toolkit. Based on user feedback, we changed the toolkit from a set of viewers and a command line tool to a
single Python module that includes current Cinema toolkit components such as viewers, database classes,
preliminary Composable Image Sets classes, Jupyter notebook classes, and a small web server to provide a new
way to view databases with the existing viewers. The Cinema Python module is also included in ParaView
v5.9. An example of a Jupyter notebook-based approach is shown in Figure 72 with an ExaSky:Nyx volume
displayed within a notebook workflow. The Cinema team is working with Exascale science applications to
develop in situ and post hoc workflows based on data extracts such as in Figure 65 where bubbles detected in
situ are then analyzed within a Cinema viewer to enable studies of bubble dynamics.

Bee/CharlieCloud Recent Charliecloud progress has focused on understanding and documenting best
practices for running large scale MPI jobs using containerized runtimes. Charliecloud is enhancing support
for multiple MPI implementations. Charliecloud is available at https://github.com/hpc/charliecloud and is
distributed inside of Debian and Gentoo Linux distributions as well as being part of OpenHPC. Charliecloud
won an 2018 R&D-100 award.

BEE fully supports launching Charliecloud containers on all LANL HPC systems. It can also launch
containers on AWS and OpenStack clouds such as NSF Chameleon. BEE also supports interactive launching
of jobs with the SLURM resource manager. BEE was shown at the end of FY19 to support a complex
multiphysics application with setup, in situ visualization and checkpoint-restart on a production system at
LANL.

Next Steps

Legion: Focus on hardening and scalability of Legion’s Dynamic Control Replication and development
of Dynamic Tracing for application use-cases.

FleCSI Legion Integration: Support the Ristra Application milestone to run on Sierra and Trinity.

Kitsune: The key next steps for our efforts are to expand our test cases by increasing the complexity
of the codes we’re compiling, supporting additional forms of Kokkos constructs, and support other parallel
constructs that meet the needs of Ristra. Where possible, we will explore a broader set of use cases within the
ECP community. This will be done while also striving to maintain a feature set in Kitsune that matches the
most recent releases of the LLVM infrastructure. We will continue a quarterly release cycle of the software and
also when feature sets align with our milestones. This work will go hand-in-hand with the code generation and
optimization for the exascale system target processors: including CPUs and GPUs on the target platforms.
The development of associated runtime targets that can reduce code generation complexity will also be a
component of our future efforts (as needed).

With the addition to Fortran to LLVM via the Flang front end we will also look to add support for
lowering to the parallel IR in those use cases.

Exascale Computing Project (ECP) 168 ECP-RPT-ST-0002-2020–Public

Cinema: In FY21, Cinema will be hardening the Composable Image Sets format to meet user requests
and adding functionality to the Python-based components, demonstrating these capabilities with ATDM/ECP
data and applications. Cinema is focusing on outreach to ECP applications to identify new application
workflows that can be reasonably made efficient and working on new analysis methods for Cinema users.

Figure 72: A screenshot of an ECP Nyx simulation in the new jupyter notebook-
based cinemasci module.

Bee/CharlieCloud A refactoring of BEE to support an open standard is underway. Support for the
Open Workflow standard will allow a base on a well defined workflow description language leveraged by other
scientific communities. This will then be tested on multiple systems to ensure portability.

Exascale Computing Project (ECP) 169 ECP-RPT-ST-0002-2020–Public

4.6.6 WBS 2.3.6.02 LLNL ATDM Software Technologies

Overview

Spack is a package manager for HPC [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 2, 236,
237, 238, 239]. It automates the process of downloading, building, and installing different versions of HPC
applications, libraries, and their dependencies. Facilities can manage multi-user software deployments, and
developers and users can manage their own stacks separately. Spack enables complex applications to be
assembled from components, lowers barriers to reuse, and allows builds to be reproduced easily.

The MFEM library [240, 241] is focused on providing high-performance mathematical algorithms and
finite element discretizations to next-gen high-order ECP/ATDM applications. A main component of these
efforts is the development of ATDM-specific physics enhancements in the finite element algorithms in MFEM
and the MFEM-based BLAST Arbitrary Lagrangian-Eulerian (ALE) code [242], in order to provide efficient
discretization components for LLNL’s ATDM efforts, including the MARBL application (ECP’s LLNLApp).

A second main task in the MFEM project is the development of unique unstructured adaptive mesh
refinement (AMR) algorithms in MFEM, that focus on generality, parallel scalability, and ease of integration
in unstructured mesh applications. The new AMR capabilities can benefit a variety of ECP apps that use
unstructured meshes, as well as many other applications in industry and the SciDAC program.

Another aspect of the work is the preparation of the MFEM finite element library and related codes for
exascale platforms by using mathematical algorithms and software implementations that exploit increasing
on-node concurrency targeting multiple complex architectures (e.g. GPUs). This part of the project is
synergistic with and leverages efforts from the ECP CEED co-design center.

MFEM is an open-source finite element library with 3000 downloads/year from 70+ countries. It is freely
available at mfem.org, on GitHub at github.com/mfem, where the MFEM community includes more than
165 members), as well as via Spack and OpenHPC. The application outreach and the integration in the ECP
ecosystem is further facilitated by MFEM’s participation in ECP’s xSDK project.

RAJA, CHAI, and Umpire are providing software libraries that enable application and library develop-
ers to meet advanced architecture portability challenges. The project goals are to enable writing performance
portable computational kernels and coordinate complex heterogeneous memory resources among components
in a large integrated application. These libraries enhance developer productivity by insulating them from
much of the complexity associated with parallel programming model usage and system-specific memory
concerns.

The software products provided by this project are three complementary and interoperable libraries:

1. RAJA: Software abstractions that enable C++ developers to write performance portable (i.e., single-
source) numerical kernels (loops).

2. CHAI: C++ “managed array” abstractions that enable transparent and automatic copying of applica-
tion data to memory spaces at run time as needed based on RAJA execution contexts.

3. Umpire: A portable memory resource management library that provides a unified high-level API in
C++, C and FORTRAN for resource discovery, memory provisioning, allocation, transformation, and
introspection.

Capabilities delivered by these software efforts are needed to manage the diversity and uncertainty
associated with current and future HPC architecture design and software support. Moving forward, ECP
applications and libraries need to achieve performance portability: without becoming bound to particular
(potentially limiting) hardware or software technologies, by insulating numerical algorithms from platform-
specific data and execution concerns, and without major disruption as new machine, programming models,
and vendor software become available.

These libraries in development in this project are currently used in production ASC applications at
Lawrence Livermore National Laboratory (LLNL) and receive most of their support from the LLNL national
security application project. They are also being used or being explored/adopted by several ECP application
and library projects, including: LLNL ATDM application, GEOS (Subsurface), SW4 (EQSIM), MFEM
(CEED co-design), DevilRay (Alpine), and SUNDIALS.

Exascale Computing Project (ECP) 170 ECP-RPT-ST-0002-2020–Public

mfem.org
github.com/mfem

Flux [243, 244] is a next-generation resource management and scheduling software framework under
active development at LLNL. This ECP project significantly augments the design and development of this
framework to address two specific technical challenges pertaining to exascale computing.

1. Provide Flux as a portable user-level scheduling solution for complex exascale workflows

2. Provide capabilities for co-scheduling, high throughput, task coordination, and high portability.

3. Develop a resource model capable of portably representing job requirements of exascale systems.

4. Provide Flux as the system resource manager and scheduler for exascale systems.

Major efforts include developing and deploying additional capabilities such as management and scheduling
of a diverse set of emerging workflows as well as a diverse set of exascale resources (e.g., power and burst
buffers). The project strives to do this through co-design efforts with major workflow management software
development teams within ASC (i.e., LLNL’s UQPipeline), ECP/ATDM programs, and exascale computing
hardware vendors themselves. Because Flux’s design allows it to be used as a user-space scheduling tool, it is
suitable for co-development with other workflow systems that require advanced scheduling capabilities. As a
system tool, it is a potential replacement for resource managers such as SLURM, providing more advanced
scheduling capabilities with full awareness of resources beyond just nodes and CPUs (e.g., filesystems, power,
accelerators).

AID (Advanced Infrastructure for Debugging) provides an advanced debugging, code-correctness and
testing toolset to facilitate reproducing, diagnosing and fixing bugs within HPC applications. The current
capabilities include:

• STAT (highly scalable lightweight debugging tool);

• Archer (low-overhead OpenMP data race detector);

• ReMPI/NINJA (scalable record-and-replay and smart noise injector for MPI); and

• FLiT/FPUChecker (floating-point correctness checking tool suite).

Major efforts include developing and deploying additional capabilities within the team’s toolset for exascale
systems and integrating them to ASC and ECP/ATDM codes. The team strives to do this through co-design
efforts with both large HPC code teams and exascale computing hardware vendors themselves.

Caliper is a program instrumentation and performance measurement framework. It is designed as a
performance analysis toolbox in a library, allowing one to bake performance analysis capabilities directly
into applications and activate them at runtime. Caliper can be used for lightweight always-on profiling or
advanced performance engineering use cases, such as tracing, monitoring, and auto-tuning. It is primarily
aimed at HPC applications, but works for any C/C++/Fortran program on Unix/Linux.

Key Challenges

Spack: Spack makes HPC software complexity manageable. Obtaining optimal performance on super-
computers is a difficult task; the space of possible ways to build software is combinatorial in size, and software
reuse is hindered by the complexity of integrating a large number of packages and by issues such as binary
compatibility. Spack makes it easy to build optimized, reproducible, and reusable HPC software.

MFEM: The key challenges addressed by the LLNL ATDM Mathematical Libraries project are:
Robust high-order finite element methods for ALE compressible flow. While high-order methods
offer significant advantages in terms of HPC performance, their application to complicated ALE problems
requires careful considerations to control oscillations and ensure accuracy.
Scalable algorithms for unstructured adaptive mesh refinement. Adaptive mesh refinement is a
common way to increasing application efficiency in problems with localized features. While block-structured

Exascale Computing Project (ECP) 171 ECP-RPT-ST-0002-2020–Public

Figure 73: AMR implementation in MFEM allows many applications to benefit
from non-conforming adaptivity, without significant changes in their codes.

AMR has been well-studied, applying AMR in unstructured settings is challenging, especially in terms of
derefinement, anisotropic refinement, parallel rebalance and scalability.
GPU porting of finite element codes. Due to the relatively high complexity of the finite element
machinery, MFEM, BLAST and related codes use object-oriented C++ design that allows generality and
flexibility, but poses challenges in terms of porting to GPU architectures. Finding the right balance between
generality and performance in the GPU context is an important challenge for many finite element-based
codes that remains outstanding in the current software and programming model environment.

RAJA/Umpire/CHAI: Exascale machines are expected to be very diverse, with different GPU,
threading, memory models, and node architectures. A parallelization strategy that works well for one machine
may not work well for another, but application developers cannot afford to develop multiple versions of their
code for each machine they support. Rather, the application must be written using higher-level abstractions,
and adapted at a lower level, with minimal programmer effort, to specific machines. RAJA, Umpire, and
CHAI address this by giving applications the flexibility to adapt and tune for many target machines, using
the same high level kernel formulations. In other words they separate the concerns of performance and
correctness and avoid a combinatorial explosion of code versions for the exascale ecosystem.

In addition to performance portability, RAJA, Umpire, and CHAI specifically target the porting issues
faced by legacy codes. Where other performance portability frameworks may require a larger up-front
investment in data structures and code restructuring, RAJA, Umpire, and CHAI are non-invasive and allow
codes to adopt strategies for loop parallelism, data layout tuning, and memory management separately.
Legacy applications need not adopt all three at once; they can gradually integrate each framework, at their
own pace, with a minimal set of code modifications.

Flux: Exascale resource management is particularly complex as it requires us to manage both the
complexity of workloads (workflows, jobs, and services) as well as the increasing complexity of exascale
machines themselves. Exascale systems may have diverse node types with CPUs, GPUs, burst buffers, and
other independently allocatable hardware resources. Jobs must be mapped to these systems generically –
one application must be able to run portably and with high performance or throughput on any exascale
machine. Flux aims to save application developers the pain of configuring and setting up their applications
and workflows across multiple machine, and to enable massive ensembles and workflows to run scalably on

Exascale Computing Project (ECP) 172 ECP-RPT-ST-0002-2020–Public

these machines.

AID: Debugging parallel applications running on supercomputers is extremely challenging. greater
challenges. Supercomputers may contain very high numbers of compute cores and multiple GPUs, and
applications running on such systems must rely on multiple communication and synchronization mechanisms
as well as compiler optimization options to effectively utilize the hardware resources. These complexities
often produce errors that occur only occasionally, even when run with the exact same input on the same
hardware. These so-called non-deterministic bugs are remarkably challenging to catch due in large part to
difficulty in reproducing them. Some errors may not even reproduce when being debugged, as the act of
debugging may perturb the execution enough to mask the bug. To find and fix these errors, programmers
currently must devote a large amount of effort and machine time.

Caliper: Caliper addresses the challenges of providing meaningful measurements for large applications.
Often, measurements of FLOPs, timings, data movement, and other quantities are not associated with key
application constructs that give them meaning. For example, we may know the number of floating point
instructions over an entire application run, but if we do not know the number of mesh elements or the
particular physics phase associated with the measurement, we may be unable to determine whether the FLOPS
achieved are good or bad. Caliper separates these concerns: application developers can instrument the phases
other context in their code, and performance analysts and users may turn on performance measurements that
are then associated with the context. Caliper associates meaning with HPC performance measurements.

Solution Strategy

Spack: Spack provides a domain-specific language for templated build recipes. It provides a unique
infrastructure called the concretizer, which solves the complex constraint problems that arise in HPC
dependency resolution. Developers can specify builds abstractly, and Spack automates the tedious configuration
process and drives the build. Spack also includes online services to host recipes, code, and binaries for broad
reuse. These repositories are maintained by Spack’s very active community of contributors.

