
ECP Math Libraries:
Capabilities, Applications Engagement

Sherry Li

Lawrence Berkeley National Laboratory

Lois Curfman McInnes

Argonne National Laboratory

And the ECP Math Libraries Community

ECP Community BOF Days

03/31/2021

Agenda

• Introduction

• Flash talks of individual math libraries

• Breakout rooms for deep-dive

3

Application
Development

Software
Technology

Hardware
and Integration

Scalable software
stack

Science and mission
applications

Relationships: facilities with
AD/ST, with vendors

ECP’s holistic approach uses co-design and integration to achieve
exascale computing

Applications Co-Design

Software Ecosystem & Delivery

Development
Tools

Data & Visualization

Hardware interface

Programming
Models

Runtimes

Math
Libraries

Embedded
Data &

Visualization

Emphasis for this presentation

4

WBS 2.3.3 Math Libraries: Context for the portfolio

Vision Provide high-quality, sustainable extreme-scale math libraries that are constantly improved by

a robust research and development effort and support exascale needs of the ECP community

Challenges

Need advances in algorithms and data structures to exploit emerging exascale architectures

(high concurrency, limited memory bandwidth, heterogeneity); need new functionality to

support predictive simulation and analysis

Mission Research, develop, and deliver exascale-ready math libraries to ECP applications

Objective Provide scalable, robust, efficient numerical algorithms, encapsulated in libraries that
applications can readily use in combination to support next-generation predictive science

Starting Point Existing HPC math libraries, used by broad range of ECP applications for the most advanced

technologies available in math and computer science R&D

Portfolio Goals

Advanced

algorithms

• Advanced, coupled multiphysics and multiscale algorithms (discretizations,
preconditioners & Krylov solvers, nonlinear & timestepping solvers, coupling)

• Toward predictive simulation & analysis (optimization, sensitivities, UQ, ensembles)

Performance
• Performance on new node architectures

• Extreme strong scalability

Improving library

sustainability &

complementarity

• Math library interoperability and complementarity through the xSDK

• Improving package usability, quality, sustainability

• Community coordination and collaboration while retaining package autonomy

5

Combustion-Pele, EXAALT, ExaAM,
ExaFEL, ExaSGD, ExaSky, ExaStar,

ExaWind, GAMESS, MFIX-Exa,
NWChemEx, Subsurface, WarpX,

WDMApp, WarpX, ExaAM,
ATDM (LANL, LLNL, SNL) apps,

AMReX, CEED, CODAR, CoPA, ExaLearn

DTK

ECP AD Teams ECP Math Libraries

Examples:
• ExaAM: DTK, hypre, PETSc, Sundials, Tasmanian, Trilinos, FFT, etc.

• ExaWind: hypre, KokkosKernels, SuperLU, Trilinos, FFT, etc.

• WDMApp: PETSc, hypre, SuperLU, STRUMPACK, FFT, etc.

• CEED: MFEM, MAGMA, hypre, PETSc, SuperLU, Sundials, etc.

• And many more …

MFEM

ECP applications need sustainable coordination among math libraries

6

xSDK Version 0.6.0: November 2020

SW engineering
• Productivity tools.

• Models, processes.

Libraries
• Solvers, etc.

• Interoperable.

Frameworks & tools
• Doc generators.

• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.

• Reusable.

xSDK functionality, Nov 2020

Tested on key machines at ALCF,

NERSC, OLCF, also Linux, Mac OS X

Multiphysics Application C

Application B

Impact: Improved code quality,
usability, access, sustainability

Foundation for work on
performance portability, deeper

levels of package interoperability

Each xSDK member package uses or

can be used with one or more xSDK

packages, and the connecting interface

is regularly tested for regressions.