MFEM: The MFEM team has performed and documented a lot of research in high-performance
mathematical algorithms and finite element discretizations of interest to ATDM applications [245, 246,
247, 248, 249, 250, 251, 252]. Our work has demonstrated that the high-order finite element approach can
successfully handle coupled multi-material ALE, radiation-diffusion and MHD. We have also shown how
high-order methods can be adapted for monotonicity (positivity preservation), handling of artificial viscosity
(shock capturing), sub-zonal physics via closure models, etc.

To enable many applications to take advantage of unstructured mesh adaptivity, the MFEM team is
developing AMR algorithms at library level, targeting both conforming local refinement on simplex meshes
and non-conforming refinement for quad/hex meshes. Our approach is fairly general, allowing for any
high-order finite element space, H1, H(curl), H(div), on any high-order curved mesh in 2D and 3D, arbitrary
order hanging nodes, anisotropic refinement, derifenement and parallel load balancing. An important feature
of our library approach is that it is independent of the physics, and thus easy to incorporate in apps, see
Figure 73.

As part of the efforts in the ECP co-design Center for Efficient Exascale Discretizations (CEED), the
MFEM team is also developing mathematical algorithms and software implementations for finite element
methods that exploit increasing on-node concurrency targeting multiple complex architectures (e.g. GPUs).
This work includes the libCEED low-level API library, the Laghos miniapp, and several other efforts available
through CEED.

To reach its many customers and partners in NNSA, DOE Office of Science, academia and industry, the
MFEM team delivers regular releases on GitHub (e.g., mfem-4.0 in 2019 and mfem-4.1 in 2020) that include
detailed documentation and many example codes. Code quality is ensured by smoke tests with Travis CI on
Linux, Mac, Windows and nightly regression testing at LLNL.

Exascale Computing Project (ECP) 173 ECP-RPT-ST-0002-2020–Public

RAJA/Umpire/CHAI: RAJA, Umpire, and CHAI leverage the abstraction mechanisms available in
modern C++ (C++11 and higher) compilers, such as Lambdas, policy templates, and constructor/destructor
(RAII) patterns for resource management. They aim to provide performance portability at the library level,
and they do not require special support from compilers. Targeting this level of the software stack gives
DOE developers the flexibility to leverage standard parallel programming models like CUDA and OpenMP,
without strictly depending on robust compiler support for these APIs. If necessary features are unavailable
in compilers, library authors are not dependent on vendors for support, and they do not need to wait for
these programming models to be fully implemented. These libraries allow applications to work correctly and
performantly even if some functionality from OpenMP, CUDA, threading, etc. is missing.

Flux: Flux implements hierarchical scheduling. Ultimately, it will be usable either as a full system
resource manager, or as a scheduler for a single workflow within another allocation, or as both. Flux allows
application-level workloads to choose their own scheduling policies and to specify concisely and portably the
types of resources they need to run on a range of machines. Unlike prior approaches like SLURM, which use
a one-size-fits-all scheduling and job management approach, Flux allows the system to set global allocation
policies, but users can instantiate their own schedulers and request specific resources within an allocation.
With Flux, users have the control over policy and scalability that was previously only tunable at the system
level.

5LAWRENCE LIVERMORE NATIONAL LABORATORY | 2017 R&D 100 Award Entry

| www.llnl.gov | info@llnl.govPROVIDING REPRODUCIBILITY FOR UNCOVERING NON-DETERMINISTIC ERRORS IN RUNS ON SUPERCOMPUTERS (PRUNERS)

• ReMPI for scalable record-and-replay of MPI message exchanges [SC15];

• NINJA, a smart noise injector for quickly exposing unintended MPI message races
 [PPoPP17]; and

• FLiT, a test framework for quickly revealing compiler-induced floating-point (FP) variability
 [FLiT17].

To ensure high agility and applicability, each individual component works effectively as a single,
stand-alone tool. In addition, the components are also designed to complement each other, as
shown in Figure 1.

Beyond these basic uses of the four individual components, Figure 1 also shows that PRUNERS
enables the users to augment their existing debugging and testing flows. In fact, our main
design goal has been to develop tools that provide effective non-determinism coverage for the
existing code-development environment on high-end systems. Mature, established techniques
such as application-level non-determinism control, debugging tools such as parallel debuggers,
memory correctness checkers, and automatic test methodologies are all a part of our baseline
ecosystem. For example, PRUNERS extends this baseline seamlessly with some of the new work
flows that increase non-determinism coverage:

• After a buggy non-deterministic run was recorded by ReMPI, programmers can
 deterministically replay the run under the control of an existing parallel debugger for
 further root-cause analysis;

• Existing regression test cases can transparently be run in ReMPI’s deterministic replay

DEBUGGING TESTING

FLiT
Test framework for
revealing
compiler-induced
floating-point variability

ARCHER
Scalable and accurate
OpenMP data-race
detection

ReMPI
Scalable
record-and-replay
of MPI message
exchanges

NINJA
Smart noise injector
for quickly exposing
unintended MPI
message races

PRUNERS

Non-Deterministic
Bug

Bug Fix

FIGURE 1: PRUNERS Toolset increases non-determinism coverage for debugging and
testing workflows

Figure 74: STAT, Archer, NINJA, and FliT: a continuum of debugging tools
for exascale.

AID: Debugging a parallel code can be extremely difficult, and the most exhaustive approaches for
finding errors can require a large amount of time to run. For example, understanding all of the potential
interleavings of parallel threaded code requires combinatorial runtime with respect to the number of threads.
It is not feasible to run this type of analysis at all times.

Our strategy is to provide a continuum of debugging tools – from the lightweight tools like STAT, which
require only seconds to run and gives a high level overview of a code, to Archer, which requires lightweight
code instrumentation, to replay-based fuzzing tools like ReMPI and FLiT, which run the code in a number of
configurations to detect errors. With a suite of tools, we can enable developers to find the most common
bugs quickly, while still being able to detect deep, hard-to-find issues given sufficient runtime and resources.

Caliper: Caliper is implemented as a C++ library and is linked with applications. Application teams
integrate it with their code by adding Caliper annotations at the application level. Contrast this with binary
analysis and DWARF line mappings used by most performance tools, which are obtained automatically but
increase tool complexity and are typically not linked with the application for regular runs.

Applications, their libraries, physics modules, and even runtime systems can be instrumented with Caliper
and measured at the same time. All of these layers of the application stack provide additional context to
Caliper measurements and enable deeper analysis of the relationships between different parts of the code.

Recent Progress

Exascale Computing Project (ECP) 174 ECP-RPT-ST-0002-2020–Public

Public and private
package repositories

Spack users

Automated
package
builds

Per-laboratory pipelines

Figure 75: Spack build pipelines at facilities will provide HPC-native binary
builds for users.

High-0rder Mesh + Field Low-0rder-Refined Mesh + Field

R

P

HO LOR

GPU

CPU

HardwareBackendsKernelsLibrary

Kernel

Memory

Execution

RWR Wlinalg

fem

mesh
OCCA

CUDA

RAJA

OMP

libCEED

HIP

Figure 76: The MFEM team has developed High-Order ↔ Low-Order Transfor-
mations and GPU support for many linear algebra and finite element operations

Spack:

• Produced two major software releases: Spack 0.14.0, 0.15.0, as well as multiple bug-fix releases.

• Developed a new Spack containerize command, which can automatically generate multi-stage container
build recipes from a Spack environment.

• Completed 100% file system lock-based parallel build capability for Spack. This capability handles both
parallel build use case and on-node synchronization.

• Worked with the tri-lab Computing Environment 2 (TCE2) team and code teams to provide Spack
support and to add features for these environments. Notable achievements included hardening for Cray
platforms, new features in Spack stacks, and GitLab pipeline automation for LC.

• Deployed pull request build testing on GitHub for the first time; the entire E4S stack is now built and
tested when GitHub pull requests modify parts of it.

MFEM: Selected recent highlights:

• Completed major software releases: Laghos-3.0, Remhos-1.0, MFEM-4.0, and MFEM-4.1.

• Actively engaged with GPUs and advanced partial assembly algorithms work in MARBL. Demonstrated
large-scale GPU performance in ALE hydro in MFEM benchmarks, Laghos, and BLAST on Lassen.

• Implemented ALE discretization improvements for compressible flow in BLAST, including significant
improvements in mesh optimization methods, dynamic Adaptive Mesh Refinement (AMR), and transfer
between high-order and low-order-refined simulations.

Exascale Computing Project (ECP) 175 ECP-RPT-ST-0002-2020–Public

Figure 77: Status of RAJA, Umpire, and CHAI support for exascale platforms.

RAJA/Umpire/CHAI:

• Developed and released support for AMD GPUs (via the HIP programming model) with RAJA, CHAI,
and Umpire in preparation for El Capitan.

• Continued to support integration of Umpire into multiple ASC application codes.

• Developed and delivered new capabilities to ASC applications in support of ASC milestones and user
needs.

• Developed prototype of fully overlapped asynchronous GPU kernel execution and data transfer to
optimize application performance.

• Developed novel memory pool algorithms in Umpire to handle very large allocation counts.

Flux:

• Developed hierarchical scheduling tools within Flux via co-design with UQ Pipeline, demonstrating
improvements across the entire lifecycle of simulation campaigns; and demonstrated that DYAD can
optimize ML workflows by automatically transferring data files using Flux.

• Demonstrated that Fluxion, our graph-based scheduler, can uniquely enable key use cases of multitiered
storage on El Capitan, driving co-design with HPE; tested AMD GPU scheduling by enabling COVID-19

Exascale Computing Project (ECP) 176 ECP-RPT-ST-0002-2020–Public

Traverse the system, match, and score to find an allocation.

cluster:1

rack:2

slot:4

node:2

core:22 gpu:2

Flux uses a graph to represent compute
and other resources

workflows on Corona; demonstrated the viability of power management within Flux using Variorum, a
platform-independent power library; and released MPIBIND-2.

AID:

• Demonstrated that our new correctness tools (FLiT and FPChecker) can analyze large LLNL code,
discovering previously unknown issues in LLNL code; and facilitated tools co-design via the El Capitan
tools working group.

Caliper:

• Integrated the Caliper performance analysis tools into key LLNL applications. Supported existing
integration with MARBL via improvements to performance visualizations and analysis capabilities.

Next Steps

Spack: In FY21, the team will focus on:

• Work with MARBL and other code teams to improve developer workflows support for Spack as a
development tool.

• Improve integration testing for LLNL code teams by enabling testing for pull requests on platforms of
interest to LC.

• Improve Spack support for GPUs, programming models, and exascale architectures.

MFEM:

• Develop adaptive discretizations for high-order finite element ATDM applications, including algorithms
such as dynamic AMR, mesh optimization, and hp-adaptivity.

• Support MFEM-based ATDM applications in their transition to exascale hardware.

• Continue engagement with ATDM application work, develop mini-apps, and provide support.

RAJA/Umpire/CHAI:

• Develop and deliver new RAJA capabilities to LLNL codes to support ASC milestone and user
requirements, including expanding support for overlapping kernel execution and data transfer and
optimized AMD support.

Exascale Computing Project (ECP) 177 ECP-RPT-ST-0002-2020–Public

• Continue to develop and deliver Umpire capabilities to applications in support of ASC milestone and
user requirements, including interprocess shared memory to support shared on-node data and expanding
functionality available inside GPU kernels.

• Continue interactions with El Capitan Center of Excellence (COE) partners to resolve performance and
correctness issues identified as application users begin testing on early access hardware.

Flux:

• Demonstrate the scalable end-to-end support within Flux for: 1) smart multitiered storage scheduling
and management, 2) CTI-based tool launching, 3) Variorum-enabled power monitoring/capping, 4)
more versatile UQ/V&V/ML workflow scheduling, and 5) DYAD-enabled workflow data scheduling on
El Capitan early access systems.

AID:

• Implement, evaluate and harden a multilevel general-purpose graphics processing unit (GPGPU)
debugging/code-correctness tool suite on early applications running on Collaboration of Oak Ridge,
Argonne, and Livermore (CORAL)-2 early access systems.

Caliper:

• Continue SPOT and Caliper application integrations in LLNL applications. Expand tools with more
GPU and MPI measurement capabilities.

• Continue support, porting, and deployment of Caliper.

Exascale Computing Project (ECP) 178 ECP-RPT-ST-0002-2020–Public

4.6.7 WBS 2.3.6.03 SNL ATDM Software Technologies

Overview

The SNL ATDM Software Technologies projects are now aggregated to include Kokkos, Kokkos kernels,
VTK-m, and Operating Systems and On-Node Runtime efforts.

The Kokkos programming model and C++ library enable performance portable on-compute-node paral-
lelism for HPC/exascale C++ applications. Kokkos has been publicly available at http://github.com/kokkos/kokkos
since May 2015 and is being used and evaluated by projects at DOE laboratories, PSAAP-II centers, other
universities, and organizations such as DoD laboratories. Kokkos library implementation consists of a portable
application programmer interface (API) and architecture specific back-ends, including OpenMP, Intel Xeon
Phi, and CUDA on NVIDIA GPU. These back-ends are developed and optimized as new application-requested
capabilities are added to Kokkos, back-end programming mechanisms evolve, and architectures change.

Kokkos Kernels implements on-node shared memory computational kernels for linear algebra and graph
operations, using the Kokkos shared-memory parallel programming model. Kokkos Kernels forms the building
blocks of a parallel linear algebra library like Tpetra in Trilinos that uses MPI and threads for parallelism, or
it can be used stand-alone in ECP applications. Kokkos Kernels supports several Kokkos backends to support
architectures like Intel CPUs, KNLs and NVIDIA GPUs. The algorithms and the implementations of the
performance-critical kernels in Kokkos Kernels are chosen carefully to match the features of the architectures.
This allows ECP applications to utilize high performance kernels and transfers the burden to Kokkos Kernels
developers to maintain them in future architectures. Kokkos Kernels also has support for calling vendor
provided libraries where there are optimized kernels available.

VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VTK-m
supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme
scale computing by providing abstract models for data and execution that can be applied to a variety of
algorithms across many different processor architectures. The ECP/VTK-m project is building up the VTK-m
codebase with the necessary visualization algorithm implementations that run across the varied hardware
platforms to be leveraged at the exascale. We will be working with other ECP projects, such as ALPINE,
to integrate the new VTK-m code into production software to enable visualization on our HPC systems.
For the ASC/ATDM program, the VTK-m project will concentrate on support of ATDM applications and
ASC’s Advanced Technology Systems (ATS) as well as the ASTRA prototype system at Sandia. General
information about VTK-m as well as source code can be found at: http://m.vtk.org.

The OS and On-Node Runtime project focuses on the design, implementation, and evaluation of operating
system and runtime system (OS/R) interfaces, mechanisms, and policies supporting the efficient execution of
application codes on next-generation platforms. Priorities in this area include the development of lightweight
tasking techniques that integrate network communication, interfaces between the runtime and OS for
management of critical resources (including multi-level memory, non-volatile memory, and network interfaces),
portable interfaces for managing power and energy, and resource isolation strategies at the operating system
level that maintain scalability and performance while providing a more full-featured set of system services.
The OS/R technologies developed by this project will be evaluated in the context of ATDM application
codes running at large-scale on ASC platforms. Through close collaboration with vendors and the broader
community, the intention is to drive the technologies developed by this project into vendor-supported system
software stacks and gain wide adoption throughout the HPC community.

Key Challenges

Kokkos: The many-core revolution in computing is characterized by: (1) a steady increase in the
number of cores within individual computer chips; (2) a corresponding decrease in the amount of memory per
core that must be shared by the cores of a chip, and, (3), the diversity of computer chip architectures. This
diversity is highly disruptive because each architecture imposes different complex and sometimes conflicting
requirements on software to perform well on an architecture. Application software development teams are
confronted with the dual challenges of: (1) inventing new parallel algorithms for many-core chips, (2) learning
the different programming mechanisms of each architecture, and (2), creating and maintaining separate

Exascale Computing Project (ECP) 179 ECP-RPT-ST-0002-2020–Public

versions of their software specialized for each architecture. These tasks may involve considerable overhead
for organizations in terms of time and cost. Adapting application software to changing HPC requirements
is already becoming a large expense for HPC users and can be expected to grow as the diversity of HPC
architectures continues to rise. An alternative, however, is creating software that is performance portable
across current and future architectures.

Kokkos Kernels: There are several challenges associated with the Kokkos Kernels work. Part of the
complexity arises because profiling tools are not yet fully mature for advanced architectures and in this context
profiling involves the interplay of several factors which require expert judgment to improve performance.
Another challenging aspect is working on milestones that span a variety of projects and code bases. There
is a strong dependence on the various application code development teams for our own team’s success. In
addition, we face a constant tension between the need for production ready tools and components in a realm
where the state-of-the-art is still evolving.

VTK-m: The scientific visualization research community has been building scalable HPC algorithms
for over 15 years, and today there are multiple production tools that provide excellent scalability [253, 187].
That said, there are technology gaps in data analysis and visualization facing ATDM applications as they
move to Exascale. As we approach Exascale, we find that we can rely less on disk storage systems as a
holding area for all data between production (by the simulation) and consumption (by the visualization and
analysis). To circumvent this limitation, we must integrate our simulation and visualization into the same
workflow and provide tools that allows us to run effectively and capture critical information.

OS & ONR: Exascale challenges for system software span the areas of operating systems, networks,
and run time systems. Container technologies are by now ubiquitous in the cloud computing space, but for
High Performance Computing their immense potential has been limited by concerns about compatibility
with security models and overhead costs. As vendors bring forward new network hardware for exascale,
both vendors and application programmers lack insight into how applications actually use networks in
practice, especially regarding the characteristics of the messages sent in production codes. As programming
models like OpenMP at the node level and MPI at the inter-node level evolve, the particular needs of DOE
applications must be addressed in both the development of standards and evaluation of provided run time
system implementations.

Solution Strategy

Kokkos: The Kokkos team developed a parallel programming model with flexible enough semantics
that it can be mapped on a diverse set of HPC architectures including current multi-core CPUs and massively
parallel GPUs. The programming model is implemented using C++ template abstractions, which allow a
compile time translation to the underlying programming mechanism on each platform, using their respective
primary tool chains. Compared to approaches which rely on source-to-source translators or special compilers,
this way leverages the investment of vendors in their preferred programming mechanism without introducing
additional, hard to maintain, tools in the compilation chain.

Kokkos Kernels: The Kokkos Kernels team is taking a staged approach to profiling in regards to
target architectures and the algorithms involved. We are also coordinating on a regular basis with the other
projects that are involved in our work to minimize impediments. In response to the need for production
ready tools, we are focusing on a hierarchical approach that involves producing robust, hardened code for
core algorithms while simultaneous pursuing research ideas where appropriate.

VTK-m: The VTK-m team is addressing its challenges through development of portable visualization
algorithms for VTK-m and leveraging and expanding the Catalyst [187] in situ visualization library to apply
this technology to ATDM applications on ASC platforms. VTK-m uses the notion of an abstract device
adapter, which allows algorithms written once in VTK-m to run well on many computing architectures. The

Exascale Computing Project (ECP) 180 ECP-RPT-ST-0002-2020–Public

Figure 78: Kokkos Execution and Memory Abstractions

device adapter is constructed from a small but versatile set of data parallel primitives, which can be optimized
for each platform [171]. It has been shown that this approach not only simplifies parallel implementations,
but also allows them to work well across many platforms [172, 173, 174].

OS & ONR: The OS & ONR team is buying down risk for the use of containers by demonstrating
exemplar application containerizations, e.g., for the ATDM SPARC application. We work with facilities staff
to develop and implement strategies to deploy containers on our HPC systems and with dev-ops teams to
ease the developer burden for code teams seeking to use containers. To better understand network resource
utilization, we use an MPI simulator that accepts real network traces of application executions as inputs
and provides detailed analysis to inform network hardware vendors and application developers alike. We
participate actively in both the OpenMP Language Committee and MPI Forum.

Recent Progress

Kokkos: Kokkos provided a production quality performance portability abstraction to applications and
software technology projects under ATDM and ECP which allows them to run on all currently deployed
DOE production compute platforms. FY20, the team supported ATDM and ASC IC code Kokkos adoption,
debugging and optimization through in house consulting, participation in design discussions, and optimization
of Kokkos capabilities. In coordination with Argonne and Oak Ridge National Laboratories, significant
progress was made in the development of new SYCL and HIP backends for Kokkos, targeting respective
exascale architectures of Intel and AMD. The HIP support is fairly mature, with most commonly used
capabilities now available (significant work is continuing to address performance issues). Significant progress
was also made on the SYCL backend, but compiler issues have slowed this progress. To better support
asynchrony in Kokkos, a prototype for Kokkos-Graphs was developed which uses CUDA graphs under the
hoods. It is currently under code review for integration into the mainline Kokkos release. The Kokkos team
has also continued its engagement as part of the C++ Standards Committee in support of the DOE HPC
community, presented a Linear Algebra proposal to LEWG (the Library Evolution Group) and maturing the
MDSPAN implementation.

Kokkos Kernels: The Kokkos Kernels project focused much of its recent work on supporting the L1
milestones for the ATDM SPARC and EMPIRE codes, developing new linear algebra kernels and improving
current ones on GPU platforms to support these applications. The primary focus was supporting kernels
identified by the Trilinos solver need and continuing the optimization of the Trilinos Tpetra-based solver
stack for GPUs. As part of this work, a Kokkos Kernels sparse triangular solver was developed, in support of
direct solvers and incomplete factorizations on GPU systems. This implementation performed favorably to
vendor implementations (e.g., 2-13x faster than NVIDIA’s sparse triangular solver for relevant problems).
The team also developed a sparse ILU(k) for better preconditioning options on GPUs and a cluster-coloring
based Gauss-Seidel preconditioner that reduces the launch overhead and reduces the number of iterations
(this will assist the ATDM EMPIRE application as a smoother). In addition, the Kokkos Kernels project also

Exascale Computing Project (ECP) 181 ECP-RPT-ST-0002-2020–Public

supported the ATDM GEMMA team by continuing the co-development of GPU based dense solver ADELUS
for distributed memory systems, especially Sierra runs. This ADELUS code achieved 7.7 PetaFLOPs of
performance when run on 7600 GPUs of Sierra, significantly outperforming existing state of the art solvers.

VTK-m: The VTK-m team made significant improvements to ParaView/Catalyst in support of ATDM
applications. These include support for static builds of ParaView/Catalyst, reductions to the memory
footprint of Catalyst when used with SPARC, and customized scripting to simplify in situ visualization
configuration. The team also began development on a performance-evaluation suite that currently consists of
a “driver” program that allows the team to test VTK-m and Catalyst performance. The “driver” program
can read CGNS and Exodus files and drive Catalyst as if a simulation were producing the data. The code
was used to evaluate Catalyst with VTK-m enabled filters on the Vortex GPU hardware. Finally, the team
developed and added a Kokkos device adapter to VTK-m. This advance will simplify porting VTK-m to
ECP architectures and reduce VTK-m developer time.

OS & ONR: The OS & ONR team had a number of recent accomplishments. The LogGOPSim
simulation framework that was enhanced to quantify MPI resource usage was used to characterize ATDM
workloads and examine the relationship between MPI resource usage and application performance and
scalability. A detailed report examining the communication behavior of the Sandia Parallel Aerodynamics
and Reentry Code (SPARC) based primarily on its use of MPI resources was completed. The analysis shows
that SPARC’s communication behavior compares favorably to two well-studied workloads that have been
shown to run efficiently at the scale of our leadership-class systems. We also collaborated with ETH Zurich to
merge several recent changes that improve the performance and scalability of the simulator framework into
a new open source release. We also investigated the use of unprivileged container builds using Podman to
enable building of new container images from the login or service/compute nodes of the target HPC resource
directly. Specifically, the team installed and validated the use of Podman in an unprivileged setting on the
Sandia Stria system. Initial results showed that the full Sandia ATSE software stack and applications can
be built using Podman on Stria, but further improvements and testing will be necessary to move into a full
production container build capability. A full report of the updated container workflow model is highlighted
in an SC’20 paper entitled “Chronicles of Astra: Challenges and Lessons from the First Petascale Arm
Supercomputer.” MPI Forum work has progressed in several key improvements for MPI 4.0. Partitioned
communication has been officially added and work continues on improvements for GPU communication. We
contributed to multiple improvements on collective operations, feedback on dynamic sessions in MPI, and to
improvements for 64-bit support for very large messages. We also contributed to reviewing and providing
extensive feedback on updates to the underlying semantics of the MPI specification and have contributed
some text as well. We continue to actively participate in multiple working groups and co-lead work on
partitioned communication and advanced collectives and persistent operations. We are also actively engaged
as a key partner with the hybrid programming models group, contributing work on efficient native MPI API
support for GPU architectures. The OpenMP Language Committee work focused on preparing for the release
of version 5.1 of the specification. Our contributions include leading the task parallelism subcommittee and
editing/revising two chapters of the specification to ensure correctness.

Next Steps

Kokkos: The Kokkos project will continue to provide high quality (production) Kokkos support and
consultation for ASC applications and libraries. The work on continuing to mature the Kokkos backends will
also continue. In particular, the team will be working (in collaboration with Oak Ridge National Laboratory)
to mature and optimize the HIP backend for exascale platforms using AMD GPUs, (in collaboration with
Argonne National Laboratory) to develop and optimize SYCL/DPC++ backend for the exascale platforms
using Intel GPUs, and to mature and Optimize the OpenMP Target backend as an alternative to the
primary tool chains on the exascale platforms. A particular driver of this backend development this year
will be to demonstrate a working Kokkos-based Trilinos solver stack. The Kokkos team will also continue
its engagement with the C++ Standards committee, developing C++17 based API improvements, which

Exascale Computing Project (ECP) 182 ECP-RPT-ST-0002-2020–Public

will allow the Kokkos Programming Model to be more consistent with C++ and thus reduce the mental
load for users. An example of this is using RangePolicy with team handles as nested loop constructs instead
of TeamThreadRange. Furthermore, the team will engage the C++ standards committee to further the
adoption of successful Kokkos concepts into the standard, and provide feedback on proposed concurrency
mechanisms such as the executors proposal. The team will also continue development of the proposed linear
algebra capabilities with actual parallel backends, in order to allow an adoption of linear algebra into the
standard by 2023.

Kokkos Kernels: The Kokkos Kernels project will continue to develop key optimized kernels for the
GPU-based exascale systems and provide high quality support/consultation for ATDM/ASC applications and
libraries. The team will develop and deliver a portable MIS-2 algorithm to support better coarsening schemes
in multigrid methods on GPU systems. The team plans to explore new algorithms for sparse matrix-matrix
multiplication that have emerged in the field and develop portable implementations of this algorithms,
especially targeting SIERRA and El Capitan platforms (progress on the El Capitan implementation will
depend on the maturity of the HIP toolchain). The team will start developing HIP backend support (targeting
El Capitan) for key sparse and dense linear algebra kernels. The team will continue to actively engage the
vendor community (NVIDIA, ARM, AMD) to develop and deliver kernels using Kokkos Kernels as reference
implementation in order to better support ASC/ATDM codes and the broader CSE community.

VTK-m: The ATDM/VTK-m project has transitioned away from building functionality into the VTK-
m toolkit to addressing the needs of other ST projects and ATDM applications. The FY21 work will continue
to focus on the three key goals of ECP: performance, integration, and quality. In support of these goals,
the team will continue development of a performance-evaluation suite capable of evaluating VTK-m and
Catalyst on ATS-2 (or similar) machines; make improvements to the Catalyst Python IDE, enabling the
management of ParaView scripts inside Python editing tools such as Jupyter; and continue work to unify and
evolve the Phactori scripting language for in situ visualization, simplifying configuration of Catalyst for HPC
applications.

OS & ONR: We plan to characterize OS noise behavior in the context of containers during execution
of ASC workloads and its impact on performance and scalability. There is also interest in understanding
the variability of GPU kernel launch latency. We will continue to work with vendors, facilities, and
application/library developers to further leverage container technologies for ASC workloads. We will also
continue to contribute to the OpenMP and MPI standards bodies to shape the direction of the OpenMP and
MPI parallel programming models to provided needed capabilities for ASC workloads.