https://xsdk.info

Application A

Alquimia hypre

Trilinos

PETSc

SuperLU
More

libraries

PFLOTRAN

More domain

components

MFEM

SUNDIALS

HDF5

BLAS

More
external
software

STRUMPACK

SLEPc AMReX

PUMI

Omega_h

DTK TASMANIAN

PHIST

deal.II

PLASMA

November 2020
• 23 math libraries
• 2 domain

components
• 16 mandatory

xSDK community
policies

• Spack xSDK
installer

heFFTe

preCICE

ButterflyPACK

Ginkgo

libEnsemble

MAGMA
SLATE

7

Key elements in xSDK

• xSDK Community Policies

https://xsdk.info/policies

• Interoperability

• Spack/Git workflow
– Installation via spack script

– CI testing via Gitlab CI infrastructure

https://gitlab.com/xsdk-project/spack-xsdk

•GPTune autotuner for performance optimization

https://github.com/gptune/GPTune

• Part of E4S ecosystem: https://e4s.io

https://xsdk.info/policies
https://github.com/gptune/GPTune
https://e4s.io/

8

2.3.3 Math Libraries: Projects

Project Short Name PI Name, Inst Short Description/Objective

xSDK
Ulrike Meier Yang,

LLNL

xSDK (Extreme-scale Scientific Software Development Kit): community policy-based approach to

value-added aggregation of independently developed math libraries (increasing quality, combined

usability, interoperability)

PETSc / TAO Todd Munson, ANL
PETSc (scalable linear & nonlinear solvers, integrators), TAO (numerical optimization), libEnsemble

(ensemble management for exascale platforms)

STRUMPACK /

SuperLU / FFTX
Xiaoye Li, LBNL

STRUMPACK & SuperLU (scalable sparse direct solvers, preconditioners), FFTX (FFT stack,

including symbolic analysis and code generation)

SUNDIALS / hypre
Carol Woodward,

LLNL
SUNDIALS (adaptive time integrators, nonlinear solvers), hypre (scalable linear solvers, with

emphasis on algebraic multigrid)

CLOVER Jack Dongarra, UTK
SLATE (exascale-capable dense linear algebra), FFT-ECP (scalable FFTs), Ginkgo (preconditioned

iterative solvers), MAGMA-sparse

ALExa / ForTrilinos John Turner, ORNL
DTK (parallel data transfer between grids, search tree capability), Tasmanian (uncertainty

quantification, surrogate modeling), ForTrilinos (automatic generation of Fortran interfaces for Trilinos)

Sake
Siva Rajamanickam,

SNL
Trilinos Solvers Stack, KokkosKernels (portable performance kernels for linear algebra and graph

algorithms)

ECP Early Access Systems status among the ECP math libraries

Package On AMD GPU On Intel GPU Installation method E4S Spack ready for EAS

ArborX Yes Yes Cmake No

DTK No No Cmake No

ForTrilinos No No Cmake No

Ginkgo yes yes Cmake Tulip HIP; not Intel DPC++

heFFTe Yes Yes Cmake No

hypre ”Redwood” Nvidia GPU,
not yet AMD GPU

No Autoconf No

KokkosKernels Yes Starting Cmake No

libEnsemble Yes (GPU not applicable) Yes (GPU not applicable) Pip, conda, spack Not applicable

MAGMA Yes Yes Makefiles No

MFEM Yes Yes Cmake, makefiles Iris/Yarrow; Tulip in progress

PETSc/TAO Yes Yes Own build system In progress

PLASMA Yes Yes Cmake Yes

SLATE In progress No Cmake, makefiles No

STRUMPACK yes No Cmake Tulip ROCm

Sundials Yes Yes Cmake Tulip soon; Yarrow later with SYCL

SuperLU Yes No Cmake No

SWIG No No Autoconf No

Tasmanian Yes Yes Cmake No

Trilinos Yes
(depends on KokkosKernels)

No Cmake No

Flash talks of individual packages

Portable, Extensible Toolkit for Scientific
Computation / Toolkit for Advanced Optimization

Scalable algebraic solvers for PDEs. Encapsulate
parallelism in high-level objects. Active & supported
user community. Full API from Fortran, C/C++, Python.

https://www.mcs.anl.gov/petsc

PETSc provides the backbone of

diverse scientific applications.

clockwise from upper left: hydrology,

cardiology, fusion, multiphase steel,

relativistic matter, ice sheet modeling

▪ Easy customization and
composability of solvers at
runtime

— Enables optimality via flexible
combinations of physics,
algorithmics, architectures

— Try new algorithms by
composing new/existing
algorithms (multilevel, domain
decomposition, splitting, etc.)

▪ Portability & performance

— Largest DOE machines, also
clusters, laptops; NVIDIA,
AMD, and Intel GPUs

— Thousands of users worldwide

Preconditioners

Krylov Subspace Solvers

Nonlinear Algebraic Solvers

Time Integrators

Computation & Communication Kernels

Optimization

Domain-
Specific
Interfaces Structured Mesh

Unstructured Mesh
Quadtree / Octree

Networks

Vectors MatricesIndex Sets

▪ Dense Matrix Solvers using Hierarchical Approximations
— Hierarchical partitioning, low-rank approximations
— Hierarchically Semi-Separable (HSS), Hierarchically Off-Diagonal Low-Rank

(HODLR), Hierarchically Off-Diagonal Butterfly (HODBF), Block Low-Rank (BLR), Butterfly
— C++ Interface to ButterflyPACK (Fortran)
— Applications: BEM, Cauchy, Toeplitz, kernel & covariance matrices, ...
— Asymptotic complexity much lower than LAPACK/ScaLAPACK routines

▪ Sparse Direct Solver
— Algebraic sparse direct solver

— GPU: CUDA, HIP/ROCm, DPC++ (in progress)

— Orderings: (Par)METIS, (PT)Scotch, RCM

▪ Preconditioners
— Approximate sparse factorization, using hierarchical matrix approximations

— Scalable and robust, aimed at PDE discretizations, indefinite systems, …

— Iterative solvers: GMRES, BiCGStab, iterative refinement

▪ Software
— BSD license
— Interfaces from PETSc, MFEM, Trilinos, available in Spack

STRUMPACK
Structured Matrix Package

Hierarchical solvers for dense rank-structured matrices and fast

algebraic sparse solver and robust and scalable preconditioners.

github.com/pghysels/STRUMPACK

Butterfly

Near linear scaling for
high-frequency wave equations

https://github.com/pghysels/STRUMPACK

SuperLU Supernodal Sparse LU Direct Solver. Flexible, user-friendly interfaces.

Examples show various use scenarios. Testing code for unit-test. BSD license.

https://portal.nersc.gov/project/sparse/superlu
/

▪ Capabilities

— Serial (thread-safe), shared-memory (SuperLU_MT, OpenMP or Pthreads), distributed-memory (SuperLU_DIST,

hybrid MPI+ OpenM + CUDA/HIP).

• Written in C, with Fortran interface

— Sparse LU decomposition (can be nonsymmetric sparsity pattern), triangular solution with multiple right-hand sides

— Incomplete LU (ILUTP) preconditioner in serial SuperLU

— Sparsity-preserving ordering: minimum degree or graph partitioning applied to ATA or AT+A

— User-controllable pivoting: partial pivoting, threshold pivoting, static pivoting

— Condition number estimation, iterative refinement, componentwise error bounds

▪ Exascale early systems GPU-readiness

— Available: Nvidia GPU (CUDA), AMD GPU (HIP)

— In progress: Intel GPU (DPC++ planned)

▪ Parallel Scalability

— Factorization strong scales to 32,000 cores (IPDPS’18, PARCO’19)

— Triangular solve strong scales to 4000 cores (SIAM CSC’18, SIAM PP’20)

▪ Open source software

— Used in a vast range of applications, can be used through PETSc and Trilinos, available on github

Widely used in commercial software, including

AMD (circuit simulation), Boeing (aircraft design),

Chevron, ExxonMobile (geology), Cray's LibSci,

FEMLAB, HP's MathLib, IMSL, NAG, SciPy,

OptimaNumerics, Walt Disney Animation.

ITER tokamak quantum mechanics

1

2

3

4

6

7

5L

U
1

6

9

3

7 8

4 52

https://portal.nersc.gov/project/sparse/superlu/

Next-Generation Fast Fourier Transforms for GPUs. C++ code generation using

Spiral analysis tools. Performance portable on CPUs and GPUs. BSD license.

https://github.com/spiral-software/{spiral-software,fftx

▪ Goals

— Performance portable, open-source FFT software system for modern heterogeneous architectures (i.e. GPUs) to provide a capability

analogous to FFTW.

— Support applications-specific optimizations corresponding to integrating more of the algorithms into the analysis / code generation

process.