Exascale Computing Project (ECP) 183 ECP-RPT-ST-0002-2020–Public

5. CONCLUSION

ECP ST is providing a collection of essential software capabilities necessary for successful results from Exascale
computing platforms, while also delivery a suite of products that can be sustained into the future. This
Capabilities Assessment Report and subsequent versions will provide a periodic summary of capabilities,
plans, and challenges as the Exascale Computing Project proceeds.

Exascale Computing Project (ECP) 184 ECP-RPT-ST-0002-2020–Public

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC,
a collaborative effort of two DOE organizations—the Office of Science and the National Nuclear Security
Administration—responsible for the planning and preparation of a capable Exascale ecosystem—including
software, applications, hardware, advanced system engineering, and early testbed platforms—to support the
nation’s Exascale computing imperative.

Exascale Computing Project (ECP) 185 ECP-RPT-ST-0002-2020–Public

REFERENCES

[1] Todd Gamblin, Matthew P. LeGendre, Michael R. Collette, Gregory L. Lee, Adam Moody, Bronis R.
de Supinski, and W. Scott Futral. The Spack Package Manager: Bringing order to HPC software chaos.
In Supercomputing 2015 (SC’15), Austin, Texas, November 15-20 2015. LLNL-CONF-669890.

[2] Todd Gamblin, Gregory Becker, Peter Scheibel, Matt Legendre, and Mario Melara. Managing HPC
Software Complexity with Spack. In Exascale Computing Project 2nd Annual Meeting, Knoxville, TN,
February 6-8 2018. Half day.

[3] xSDK Community Policies Web page. http://xsdk.info/policies.

[4] Michael A. Heroux. Episode 17: Making the development of scientific applica-
tions effective and efficient. https://soundcloud.com/exascale-computing-project/

episode-17-making-the-development-of-scientific-applications-effective-and-efficient.

[5] LLVM Compiler Infrastructure. LLVM Compiler Infrastructure. http://www.llvm.org.

[6] Supercontainers Presentation. https://oaciss.uoregon.edu/E4S-Forum19/talks/Younge-E4S.pdf.

[7] Paul Basco. DOE Order 413.3B: Program and Project Management (PM) for the Acquisition of
Capital Assets, Significant Changes to the Order. https://www.energy.gov/sites/prod/files/

maprod/documents/15-1025_Bosco.pdf.

[8] E4S Community Policies. https://e4s-project.github.io/policies.html.

[9] Livermore Computing. Toss: Speeding up commodity cluster computing. https://computation.llnl.
gov/projects/toss-speeding-commodity-cluster-computing.

[10] OpenHPC. Community building blocks for hpc systems. http://openhpc.community.

[11] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur. Fine-grained
multithreading support for hybrid threaded MPI programming. Int. J. High Perform. Comput. Appl.,
24(1):49–57, February 2010.

[12] Rajeev Thakur and William Gropp. Test suite for evaluating performance of multithreaded MPI
communication. Parallel Comput., 35(12):608–617, December 2009.

[13] William Gropp and Ewing Lusk. Fault tolerance in message passing interface programs. The International
Journal of High Performance Computing Applications, 18(3):363–372, 2004.

[14] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk, R. Thakur, and J. L.
Traeff. MPI on Millions of Cores. Parallel Processing Letters (PPL), 21(1):45–60, March 2011.

[15] D. Buntinas, B. Goglin, D. Goodell, G. Mercier, and S. Moreaud. Cache-efficient, intranode, large-
message MPI communication with MPICH2-nemesis. In 2009 International Conference on Parallel
Processing, pages 462–469, September 2009.

[16] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk, R. Thakur and J. L.
Traeff. MPI on millions of cores. Parallel Processing Letters, 21(1):45–60, 2011.

[17] Y. Guo, C. J. Archer, M. Blocksome, S. Parker, W. Bland, K. Raffenetti, and P. Balaji. Memory
compression techniques for network address management in MPI. In 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 1008–1017, May 2017.

[18] Nikela Papadopoulou, Lena Oden, and Pavan Balaji. A performance study of UCX over infiniband. In
Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid ’17, pages 345–354, Piscataway, NJ, USA, 2017. IEEE Press.

Exascale Computing Project (ECP) 186 ECP-RPT-ST-0002-2020–Public

http://xsdk.info/policies
https://soundcloud.com/exascale-computing-project/episode-17-making-the-development-of-scientific-applications-effective-and-efficient
https://soundcloud.com/exascale-computing-project/episode-17-making-the-development-of-scientific-applications-effective-and-efficient
http://www.llvm.org
https://oaciss.uoregon.edu/E4S-Forum19/talks/Younge-E4S.pdf
https://www.energy.gov/sites/prod/files/maprod/documents/15-1025_Bosco.pdf
https://www.energy.gov/sites/prod/files/maprod/documents/15-1025_Bosco.pdf
https://e4s-project.github.io/policies.html
https://computation.llnl.gov/projects/toss-speeding-commodity-cluster-computing
https://computation.llnl.gov/projects/toss-speeding-commodity-cluster-computing
http://openhpc.community

[19] Ken Raffenetti, Abdelhalim Amer, Lena Oden, Charles Archer, Wesley Bland, Hajime Fujita, Yanfei
Guo, Tomislav Janjusic, Dmitry Durnov, Michael Blocksome, Min Si, Sangmin Seo, Akhil Langer,
Gengbin Zheng, Masamichi Takagi, Paul Coffman, Jithin Jose, Sayantan Sur, Alexander Sannikov,
Sergey Oblomov, Michael Chuvelev, Masayuki Hatanaka, Xin Zhao, Paul Fischer, Thilina Rathnayake,
Matt Otten, Misun Min, and Pavan Balaji. Why is MPI so slow?: Analyzing the fundamental limits in
implementing MPI-3.1. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’17, pages 62:1–62:12, New York, NY, USA, 2017. ACM.

[20] Ashwin M. Aji, Lokendra S. Panwar, Feng Ji, Karthik Murthy, Milind Chabbi, Pavan Balaji, Keith R.
Bisset, James Dinan, Wu chun Feng, John Mellor-Crummey, Xiaosong Ma, and Rajeev Thakur.
MPI-ACC: Accelerator-aware MPI for scientific applications. IEEE Trans. Parallel Distrib. Syst.,
27(5):1401–1414, May 2016.

[21] Humayun Arafat, James Dinan, Sriram Krishnamoorthy, Pavan Balaji, and P. Sadayappan. Work
stealing for GPU-accelerated parallel programs in a global address space framework. Concurr. Comput.
: Pract. Exper., 28(13):3637–3654, September 2016.

[22] F. Ji, J. S. Dinan, D. T. Buntinas, P. Balaji, X. Ma and W. chun Feng. Optimizing GPU-to-GPU intra-
node communication in MPI. In 2012 International Workshop on Accelerators and Hybrid Exascale
Systems, AsHES 12, 2012.

[23] Lena Oden and Pavan Balaji. Hexe: A toolkit for heterogeneous memory management. In IEEE
International Conference on Parallel and Distributed Systems (ICPADS), 2017.

[24] Giuseppe Congiu and Pavan Balaji. Evaluating the impact of high-bandwidth memory on mpi
communications. In IEEE International Conference on Computer and Communications, 2018.

[25] Mohammad Javad Rashti, Jonathan Green, Pavan Balaji, Ahmad Afsahi, and William Gropp. Multi-
core and network aware MPI topology functions. In Yiannis Cotronis, Anthony Danalis, Dimitrios S.
Nikolopoulos, and Jack Dongarra, editors, Recent Advances in the Message Passing Interface, pages
50–60, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[26] Torsten Hoefler, Rolf Rabenseifner, Hubert Ritzdorf, Bronis R. de Supinski, Rajeev Thakur, and
Jesper Larsson Traff. The scalable process topology interface of MPI 2.2. Concurr. Comput. : Pract.
Exper., 23(4):293–310, March 2011.

[27] Leonardo Arturo Bautista Gomez Robert Latham and Pavan Balaji. Portable topology-aware MPI-I/O.
In IEEE International Conference on Parallel and Distributed Systems (ICPADS), 2017.

[28] Min Si and Pavan Balaji. Process-based asynchronous progress model for MPI point-to-point commu-
nication. In IEEE International Conference on High Performance Computing and Communications
(HPCC), 2017.

[29] Pavan Balaji Seyed Hessamedin Mirsadeghi, Jesper Larsson Traff and Ahmad Afsahi. Exploiting
common neighborhoods to optimize MPI neighborhood collectives. In IEEE International Conference
on High Performance Computing, Data, and Analytics (HiPC), 2017.

[30] Camille Coti, Thomas Herault, Pierre Lemarinier, Laurence Pilard, Ala Rezmerita, Eric Rodriguez,
and Franck Cappello. Blocking vs. non-blocking coordinated checkpointing for large-scale fault tolerant
MPI. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC ’06, New York, NY,
USA, 2006. ACM.

[31] H. V. Dang, S. Seo, A. Amer, and P. Balaji. Advanced thread synchronization for multithreaded MPI
implementations. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pages 314–324, May 2017.

[32] Abdelhalim Amer, Charles Archer, Michael Blocksome, Chongxiao Cao, Michael Chuvelev, Hajime
Fujita, Maria Garzaran, Yanfei Guo, Jeff R. Hammond, Shintaro Iwasaki, Kenneth J. Raffenetti,
Mikhail Shiryaev, Min Si, Kenjiro Taura, Sagar Thapaliya, and Pavan Balaji. Software Combining

Exascale Computing Project (ECP) 187 ECP-RPT-ST-0002-2020–Public

to Mitigate Multithreaded MPI Contention. In Proceedings of the ACM International Conference on
Supercomputing, ICS ’19, pages 367–379, New York, NY, USA, 2019. ACM.

[33] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns, A. Castello, D. Genet,
T. Herault, S. Iwasaki, P. Jindal, L. V. Kale, S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses,
M. Snir, Y. Sun, K. Taura, and P. Beckman. Argobots: A lightweight low-level threading and tasking
framework. IEEE Transactions on Parallel and Distributed Systems, 29(3):512–526, March 2018.

[34] Shintaro Iwasaki, Abdelhalim Amer, Kenjiro Taura, Sangmin Seo, and Pavan Balaji. BOLT: Optimizing
OpenMP Parallel Regions with User-Level Threads. In Proceedings of the 28th International Conference
on Parallel Architectures and Compilation Techniques, PACT ’19, New York, NY, USA, 2019. ACM.

[35] Rohit Zambre, Aparna Chandramowliswharan, and Pavan Balaji. How I learned to stop worrying
about user-visible endpoints and love MPI. In Proceedings of the 34th ACM International Conference
on Supercomputing, ICS ’20, New York, NY, USA, 2020. ACM.

[36] Q. Cao, Y. Pei, T. Herault, K. Akbudak, A. Mikhalev, G. Bosilca, H. Ltaief, D. E. Keyes, and J. Dongarra.
Performance Analysis of Tile Low-Rank Cholesky Factorization Using PaRSEC Instrumentation Tools.
In ProTools’19, ProTools’19, 2019.

[37] Y. Pei, G. Bosilca, I. Yamazaki, A. Ida, and J. Dongarra. Evaluation of Programming Models to Address
Load Imbalance on Distributed Multi-Core CPUs: A Case Study with Block Low-Rank Factorization.
In Parallel Applications Workshop, Alternatives To MPI+X, PAW-ATM 2019, Nov 2019.

[38] Thomas Herault, Yves Robert, George Bosilca, and Jack J. Dongarra. Generic matrix multiplication
for multi-GPU accelerated distributed-memory platforms over PaRSEC. Scala19, 2019.

[39] Thomas Herault, Yves Robert, George Bosilca, Robert J Harrison, Cannada A Lewis, Edward F Valeev,
and Jack J Dongarra. Distributed-memory multi-GPU block-sparse tensor contraction for electronic
structure (revised version). Research Report RR-9365, Inria - Research Centre Grenoble – Rhône-Alpes,
October 2020.

[40] Ole Schütt, Peter Messmer, Jürg Hutter, and Joost VandeVondele. GPU-Accelerated Sparse Ma-
trix–Matrix Multiplication for Linear Scaling Density Functional Theory, chapter 8, pages 173–190.
John Wiley & Sons, Ltd, 2016.

[41] Chong Peng, Justus A Calvin, Fabijan Pavošević, Jinmei Zhang, and Edward F Valeev. Massively
Parallel Implementation of Explicitly Correlated Coupled-Cluster Singles and Doubles Using TiledArray
Framework. J. Phys. Chem. A, 120(51):10231–10244, December 2016.

[42] GASNet website. https://gasnet.lbl.gov/.

[43] John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Dan Bonachea,
Paul H. Hargrove, and Hadia Ahmed. UPC++: A High-Performance Communication Framework for
Asynchronous Computation. In Proceedings of the 33rd IEEE International Parallel & Distributed
Processing Symposium, IPDPS. IEEE, 2019. https://doi.org/10.25344/S4V88H.

[44] UPC++ website. https://upcxx.lbl.gov/.

[45] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: expressing locality and
independence with logical regions. In Proceedings of the international conference on high performance
computing, networking, storage and analysis, page 66. IEEE Computer Society Press, 2012.

[46] The Legion Programming System website. http://legion.stanford.edu/.

[47] Bradford L. Chamberlain. Chapel. In Programming Models for Parallel Computing. The MIT Press,
2015.

[48] The Chapel Parallel Programming Language website. https://chapel-lang.org/.

Exascale Computing Project (ECP) 188 ECP-RPT-ST-0002-2020–Public

https://gasnet.lbl.gov/
https://doi.org/10.25344/S4V88H
https://upcxx.lbl.gov/
http://legion.stanford.edu/
https://chapel-lang.org/

[49] Dan Bonachea and Paul H. Hargrove. GASNet-EX: A High-Performance, Portable Communication
Library for Exascale. In Proceedings of Languages and Compilers for Parallel Computing (LCPC’18),
volume 11882 of Lecture Notes in Computer Science. Springer International Publishing, October 2018.
Lawrence Berkeley National Laboratory Technical Report (LBNL-2001174). https://doi.org/10.
25344/S4QP4W.

[50] Dan Bonachea and Paul Hargrove. GASNet specification, v1.8.1. Technical Report LBNL-2001064,
Lawrence Berkeley National Laboratory, August 2017. https://doi.org/10.2172/1398512.

[51] John Bachan, Dan Bonachea, and Amir Kamil. UPC++ v1.0 Specification, Revision 2020.3.0. Technical
Report LBNL-2001268, Lawrence Berkeley National Laboratory, March 2020. https://doi.org/10.

25344/S4T01S.

[52] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick. UPC++: A PGAS extension for C++. In
2014 IEEE 28th International Parallel and Distributed Processing Symposium, pages 1105–1114, May
2014. https://doi.org/10.1109/IPDPS.2014.115.

[53] David E. Bernholdt, Swen Boehm, George Bosilca, Manjunath Gorentla Venkata, Ryan E. Grant,
Thomas Naughton, Howard P. Pritchard, Martin Schulz, and Geoffroy R. Vallee. A survey of MPI
usage in the U.S. Exascale Computing Program. Technical Report ORNL/SPR-2018/790, Oak Ridge
National Laboratory, 2018. https://doi.org/10.2172/1462877.

[54] Swann Perarnau, Judicael A Zounmevo, Matthieu Dreher, Brian C Van Essen, Roberto Gioiosa, Kamil
Iskra, Maya B Gokhale, Kazutomo Yoshii, and Pete Beckman. Argo NodeOS: Toward unified resource
management for exascale. In Parallel and Distributed Processing Symposium (IPDPS), 2017 IEEE
International, pages 153–162. IEEE, 2017.

[55] J. S. Vetter, R. Brightwell, M. Gokhale, P. McCormick, R. Ross, J. Shalf, K. Antypas, D. Donofrio,
T. Humble, C. Schuman, B. Van Essen, S. Yoo, A. Aiken, D. Bernholdt, S. Byna, K. Cameron,
F. Cappello, B. Chapman, A. Chien, M. Hall, R. Hartman-Baker, Z. Lan, M. Lang, J. Leidel, S. Li,
R. Lucas, J. Mellor-Crummey, P. Peltz Jr., T. Peterka, M. Strout, and J. Wilke. Extreme heterogeneity
2018 - productive computational science in the era of extreme heterogeneity: Report for DOE ASCR
workshop on extreme heterogeneity. Technical report, USDOE Office of Science (SC) (United States),
2018.

[56] Daniel Barry, Anthony Danalis, and Heike Jagode. Effortless monitoring of arithmetic intensity with
papi’s counter analysis toolkit. In 13th International Workshop on Parallel Tools for High Performance
Computing, Dresden, Germany, 2020-09 2020. Springer International Publishing, Springer International
Publishing.

[57] Heike Jagode, Anthony Danalis, and Jack Dongarra. Formulation of requirements for new papi++
software package: Part i: Survey results. Technical Report 1, ICL-UT-20-02, 2020-01 2020.

[58] Heike Jagode, Anthony Danalis, and Damien Genet. Roadmap for refactoring classic papi to papi++:
Part ii: Formulation of roadmap based on survey results. Technical Report 2, ICL-UT-20-09, 2020-07
2020.

[59] J.E. Denny, S. Lee, and J.S. Vetter. Clacc: Translating OpenACC to OpenMP in Clang. In 2018
IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), Dallas, TX,
USA, 2018. IEEE.

[60] Jungwon Kim, Kittisak Sajjapongse, Seyong Lee, and Jeffrey S. Vetter. Design and Implementation of
Papyrus: Parallel Aggregate Persistent Storage. In Proceedings of the 31st IEEE International Parallel
and Distributed Processing Symposium, IPDPS ’17, pages 1151–1162, 2017.

[61] Jungwon Kim, Seyong Lee, and Jeffrey S. Vetter. PapyrusKV: A high-performance parallel key-value
store for distributed NVM architectures. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’17, pages 57:1–57:14, 2017.

Exascale Computing Project (ECP) 189 ECP-RPT-ST-0002-2020–Public

https://doi.org/10.25344/S4QP4W
https://doi.org/10.25344/S4QP4W
https://doi.org/10.2172/1398512
https://doi.org/10.25344/S4T01S
https://doi.org/10.25344/S4T01S
https://doi.org/10.1109/IPDPS.2014.115
https://doi.org/10.2172/1462877

[62] Johannes Doerfert, Joseph Huber, Stefan Stipanovic, Giorgis Georgakoudis, Hamilton Tobon Mos-
quera, and Shilei Tian. (OpenMP) Parallelism Aware Optimizations. https://whova.com/embedded/
session/llvm_202010/1162344/, 2020.

[63] Giorgis Georgakoudis, Johannes Doerfert, Ignacio Laguna, and Thomas R. W. Scogland. FAROS:
A Framework to Analyze OpenMP Compilation Through Benchmarking and Compiler Optimization
Analysis. In Kent Milfeld, Bronis R. de Supinski, Lars Koesterke, and Jannis Klinkenberg, editors,
OpenMP: Portable Multi-Level Parallelism on Modern Systems, pages 3–17, Cham, 2020. Springer
International Publishing.

[64] Michael Kruse and Hal Finkel. User-directed loop-transformations in clang. In 2018 IEEE/ACM 5th
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), pages 49–58. IEEE, 2018.

[65] Michael Kruse and Hal Finkel. Loop optimization framework. LCPC 2018; arXiv:1811.00632, 2018.

[66] Michael Kruse, Hal Finkel, and Xingfu Wu. Autotuning Search Space for Loop Transformations.
LLVM-HPC Workshop @SC, 2020.

[67] Hal Finkel, Alex McCaskey, Tobi Popoola, Dmitry Lyakh, and Johannes Doerfert. Really Embedding
Domain-Specific Languages into C++. LLVM-HPC Workshop @SC, 2020.

[68] OpenACC: Commerical Compilers. [Online]. Available: http://openacc.org/tools.

[69] Kyle Friedline, Sunita Chandrasekaran, M. Graham Lopez, and Oscar Hernandez. OpenACC 2.5
Validation Testsuite Targeting Multiple Architectures. In High Performance Computing, pages 557–575,
Cham, 2017. Springer International Publishing.

[70] SPEC ACCEL. [Online]. Available: https://www.spec.org/accel/.

[71] Tuowen Zhao, Samuel Williams, Mary Hall, and Hans Johansen. Delivering performance portable
stencil computations on cpus and gpus using bricks. In Proceedings of the International Workshop on
Performance, Portability and Productivity in HPC (P3HPC), SC’18, Nov 2018.

[72] T. Zhao, P. Basu, S. Williams, M. Hall, and H. Johansen. Exploiting reuse and vectorization in blocked
stencil computations on CPUs and GPUs. In accepted and to appear, SC 2019, Nov 2019.

[73] T. Zhao, S. Williams, M. Hall, and H. Johansen. Pack-free stencil ghost zone exchange. In submitted to
IPDPS ’20, 2019.

[74] GWT-TUD GmbH. Vampir. https://vampir.eu, 2020. Accessed: 2020-10-15.

[75] Jungwon Kim Kim and Jeffrey S. Vetter. Implementing Efficient Data Compression and Encryption
in a Persistent Key-value Store for HPC. The International Journal of High Performance Computing
Applications, 33(6):1098–1112, 2019.

[76] Bronis R. De Supinski and Michael Klemm. OpenMP Technical Report 8: Version 5.0 Preview 2. http:
//www.openmp.org/wp-content/uploads/openmp-tr8.pdf, 2017. [Online; accessed 31-November-
2019].

[77] Oleksandr Zinenko, Sven Verdoolaege, Chandan Reddy, Jun Shirako, Tobias Grosser, Vivek Sarkar,
and Albert Cohen. Modeling the conflicting demands of parallelism and temporal/spatial locality in
affine scheduling. In Proceedings of the 27th International Conference on Compiler Construction, pages
3–13. ACM, 2018.

[78] Jose Manuel Monsalve Diaz, Kyle Friedline, Swaroop Pophale, Oscar Hernandez, David Bernholdt,
and Sunita Chandrasekaran. Analysis of OpenMP 4.5 Offloading in Implementations: Correctness and
Overhead. Parallel Computing, page 102546, 08 2019.

[79] Johannes Doerfert, Jose Diaz, and Hal Finkel. The TRegion Interface and Compiler Optimizations for
OpenMP Target Regions, pages 153–167. 08 2019.

Exascale Computing Project (ECP) 190 ECP-RPT-ST-0002-2020–Public

https://whova.com/embedded/session/llvm_202010/1162344/
https://whova.com/embedded/session/llvm_202010/1162344/
http://openacc.org/tools
https://www.spec.org/accel/
https://vampir.eu
http://www.openmp.org/wp-content/uploads/openmp-tr8.pdf
http://www.openmp.org/wp-content/uploads/openmp-tr8.pdf

[80] Alok Mishra, Martin Kong, and Barbara Chapman. Kernel Fusion/Decomposition for Automatic
GPU-offloading. In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation
and Optimization, CGO 2019, pages 283–284, Piscataway, NJ, USA, 2019. IEEE Press.

[81] Lingda Li and Barbara Chapman. Compiler Assisted Hybrid Implicit and Explicit GPU Memory Man-
agement under Unified Address Space. In Proceedings of the 31st ACM/IEE International Conference
for High Performance Computing, Networking, Storage, and Analysis in Denver, CO, USA (SC ’19),
November 2019.

[82] Michael Kruse and Hal Finkel. Design and Use of Loop Transformation Pragmas. In OpenMP:
Conquering the Full Hardware Spectrum - 15th International Workshop on OpenMP, IWOMP 2019,
Auckland, New Zealand, September 11-13, 2019, Proceedings, 2019.

[83] Vinu Sreenivasan, Rajath Javali, Mary W. Hall, Prasanna Balaprakash, Thomas R. W. Scogland, and
Bronis R. de Supinski. A Framework for Enabling OpenMP Autotuning. In OpenMP: Conquering the
Full Hardware Spectrum - 15th International Workshop on OpenMP, IWOMP 2019, Auckland, New
Zealand, September 11-13, 2019, Proceedings, pages 50–60, 2019.

[84] V Sreenivasan, R Javali, M Hall, P Balaprakash, and B R de Supinski. A Framework for Enabling
OpenMP Autotuning. 11718, 6 2019.

[85] Thomas R. W. Scogland, Dan Sunderland, Stephen L. Olivier, David S. Hollman, Noah Evans, and
Bronis R. de Supinski. Making OpenMP Ready for C++ Executors. In OpenMP: Conquering the
Full Hardware Spectrum - 15th International Workshop on OpenMP, IWOMP 2019, Auckland, New
Zealand, September 11-13, 2019, Proceedings, pages 320–332, 2019.

[86] Yonghong Yan, Anjia Wang, Chunhua Liao, Thomas R. W. Scogland, and Bronis R. de Supinski.
Extending OpenMP Metadirective Semantics for Runtime Adaptation. In OpenMP: Conquering the
Full Hardware Spectrum - 15th International Workshop on OpenMP, IWOMP 2019, Auckland, New
Zealand, September 11-13, 2019, Proceedings, pages 201–214, 2019.

[87] Vivek Kale, Christian Iwainsky, Michael Klemm, Jonas H. Müller Korndörfer, and Florina M. Ciorba.
Toward a Standard Interface for User-Defined Scheduling in OpenMP. In OpenMP: Conquering the
Full Hardware Spectrum - 15th International Workshop on OpenMP, IWOMP 2019, Auckland, New
Zealand, September 11-13, 2019, Proceedings, pages 186–200, 2019.

[88] Seonmyeong Bak, Yanfei Guo, Pavan Balaji, and Vivek Sarkar. Optimized Execution of Parallel Loops
via User-Defined Scheduling Policies. In ICPP, 2019.

[89] Jonas H. Muller Kondorfer, Florina Ciorba, Christian Iwainsky, Johannes Doerfert, Hal Finkel, Vivek
Kale, and Michael Klemm. A Runtime Approach for Dynamic Load Balancing of OpenMP Parallel
Loops in LLVM. In Proceedings of the 31st ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis in Denver, CO, USA (SC ’19), November 2019.

[90] Shintaro Iwasaki, Abdelhalim Amer, Kenjiro Taura, Sangmin Seo, and Pavan Balaji. BOLT: Optimizing
OpenMP Parallel Regions with User-Level Threads. In Proceedings of the 28th International Conference
on Parallel Architectures and Compilation Techniques (PACT ’19), September 2019.

[91] Alok Mishra, Abid M. Malik, and Barbara Chapman. Using Machine Learning for OpenMP GPU
Offloading in LLVM. In ACM SRC to be held at SC20.

[92] Alok Mishra, Lingda Li, Martin Kong, Hal Finkel, and Barbara Chapman. Benchmarking and Evaluating
Unified Memory for OpenMP GPU Offloading. In Proceedings of the Fourth Workshop on the LLVM
Compiler Infrastructure in HPC, LLVM-HPC@SC 2017, Denver, CO, USA, November 13, 2017, pages
6:1–6:10, 2017.

[93] Ralf S. Engelschall. GNU portable threads (Pth). http://www.gnu.org/software/pth, 1999.

Exascale Computing Project (ECP) 191 ECP-RPT-ST-0002-2020–Public

http://www.gnu.org/software/pth

[94] K. Taura and Akinori Yonezawa. Fine-grain multithreading with minimal compiler support – a cost
effective approach to implementing efficient multithreading languages. In PLDI, pages 320–333, 1997.

[95] S. Thibault. A flexible thread scheduler for hierarchical multiprocessor machines. In COSET, 2005.

[96] J. Nakashima and Kenjiro Taura. MassiveThreads: A thread library for high productivity languages.
In Concurrent Objects and Beyond, pages 222–238. Springer, 2014.

[97] K. B. Wheeler, Richard C. Murphy, and Douglas Thain. Qthreads: An API for programming with
millions of lightweight threads. In MTAAP, 2008.

[98] K. Taura, Kunio Tabata, and Akinori Yonezawa. StackThreads/MP: Integrating futures into calling
standards. In PPPoP, pages 60–71, 1999.

[99] A. Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Protothreads: Simplifying event-driven
programming of memory-constrained embedded systems. In SenSys, pages 29–42, 2006.

[100] Chuck Pheatt. Intel® threading building blocks. Journal of Computing Sciences in Colleges, 23(4):298–
298, 2008.

[101] M. Pérache, Hervé Jourdren, and Raymond Namyst. MPC: A unified parallel runtime for clusters of
NUMA machines. In EuroPar, pages 78–88, 2008.

[102] A. Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R. Douceur. Cooperative task
management without manual stack management. In ATC, 2002.

[103] CORPORATE SunSoft. Solaris multithreaded programming guide. Prentice-Hall, Inc., 1995.

[104] R. von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer. Capriccio: Scalable
threads for internet services. In SOSP, pages 268–281, 2003.

[105] G. Shekhtman and Mike Abbott. State threads library for internet applications. http://state-threads.
sourceforge.net/, 2009.

[106] P. Li and Steve Zdancewic. Combining events and threads for scalable network services implementation
and evaluation of monadic, application-level concurrency primitives. In PLDI, pages 189–199, 2007.

[107] A. Porterfield, Nassib Nassar, and Rob Fowler. Multi-threaded library for many-core systems. In
MTAAP, 2009.

[108] J. del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. TiNy threads: A thread virtual machine
for the Cyclops64 cellular architecture. In WMPP, 2005.

[109] Intel OpenMP runtime library. https://www.openmprtl.org/, 2016.

[110] Barcelona Supercomputing Center. Nanos++. https://pm.bsc.es/projects/nanox/, 2016.

[111] L. V. Kalé, Josh Yelon, and T. Knuff. Threads for interoperable parallel programming. In LCPC, pages
534–552, 1996.

[112] S. Treichler, Michael Bauer, and Alex Aiken. Realm: An event-based low-level runtime for distributed
memory architectures. In PACT, pages 263–276, 2014.

[113] Sangmin Seo, Abdelhalim Amer, Pavan Balaji, Cyril Bordage, George Bosilca, Alex Brooks, Philip Carns,
Adrián Castelló, Damien Genet, Thomas Herault, et al. Argobots: a lightweight low-level threading
and tasking framework. IEEE Transactions on Parallel and Distributed Systems, 29(3):512–526, 2018.

[114] Shintaro Iwasaki, Abdelhalim Amer, Kenjiro Taura, and Pavan Balaji. Lessons learned from analyzing
dynamic promotion for user-level threading. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, page 23. IEEE Press, 2018.

Exascale Computing Project (ECP) 192 ECP-RPT-ST-0002-2020–Public

http://state-threads.sourceforge.net/
http://state-threads.sourceforge.net/
https://www.openmprtl.org/
https://pm.bsc.es/projects/nanox/

[115] Shintaro Iwasaki, Abdelhalim Amer, Kenjiro Taura, and Pavan Balaji. Analyzing the performance
trade-off in implementing user-level threads. IEEE Transactions on Parallel and Distributed Systems,
31(8):1859–1877, 2020.

[116] Abdelhalim Amer Amer, Milind Chabbi, Huiwei Lu, Yanji Wei, Jeff Hammond, Satoshi Matsuoka, and
Pavan Balaji. Lock contention management in multithreaded mpi. ACM Transactions on Parallel
Computing, 2018.

[117] H. V. Dang, S. Seo, A. Amer, and P. Balaji. Advanced thread synchronization for multithreaded mpi
implementations. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pages 314–324, May 2017.

[118] Abdelhalim Amer, Huiwei Lu, Yanjie Wei, Pavan Balaji, and Satoshi Matsuoka. Mpi+threads: Runtime
contention and remedies. SIGPLAN Not., 50(8):239–248, January 2015.

[119] N. Evans, J. Ciesko, S. Olivier, H. Pritchard, S. Iwasaki, K. Raffenetti, and P. Balaji. Implementing
flexible threading support in Open MPI. In Proceedings of the Workshop on Exascale MPI in conjunction
with International Conference for High Performance Computing, Networking, Storage, and Analysis
(ExaMPI ’20), Nov. 2020.

[120] Fortran Standards Committee. Information technology – Programming languages – Fortran – Part 1:
Base language. Standard, International Organization for Standardization, Geneva, CH, October 2004.

[121] Fortran Standards Committee. Information technology – Programming languages – Fortran – Part 1:
Base language. Standard, International Organization for Standardization, Geneva, CH, October 2010.

[122] Fortran Standards Committee. Draft International Standard – Information technology – Programming
languages – Fortran – Part 1: Base language. Standard, International Organization for Standardization,
Geneva, CH, December 2017.

[123] LLVM Project Team. LLVM Web page. https://llvm.org.

[124] A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox, M. Gates,
N. J. Higham, X. S. Li, J. Loe, P. Luszczek, S. Pranesh, S. Rajamanickam, T. Ribizel, B. F. Smith,
K. Swirydowicz, S. Thomas, S. Tomov, Y. M. Tsai, and U. M. Yang. A Survey of Numerical Linear
Algebra Methods Utilizing Mixed Precision Arithmetic, 2020. Submitted to International Journal on
High Performance Computing.

[125] Hartwig Anzt, Erik Boman, Rob Falgout, Pieter Ghysels, Michael Heroux, Xiaoye Li, Lois Curfman
McInnes, Richard Tran Mills, Sivasankaran Rajamanickam, Karl Rupp, Barry Smith, Ichitaro Yamazaki,
and Ulrike Meier Yang. Preparing Sparse Solvers for Exascale Computing. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378, January 2020.

[126] xSDK Web page. http://xsdk.info.

[127] xSDK Community Package Policies. https://github.com/xsdk-project/

xsdk-community-policies.

[128] xSDK Examples. https://github.com/xsdk-project/xsdk-examples.

[129] GPTune. https://github.com/gptune/GPTune.

[130] PETSc/TAO Team. PETSc/TAO website. https://www.mcs.anl.gov/petsc.

[131] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout,
W. Gropp, D. Karpeyev, D. Kaushik, M. Knepley, D. May, L. Curfman McInnes, R. Mills, T. Munson,
K. Rupp, P. Sanan, B. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Users Manual Revision
3.14. Technical Memorandum ANL-95/11 Rev. 3.14, Argonne National Laboratory, 2020.

Exascale Computing Project (ECP) 193 ECP-RPT-ST-0002-2020–Public

https://llvm.org
http://xsdk.info
https://github.com/xsdk-project/xsdk-community-policies
https://github.com/xsdk-project/xsdk-community-policies
https://github.com/xsdk-project/xsdk-examples
https://github.com/gptune/GPTune
https://www.mcs.anl.gov/petsc

[132] SUNDIALS Project Team. SUNDIALS Web page. http://computation.llnl.gov/projects/

sundials.

[133] hypre Web page. https://computation.llnl.gov/projects/hypre.

[134] R. D. Falgout, J. E. Jones, and U. M. Yang. The design and implementation of hypre, a library of
parallel high performance preconditioners. In A. M. Bruaset and A. Tveito, editors, Numerical Solution
of Partial Differential Equations on Parallel Computers, volume 51 of Lecture Notes in Computational
Science and Engineering, chapter 8, pages 267–294. Springer-Verlag, 2006. UCRL-JRNL-205459.

[135] V. Henson and U. Yang. BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Applied
Numerical Mathematics, 41:155–177, 2002.

[136] S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conjugate gradient algorithm
for groundwater flow simulations. Nuclear Science and Engineering, 124(1):145–159, September 1996.
UCRL-JC-122359.

[137] R. Li, B. Sjogreen, and U. M. Yang. A new class of amg interpolation operators based on matrix-matrix
operations. 2020. Submitted to SIAM Journal on Scientific Computing.

[138] Stanimire Tomov, Azzam Haidar, Alan Ayala, Hejer Shaiek, and Jack Dongarra. Fft-ecp implementation
optimizations and features phase. ECP WBS 2.3.3.09 Milestone Report ICL-UT-19-12, FFT-ECP
ST-MS-10-1440, 2019-10 2019.

[139] Alan Ayala, Stanimire Tomov, Xi Luo, Hejer Shaiek, Azzam Haidar, George Bosilca, and Jack Dongarra.
Impacts of multi-gpu mpi collective communications on large fft computation. In SC’19, Proc. of
Workshop on Exascale MPI (ExaMPI), Denver, CO, 2019.

[140] Hejer Shaiek, Stanimire Tomov, Alan Ayala, Azzam Haidar, and Jack Dongarra. Gpudirect mpi
communications and optimizations to accelerate ffts on exascale systems. Extended Abstract icl-ut-19-
06, 2019-09 2019.

[141] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. Harnessing gpu tensor cores
for fast fp16 arithmetic to speed up mixed-precision iterative refinement solvers. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage, and Analysis, SC ’18,
pages 47:1–47:11, Piscataway, NJ, USA, 2018. IEEE Press.

[142] A. Sorna, X. Cheng, E. D’Azevedo, K. Won, and S. Tomov. Optimizing the fast fourier transform
using mixed precision on tensor core hardware. In 2018 IEEE 25th International Conference on High
Performance Computing Workshops (HiPCW), pages 3–7, Dec 2018.

[143] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for hybrid gpu accelerated many-
core systems. Parellel Comput. Syst. Appl., 36(5-6):232–240, 2010. DOI: 10.1016/j.parco.2009.12.005.

[144] Rajib Nath, Stanimire Tomov, and Jack Dongarra. An improved magma gemm for fermi graphics
processing units. Int. J. High Perform. Comput. Appl., 24(4):511–515, November 2010.

[145] Jakub Kurzak, Stanimire Tomov, and Jack Dongarra. Autotuning GEMM kernels for the Fermi GPU.
IEEE Transactions on Parallel and Distributed Systems, 23(11):2045–2057, November 2012.

[146] Stanimire Tomov, Alan Ayala, Azzam Haidar, and Jack Dongarra. Fft-ecp api and high-performance
library prototype for 2-d and 3-d ffts on large-scale heterogeneous systems with gpus. ECP WBS
2.3.3.13 Milestone Report FFT-ECP STML13-27, 2020-01 2020. revision 01-2020.

[147] Alan Ayala, Stanimire Tomov, Azzam Haidar, and Jack Dongarra. heffte: Highly efficient fft for exascale.
In International Conference on Computational Science (ICCS 2020), Amsterdam, Netherlands, 2020-06
2020.

Exascale Computing Project (ECP) 194 ECP-RPT-ST-0002-2020–Public

http://computation.llnl.gov/projects/sundials
http://computation.llnl.gov/projects/sundials
https://computation.llnl.gov/projects/hypre
http://dx.doi.org/10.1016/j.parco.2009.12.005

[148] Hartwig Anzt, Terry Cojean, Yen-Chen Chen, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik
Nayak, Tobias Ribizel, and Yu-Hsiang Tsai. Ginkgo: A high performance numerical linear algebra
library. Journal of Open Source Software, 5(52):2260, 2020.

[149] Better Scientific Software (BSSw) https://bssw.io/.

[150] Hartwig Anzt, Yen-Chen Chen, Terry Cojean, Jack Dongarra, Goran Flegar, Pratik Nayak, Enrique S.
Quintana-Ort́ı, Yuhsiang M. Tsai, and Weichung Wang. Towards continuous benchmarking: An
automated performance evaluation framework for high performance software. In Proceedings of the
Platform for Advanced Scientific Computing Conference, PASC ’19, pages 9:1–9:11, New York, NY,
USA, 2019. ACM.

[151] I. Yamazaki, S. Thomas, M. Hoemmen, Erik G. Boman, and K. Swirydowicz. Low-synchronization
orthogonalization for s-step and pipelined krylov solvers in Trilinos. In Proc. of SIAM Parallel Processing
2020, 2020. submitted.

[152] Goran Flegar, Hartwig Anzt, Terry Cojean, and Enrique S. Quintana-Ort́ı. Customized-Precision
Block-Jacobi Preconditioning for Krylov Iterative Solvers on Data-Parallel Manycore Processors. ACM
Trans. on Mathematical Software, submitted.

[153] José I Aliaga, Hartwig Anzt, Thomas Grützmacher, Enrique S Quintana-Ort́ı, and Andrés E Tomás.
Compressed basis gmres on high performance gpus. arXiv preprint arXiv:2009.12101, 2020.

[154] Yuhsiang M Tsai, Terry Cojean, Tobias Ribizel, and Hartwig Anzt. Preparing ginkgo for amd gpus–a
testimonial on porting cuda code to hip. arXiv preprint arXiv:2006.14290, 2020.

[155] H. Anzt, T. Ribizel, G. Flegar, E. Chow, and J. Dongarra. Parilut - a parallel threshold ilu for gpus. In
2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 231–241, May
2019.

[156] Jennifer A. Loe, Heidi K. Thornquist, and Erik G. Boman. Polynomial Preconditioned GMRES in
Trilinos: Practical Considerations for High-Performance Computing, pages 35–45.

[157] Ahmad Abdelfattah, Hartwig Anzt, Aurelien Bouteiller, Anthony Danalis, Jack Dongarra, Mark Gates,
Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, Stephen Wood, Panruo Wu, Ichitaro
Yamazaki, and Asim YarKhan. SLATE working note 1: Roadmap for the development of a linear
algebra library for exascale computing: SLATE: Software for linear algebra targeting exascale. Technical
Report ICL-UT-17-02, Innovative Computing Laboratory, University of Tennessee, June 2017. revision
04-2018.

[158] Jakub Kurzak, Panruo Wu, Mark Gates, Ichitaro Yamazaki, Piotr Luszczek, Gerald Ragghianti, and
Jack Dongarra. SLATE working note 3: Designing SLATE: Software for linear algebra targeting
exascale. Technical Report ICL-UT-17-06, Innovative Computing Laboratory, University of Tennessee,
September 2017. revision 09-2017.

[159] Mark Gates, Jakub Kurzak, Ali Charara, Asim YarKhan, and Jack Dongarra. SLATE: Design of a
modern distributed and accelerated linear algebra library. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis (SC’19), Denver, CO, 2019. ACM.

[160] William F. Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg Eisenhauer, Junmin Gu,
Philip Davis, Jong Choi, Kai Germaschewski, Kevin Huck, Axel Huebl, Mark Kim, James Kress, Tahsin
Kurc, Qing Liu, Jeremy Logan, Kshitij Mehta, George Ostrouchov, Manish Parashar, Franz Poeschel,
David Pugmire, Eric Suchyta, Keichi Takahashi, Nick Thompson, Seiji Tsutsumi, Lipeng Wan, Matthew
Wolf, Kesheng Wu, and Scott Klasky. Adios 2: The adaptable input output system. a framework for
high-performance data management. SoftwareX, 12:100561, 2020.

[161] Qing Liu, Jeremy Logan, Yuan Tian, Hasan Abbasi, Norbert Podhorszki, Jong Youl Choi, Scott Klasky,
Roselyne Tchoua, Jay Lofstead, Ron Oldfield, et al. Hello ADIOS: the challenges and lessons of
developing leadership class i/o frameworks. Concurrency and Computation: Practice and Experience,
26(7):1453–1473, 2014.

Exascale Computing Project (ECP) 195 ECP-RPT-ST-0002-2020–Public

https://bssw.io/

[162] ADIOS2 documentation. https://adios2.readthedocs.io.

[163] The ADIOS2 framework. https://github.com/ornladios/ADIOS2.

[164] James Ahrens, Kristi Brislawn, Ken Martin, Berk Geveci, C. Charles Law, and Michael Papka. Large-
scale data visualization using parallel data streaming. IEEE Computer Graphics and Applications,
21(4):34–41, July/August 2001.

[165] Hank Childs, David Pugmire, Sean Ahern, Brad Whitlock, Mark Howison, Prabhat, Gunther H. Weber,
and E. Wes Bethel. Extreme scaling of production visualization software on diverse architectures. IEEE
Computer Graphics and Applications, 30(3):22–31, May/June 2010. DOI 10.1109/MCG.2010.51.

[166] Kenneth Moreland. The ParaView tutorial, version 4.4. Technical Report SAND2015-7813 TR, Sandia
National Laboratories, 2015.

[167] Kenneth Moreland. Oh, $#*@! Exascale! The effect of emerging architectures on scientific discovery. In
2012 SC Companion (Proceedings of the Ultrascale Visualization Workshop), pages 224–231, November
2012. DOI 10.1109/SC.Companion.2012.38.

[168] Kenneth Moreland, Berk Geveci, Kwan-Liu Ma, and Robert Maynard. A classification of scientific
visualization algorithms for massive threading. In Proceedings of Ultrascale Visualization Workshop,
November 2013.

[169] Kenneth Moreland, Christopher Sewell, William Usher, Li ta Lo, Jeremy Meredith, David Pugmire,
James Kress, Hendrik Schroots, Kwan-Liu Ma, Hank Childs, Matthew Larsen, Chun-Ming Chen,
Robert Maynard, and Berk Geveci. VTK-m: Accelerating the visualization toolkit for massively
threaded architectures. IEEE Computer Graphics and Applications, 36(3):48–58, May/June 2016.
DOI 10.1109/MCG.2016.48.

[170] Kenneth Moreland. The vtk-m user’s guide. techreport SAND 2018-0475 B, Sandia National Laboratories,
2018. http://m.vtk.org/images/c/c8/VTKmUsersGuide.pdf.

[171] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990. ISBN 0-262-02313-X.

[172] Li-ta Lo, Chris Sewell, and James Ahrens. PISTON: A portable cross-platform framework for data-
parallel visualization operators. In Eurographics Symposium on Parallel Graphics and Visualization,
2012. DOI 10.2312/EGPGV/EGPGV12/011-020.

[173] Matthew Larsen, Jeremy S. Meredith, Paul A. Navrátil, and Hank Childs. Ray tracing within a data par-
allel framework. In IEEE Pacific Visualization Symposium (PacificVis), April 2015. DOI 10.1109/PACI-
FICVIS.2015.7156388.

[174] Kenneth Moreland, Matthew Larsen, and Hank Childs. Visualization for exascale: Portable performance
is critical. In Supercomputing Frontiers and Innovations, volume 2, 2015. DOI 10.2312/pgv.20141083.

[175] H. Carter Edwards, Daniel Sunderland, Chris Amsler, and Sam Mish. Multicore/GPGPU portable
computational kernels via multidimensional arrays. In IEEE Cluster, September 2011.

[176] Jeremy S. Meredith, Sean Ahern, Dave Pugmire, and Robert Sisneros. EAVL: The extreme-scale
analysis and visualization library. In Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV), pages 21–30, 2012. DOI 10.2312/EGPGV/EGPGV12/021-030.

[177] Kenneth Moreland, Brad King, Robert Maynard, and Kwan-Liu Ma. Flexible analysis software for emerg-
ing architectures. In 2012 SC Companion (Petascale Data Analytics: Challenges and Opportunities),
pages 821–826, November 2012. DOI 10.1109/SC.Companion.2012.115.

[178] William Schroeder, Robert Maynard, and Berk Geveci. Flying edges: A high-performance scalable
isocontouring algorithm. In Large Data Analysis and Visualization (LDAV), October 2015.

Exascale Computing Project (ECP) 196 ECP-RPT-ST-0002-2020–Public

https://adios2.readthedocs.io
https://github.com/ornladios/ADIOS2
http://m.vtk.org/images/c/c8/VTKmUsersGuide.pdf

[179] Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L. Lee, Adam Moody, Bronis R.
de Supinski, and Scott Futral. The Spack package manager: Bringing order to HPC software chaos. In
SC ’15: Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, November 2015.

[180] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: As easy
as 1, 2, 3. In SC ’11: Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, November 2011.

[181] Tonmoy Dey, Kento Sato, Bogdan Nicolae, Jian Guo, Jens Domke, Weikuan Yu, Franck Cappello, and
Kathryn Mohror. Optimizing asynchronous multi-level checkpoint/restart configurations with machine
learning. In HPS’20: The 2020 IEEE International Workshop on High-Performance Storage, New
Orleans, USA, 2020.

[182] Bogdan Nicolae, Jiali Li, Justin Wozniak, George Bosilca, Matthieu Dorier, and Franck Cappello.
Deepfreeze: Towards scalable asynchronous checkpointing of deep learning models. In CGrid’20: 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing, pages 172–181,
Melbourne, Australia, 2020.

[183] Utkarsh Ayachit. The ParaView guide: a parallel visualization application, 2015.

[184] James Ahrens, Berk Geveci, and Charles Law. ParaView: An end-user tool for large-data visualization.
The visualization handbook, 2005.

[185] Hank Childs, Eric Brugger, Brad Whitlock, Jeremy Meredith, Sean Ahern, David Pugmire, Kathleen
Biagas, Mark Miller, Cyrus Harrison, Gunther H. Weber, Hari Krishnan, Thomas Fogal, Allen Sanderson,
Christoph Garth, E. Wes Bethel, David Camp, Oliver Rübel, Marc Durant, Jean M. Favre, and Paul
Navrátil. VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data. In High Performance
Visualization—Enabling Extreme-Scale Scientific Insight, pages 357–372. CRC Press/Francis–Taylor
Group, October 2012.

[186] Matthew Larsen, James Ahrens, Utkarsh Ayachit, Eric Brugger, Hank Childs, Berk Geveci, and Cyrus
Harrison. The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman. In Proceedings
of the Third Workshop of In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV), held in conjunction with SC17, Denver, CO, USA, October 2017.

[187] Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O’Leary, Kenneth Moreland, Nathan Fabian,
and Jeffrey Mauldin. Paraview catalyst: Enabling in situ data analysis and visualization. In Proceedings
of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV 2015), pages 25–29, November 2015.

[188] Hamish A. Carr, Gunther H. Weber, Christopher M. Sewell, Oliver Rübel, Patricia Fasel, and James P.
Ahrens. Scalable contour tree computation by data parallel peak pruning. Transactions on Visualization
and Computer Graphics, 2019. In press.

[189] A Biswas, S Dutta, J Pulido, and J Ahrens. In situ data-driven adaptive sampling for large-scale
simulation data summarization. In Situ Infrastructures for Enabling Extreme-Scale Analysis and
Visualization, ISAV, pages 13–18, 2018.

[190] Soumya Dutta, Ayan Biswas, and James Ahrens. Multivariate pointwise information-driven data
sampling and visualization. Entropy, 21(7):1–25, 2019.

[191] Qun Liu, Subhashis Hazarika, John M. Patchett, James P. Ahrens, and Ayan Biswas. Poster: Deep
learning-based feature-aware data modeling for complex physics simulations. In SC ’19: Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis, 11
2019. To Appear in SC ’19.

Exascale Computing Project (ECP) 197 ECP-RPT-ST-0002-2020–Public

[192] S. Dutta, J. Woodring, Han-Wei Shen, J. Chen, and J. Ahrens. Homogeneity guided probabilistic data
summaries for analysis and visualization of large-scale data sets. In 2017 IEEE Pacific Visualization
Symposium (PacificVis), pages 111–120, 2017.

[193] Soumya Dutta and Han-Wei Shen. Distribution driven extraction and tracking of features for time-
varying data analysis. IEEE Trans. on Vis. and Comp. Graphics, 22(1):837–846, 2016.

[194] Aaditya G Landge, Valerio Pascucci, Attila Gyulassy, Janine C Bennett, Hemanth Kolla, Jacqueline
Chen, and Peer-Timo Bremer. In-situ feature extraction of large scale combustion simulations using
segmented merge trees. In SC’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1020–1031. IEEE, 2014.

[195] Steve Petruzza, Sean Treichler, Valerio Pascucci, and Peer-Timo Bremer. Babelflow: An embedded
domain specific language for parallel analysis and visualization. In 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 463–473. IEEE, 2018.

[196] Xavier Bonaventura, Miquel Feixas, Mateu Sbert, Lewis Chuang, and Christian Wallraven. A survey of
viewpoint selection methods for polygonal models. Entropy, 20(5), 2018.

[197] Nicole Marsaglia. Automatic camera selection for in situ visualization. Technical Report AREA-202001-
Marsaglia, University of Oregon, Computer and Information Sciences Department, 1 2020. Available at
https://www.cs.uoregon.edu/Reports/AREA-202001-Marsaglia.pdf.

[198] Sudhanshu Sane, Roxana Bujack, and Hank Childs. Revisiting the Evaluation of In Situ Lagrangian
Analysis. In Hank Childs and Fernando Cucchietti, editors, Eurographics Symposium on Parallel
Graphics and Visualization. The Eurographics Association, 2018.

[199] Sudhanshu Sane, Hank Childs, and Roxana Bujack. An Interpolation Scheme for VDVP Lagrangian
Basis Flows. In Eurographics Symposium on Parallel Graphics and Visualization (EGPGV), pages
109–118, Porto, Portugal, June 2019.

[200] Roba Binyahib, David Pugmire, Boyana Norris, and Hank Childs. A Lifeline-Based Approach for
Work Requesting and Parallel Particle Advection. In IEEE Symposium on Large Data Analysis and
Visualization (LDAV), Vancouver, Canada, October 2019.

[201] Lennart Noordsij, Steven van der Vlugt, Mohamed Bamakhrama, Zaid Al-Ars, and Peter Lindstrom.
Parallelization of variable rate decompression through metadata. In Euromicro International Conference
on Parallel, Distributed and Network-based Processing, pages 245–252, Mar 2020.

[202] Peter Lindstrom, Markus Salasoo, Matt Larsen, and Stephen Herbein. zfp version 0.5.5, May 2019.
https://github.com/LLNL/zfp.

[203] Stephen Hamilton, Randal Burns, Charles Meneveau, Perry Johnson, Peter Lindstrom, John Patchett,
and Alexander Szalay. Extreme event analysis in next generation simulation architectures. In ISC High
Performance 2017, pages 277–293, 2017.

[204] Peter Lindstrom. Error distributions of lossy floating-point compressors. In JSM 2017 Proceedings,
pages 2574–2589, 2017.

[205] James Diffenderfer, Alyson Fox, Jeffrey Hittinger, Geoffrey Sanders, and Peter Lindstrom. Error analysis
of ZFP compression for floating-point data. SIAM Journal on Scientific Computing, 41(3):A1867–A1898,
2019.

[206] Dorit Hammerling, Allison Baker, Alexander Pinard, and Peter Lindstrom. A collaborative effort to
improve lossy compression methods for climate data. In 5th International Workshop on Data Analysis
and Reduction for Big Scientific Data (DRBSD-5), Nov 2019.

[207] Duong Hoang, Brian Summa, Harsh Bhatia, Peter Lindstrom, Pavol Klacansky, Will Usher, Peer-Timo
Bremer, and Valerio Pascucci. Efficient and flexible hierarchical data layouts for a unified encoding
of scalar field precision and resolution. IEEE Transactions on Visualization and Computer Graphics,
2020. To appear.

Exascale Computing Project (ECP) 198 ECP-RPT-ST-0002-2020–Public

https://www.cs.uoregon.edu/Reports/AREA-202001-Marsaglia.pdf
https://github.com/LLNL/zfp

[208] Franck Cappello and Peter Lindstrom. Compression of scientific data. ISC High Performance 2017
Tutorials, 2017.

[209] Franck Cappello and Peter Lindstrom. Compression of scientific data. IEEE/ACM SC 2017 Tutorials,
2017.

[210] Franck Cappello and Peter Lindstrom. Compression for scientific data. Euro-Par 2018 Tutorials, 2018.

[211] Franck Cappello and Peter Lindstrom. Compression for scientific data. IEEE/ACM SC 2018 Tutorials,
2018.

[212] Franck Cappello and Peter Lindstrom. Compression for scientific data. ISC High Performance 2019
Tutorials, 2019.

[213] Franck Cappello, Peter Lindstrom, and Sheng Di. Compression for scientific data. IEEE/ACM SC
2019 Tutorials, 2019.

[214] Franck Cappello, Peter Lindstrom, and Sheng Di. Lossy compression for scientific data. IEEE/ACM
SC 2020 Tutorials, 2020.

[215] Franck Cappello, Peter Lindstrom, Sheng Di, Jon Calhoun, Pascal Grosset, Katrin Heitmann, and
Allison Baker. Lossy compression for scientific data: Success stories. IEEE/ACM SC 2020 Panels, 2020.

[216] E4S Web page. http://e4s.io.

[217] E4S Validation Test Suite. https://github.com/E4S-Project/testsuite.

[218] R Priedhorsky and TC Randles. Charliecloud: Unprivileged containers for user-defined software stacks
in hpc. Technical Report LA-UR-16-22370, Los Alamos National Laboratory, 2016. available as
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-22370.

[219] Docker Inc. Docker. https://www.docker.com.

[220] BEE. BEE. http://bee.dsscale.org.

[221] RS Canon and D Jacobsen. Shifter: Containers for hpc. In Proceedings of the Cray User’s Group, 2016.

[222] Bauer MW Kurtzer GM, Sochat V. Singularity: Scientific containers for mobility of compute. PLoS
ONE, may 2017. available as https://doi.org/10.1371/journal.pone.0177459.

[223] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding fork-join parallelism
into llvm’s intermediate representation. SIGPLAN Not., 52(8):249–265, January 2017.

[224] J. Ahrens, S. Jourdain, P. OLeary, J. Patchett, D. H. Rogers, and M. Petersen. An image-based
approach to extreme scale in situ visualization and analysis. In SC ’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 424–434, Nov
2014.

[225] Adam J. Stewart, Massimiliano Culpo, Gregory Becker, Peter Scheibel, and Todd Gamblin. Spack
Community BoF. In Supercomputing 2019, Denver, CO, November 21 2019.

[226] Todd Gamblin, Gregory Becker, Massimiliano Culpo, Mario Melara, Peter Scheibel, and Adam J.
Stewart. Tutorial: Managing HPC Software Complexity with Spack. In Supercomputing 2019, Denver,
CO, November 18 2019. Full day.

[227] Todd Gamblin and Gregory Becker. Tutorial: Spack for Developers. In Los Alamos National Laboratory,
Los Alamos, NM, November 5 2019. Full day.

[228] Todd Gamblin and Gregory Becker. Spack Tutorial. In 1st Workshop on NSF and DOE High
Performance Computing Tools, Eugene, OR, July 10-11 2019. University of Oregon.

Exascale Computing Project (ECP) 199 ECP-RPT-ST-0002-2020–Public

http://e4s.io
https://github.com/E4S-Project/testsuite
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-22370
https://www.docker.com
http://bee.dsscale.org
https://doi.org/10.1371/journal.pone.0177459

[229] Levi Baber, Adam J. Stewart, Gregory Becker, and Todd Gamblin. Tutorial: Managing HPC Software
Complexity with Spack. In Practice and Experience in Advanced Research Computing (PEARC’19),
Chicago, IL, July 31 2019. Half day.

[230] Todd Gamblin, Gregory Becker, Massimiliano Culpo, and Michael Kühn. Tutorial: Managing HPC
Software Complexity with Spack. In ISC High Performance, Houston, TX, June 16 2019. Half day.

[231] Todd Gamblin, Gregory Becker, Matthew P. LeGendre, and Peter Scheibel. Spack Roundtable Discussion.
In Exascale Computing Project 3nd Annual Meeting, Houston, TX, January 16 2019.

[232] Todd Gamblin, Gregory Becker, Peter Scheibel, Matt Legendre, and Mario Melara. Managing HPC
Software Complexity with Spack. In Exascale Computing Project 3nd Annual Meeting, Houston, TX,
January 14 2019. Full day.

[233] Todd Gamblin, Adam Stewart, Johannes Albert von der Gönna an Marc Pérache, and Matt Belhorn.
Spack Community Birds-of-a-Feather Session. In Supercomputing 2018, Dallas, TX, November 13 2018.

[234] Todd Gamblin, Gregory Becker, Massimiliano Culpo, Gregory L. Lee, Matt Legendre, Mario Melara,
and Adam J. Stewart. Tutorial: Managing HPC Software Complexity with Spack. In Supercomputing
2018, Dallas, TX, November 12 2018. Full day.

[235] Todd Gamblin, William Scullin, Matt Belhorn, Mario Melara, and Gerald Ragghianti. Spack State of
the Union. In Exascale Computing Project 2nd Annual Meeting, Knoxville, TN, February 6-8 2018.

[236] Todd Gamblin, Gregory Becker, Massimiliano Culpo, Gregory L. Lee, Matt Legendre, Mario Melara,
and Adam J. Stewart. Tutorial: Managing HPC Software Complexity with Spack. In Supercomputing
2017, Salt Lake City, Utah, November 13 2017. Full day.

[237] Todd Gamblin. Tutorial: Managing HPC Software Complexity with Spack. In HPC Knowledge Meeting
(HPCKP’17), San Sebastián, Spain, June 16 2017. 2 hours.

[238] Gregory Becker, Matt Legendre, and Todd Gamblin. Tutorial: Spack for HPC. Livermore Computing,
Lawrence Livermore National Laboratory, Livermore, CA, April 6 2017. Half day.

[239] Todd Gamblin, Massimiliano Culpo, Gregory Becker, Matt Legendre, Greg Lee, Elizabeth Fischer, and
Benedikt Hegner. Tutorial: Managing HPC Software Complexity with Spack. In Supercomputing 2016,
Salt Lake City, Utah, November 13 2016. Half day.

[240] MFEM: Modular finite element methods library. mfem.org.

[241] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny V. Dobrev, Y. Dudouit,
A. Fisher, Tz. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, and
S. Zampini. MFEM: A modular finite element library. Computers & Mathematics with Applications,
2020.

[242] BLAST: High-order finite element Lagrangian hydrocode. https://computation.llnl.gov/projects/
blast.

[243] Dong H. Ahn, Jim Garlick, Mark Grondona, Don Lipari, Becky Springmeyer, and Martin Schulz. Flux:
A next-generation resource management framework for Large hpc centers. In Proceedings of the 10th
International Workshop on Scheduling and Resource Management for Parallel and Distributed Systems,
September 2014.

[244] Dong H. Ahn, Ned Bass, Albert Chu, Jim Garlick, Mark Grondona, Stephen Herbein, Joseph Koning,
Tapasya Patki, Thomas R. W. Scogland, and Becky Springmeyer. Flux: Overcoming scheduling
challenges for exascale workflows. In Proceedings of the 13th Workshop on Workflows in Support of
Large-Scale Science, WORKS ’18, 2018.

[245] R. W. Anderson, V. A. Dobrev, T. V. Kolev, R. N. Rieben, and V. Z. Tomov. High-order multi-material
ALE hydrodynamics. SIAM J. Sc. Comp., 40(1):B32–B58, 2018.

Exascale Computing Project (ECP) 200 ECP-RPT-ST-0002-2020–Public

mfem.org
https://computation.llnl.gov/projects/blast
https://computation.llnl.gov/projects/blast

[246] V. A. Dobrev, T. V. Kolev, D. Kuzmin, R. N. Rieben, and V. Z. Tomov. Sequential limiting in
continuous and discontinuous Galerkin methods for the Euler equations. J. Comput. Phys., 356:372–390,
2018.

[247] R. W. Anderson, V. A. Dobrev, T. V. Kolev, D. Kuzmin, M. Quezada de Luna, R. N. Rieben, and V. Z.
Tomov. High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element
method for the transport equation. J. Comput. Phys., 334:102–124, 2017.

[248] V. A. Dobrev, T. V. Kolev, R. N. Rieben, and V. Z. Tomov. Multi-material closure model for high-order
finite element Lagrangian hydrodynamics. Int. J. Numer. Meth. Fluids, 82(10):689–706, 2016.

[249] V. A. Dobrev, T. V. Kolev, and R. N. Rieben. High order curvilinear finite elements for elastic–plastic
Lagrangian dynamics. J. Comput. Phys., 257, Part B:1062 – 1080, 2014.

[250] V. A. Dobrev, T. E. Ellis, Tz. V. Kolev, and R. N. Rieben. High-order curvilinear finite elements for
axisymmetric Lagrangian hydrodynamics. Computers and Fluids, 83:58–69, 2013.

[251] V. A. Dobrev, T. V. Kolev, and R. N. Rieben. High-order curvilinear finite element methods for
Lagrangian hydrodynamics. SIAM J. Sc. Comp., 34(5):B606–B641, 2012.

[252] V. A. Dobrev, T. E. Ellis, Tz. V. Kolev, and R. N. Rieben. Curvilinear finite elements for Lagrangian
hydrodynamics. Int. J. Numer. Meth. Fluids, 65(11-12):1295–1310, 2011.

[253] James Ahrens, Berk Geveci, and Charles Law. ParaView: An end-user tool for large data visualization.
In Visualization Handbook. Elesvier, 2005. ISBN 978-0123875822.

Exascale Computing Project (ECP) 201 ECP-RPT-ST-0002-2020–Public

	EXECUTIVE SUMMARY
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Background
	ECP ST Project WBS changes

	ECP Software Technology Planning, Execution, Tracking and Assessment
	ECP Software Technology Architecture and Design
	The Extreme-scale Scientific Software Stack (E4S)
	Software Development Kits
	ECP ST Product Dictionary
	ECP Product Dependency Management

	ECP ST Planning and Tracking
	ECP ST P6 Activity Issues
	Key Performance Parameter (KPP) 3
	ECP ST Software Delivery
	ECP ST Software Lifecycle

	ECP ST Deliverables
	ECP ST Development Projects
	Standards Committees
	Contributions to External Software Products

	ECP ST Technical Areas
	WBS 2.3.1 Programming Models & Runtimes
	Scope and Requirements
	Assumptions and Feasibility
	Objectives
	Plan
	Risks and Mitigation Strategies
	Future Trends
	WBS 2.3.1.01 Programming Models & Runtimes Software Development Kits
	WBS 2.3.1.07 Exascale MPI
	WBS 2.3.1.08 Legion
	WBS 2.3.1.09 Distributed Tasking at Exascale: PaRSEC
	WBS 2.3.1.14 GASNet-EX
	WBS 2.3.1.14 UPC++
	WBS 2.3.1.16 SICM
	WBS 2.3.1.17 Open MPI for Exascale (OMPI-X)
	WBS 2.3.1.18 RAJA/Kokkos
	WBS 2.3.1.19 Argo: Low-Level Resource Management for the OS and Runtime

	WBS 2.3.2 Development Tools
	Scope and Requirements
	Assumptions and Feasibility
	Objectives
	Plan
	Risk and Mitigation Strategies
	Future Trends
	WBS 2.3.2.01 Development Tools Software Development Kits
	WBS 2.3.2.06 Exa-PAPI
	WBS 2.3.2.08 HPCToolkit
	WBS 2.3.2.10 PROTEAS-TUNE: Programming Toolchain for Emerging Architectures and Systems
	WBS 2.3.2.10 PROTEAS-TUNE: LLVM
	WBS 2.3.2.10 PROTEAS-TUNE - Clacc: OpenACC in Clang and LLVM
	WBS 2.3.2.10 PROTEAS-TUNE - LLVM-DOE: Creating and Maintaining a DOE Fork of LLVM
	WBS 2.3.2.10 PROTEAS-TUNE - FLACC and MLIR: Creating and Maintaining OpenACC in LLVM/Flang
	WBS 2.3.2.10 PROTEAS-TUNE: Autotuning
	WBS 2.3.2.10 PROTEAS-TUNE - Bricks
	WBS 2.3.2.10 PROTEAS-TUNE - TAU Performance System
	WBS 2.3.2.10 PROTEAS-TUNE - PAPYRUS: Parallel Aggregate Persistent Storage
	SOLLVE
	WBS 2.3.2.11 Argobots: Flexible, High-Performance Lightweight Threading
	WBS 2.3.2.11 BOLT: Lightning Fast OpenMP
	WBS 2.3.2.12 Flang

	WBS 2.3.3 Mathematical Libraries
	Scope and Requirements
	Assumptions and Feasibility
	Objectives
	Plan
	Risks and Mitigations Strategies
	Future Trends
	WBS 2.3.3.01 xSDK
	WBS 2.3.3.01 xSDK Sub-project: multiprecision
	WBS 2.3.3.06 PETSc-TAO
	WBS 2.3.3.07 STRUMPACK-SuperLU
	WBS 2.3.3.07 Sub-project: FFTX
	WBS 2.3.3.12 Sub-project: SUNDIALS
	WBS 2.3.3.12 Sub-project: hypre
	WBS 2.3.3.13 CLOVER
	WBS 2.3.3.13 CLOVER Sub-project FFT-ECP
	WBS 2.3.3.13 CLOVER Sub-project Kokkos Kernels
	WBS 2.3.3.13 CLOVER Sub-project PEEKS
	WBS 2.3.3.13 CLOVER Sub-project SLATE
	WBS 2.3.3.14 ALExa

	WBS 2.3.4 Data & Visualization
	Scope and Requirements
	Assumptions and Feasibility
	Objectives
	Plan
	Risks and Mitigations Strategies
	Future Trends
	WBS 2.3.4.01 Data & Visualization Software Development Kits
	WBS 2.3.4.09 ADIOS
	WBS 2.3.4.10 DataLib
	WBS 2.3.4.13 ECP/VTK-m
	WBS 2.3.4.14 VeloC: Very Low Overhead Checkpointing System
	WBS 2.3.4.14 ECP SZ: Fast, Effective, Parallel Error-bounded Exascale Lossy Compression for Scientific Data
	WBS 2.3.4.15 ExaHDF5
	WBS 2.3.4.15 UnifyCR – A file system for burst buffers
	WBS 2.3.4.16 ALPINE
	WBS 2.3.4.16 ZFP: Compressed Floating-Point Arrays

	WBS 2.3.5 SW Ecosystem & Delivery
	Scope and Requirements
	Assumptions and Feasibility
	Objectives
	Plan
	Risks and Mitigation Strategies
	Future Trends
	WBS 2.3.5.01 Software Development Kits
	WBS 2.3.5.09 Software Packaging Technologies
	WBS 2.3.5.10 ExaWorks

	WBS 2.3.6 NNSA ST
	Scope and Requirements
	Objectives
	Plan
	Risks and Mitigation Strategies
	WBS 2.3.6.01 LANL ATDM Software Technologies
	WBS 2.3.6.02 LLNL ATDM Software Technologies
	WBS 2.3.6.03 SNL ATDM Software Technologies

	Conclusion