▪ Approach

— Code generation based on Spiral, an analysis and code generation tool chain for discrete Fourier Transforms and tensor algebra

algorithms

— FFTX user API implemented in standard C++.

— Factored design that allows FFTX / Spiral to be more easily ported across multiple GPU platforms.

▪ Capabilities

— Complete FFTX C++ API for single-processor / single device. Automated invocation of Spiral to generate code and header file.

— CPU, cuda code generation. Examples include forward / inverse FFTs (c-to-c and r-to-c); periodic and free-space convolutions.

▪ Planned Work

— ExaScale platforms: AMD GPU (HIP) (6/2021), Intel GPU (SYCL) (2022).

— Distributed memory: native FFTX API (7/2021), extensions of single-device API to support other distributed frameworks, e.g. heFFTe

(10/2021)

▪ Performance

— Within 2x of vendor FFTs, with more complete coverage of the algorithm space.

— Demand-driven performance engineering of specific use cases, higher-level algorithms.

16

Defining the transform: FFTX C++ API

16

#include "fftx3.hpp”

...

int main(int argc, char* argv[])

{

 tracing=true;

 const int nx=80;

 const int ny=80;

 const int nz=80;

 box_t<3> domain(point_t<3>({{1,1,1}}), point_t<3>({{nx,ny,nz}}));

 array_t<3,std::complex<double>> inputs(domain);

 array_t<3,std::complex<double>> outputs(domain);

 std::array<array_t<3,std::complex<double>>,1> intermediates {domain};

 setInputs(inputs);

 setOutputs(outputs);

 openScalarDAG();

 MDDFT(domain.extents(), 1, intermediates[0], inputs);

 IMDDFT(domain.extents(), 1, outputs, intermediates[0]);

 closeScalarDAG(intermediates, "fimddft");

}

We are only defining arrays to allow us

to specify the transform. The actual

allocation will occur in the calling program

(inputs, outputs) or appear symbolically

in the initial Spiral DAG (intermediates),

possibly to be optimized away.

18

What is inside fimddft.fftx.codegen.cu ?

18

2000+ lines of code that looks like this:
...

if (((threadIdx.x == 1))) {

 for(int i44 = 0; i44 <= 1; i44++) {

 double a300, a301, a302, a303, a304, a305, a306, a307,

 s111, s112, s113, s114, s115, s116, s117, s118,

 s119, s120, s121, s122, s123, s124, s125, s126,

 t333, t334, t335, t336, t337, t338, t339, t340;

 int a298, a299, a308, b62, b63, b64;

 a298 = (2*i44);

 b62 = ((24*threadIdx.y) + a298);

 s111 = T7[(((((b62 + 2) + (96*threadIdx.z)) + (3840*blockIdx.x)) + (307200*blockIdx.y)) +

(4915200*blockIdx.z))];

 s112 = T7[(((((b62 + 3) + (96*threadIdx.z)) + (3840*blockIdx.x)) + (307200*blockIdx.y)) +

(4915200*blockIdx.z))];

 s113 = T7[(((((b62 + 14) + (96*threadIdx.z)) + (3840*blockIdx.x)) + (307200*blockIdx.y)) +

(4915200*blockIdx.z))];

 s114 = T7[(((((b62 + 15) + (96*threadIdx.z)) + (3840*blockIdx.x)) + (307200*blockIdx.y)) +

(4915200*blockIdx.z))];

 a299 = (8*i44);

 a300 = D16[a299];
 a301 = D16[(a299 + 1)];

 s115 = ((a300*s111) - (a301*s112));

 s116 = ((a301*s111) + (a300*s112));

 a302 = D16[(a299 + 2)];

 a303 = D16[(a299 + 3)];

 s117 = ((a302*s113) - (a303*s114));

 s118 = ((a303*s113) + (a302*s114));

 t333 = (s115 + s117);

 t334 = (s116 + s118);

 t335 = (s115 - s117);

 t336 = (s116 - s118);

...

SUNDIALS Adaptive time integrators for ODEs and DAEs and efficient nonlinear solvers

Used in a variety of applications. Freely available. Encapsulated solvers & parallelism.

http://www.llnl.gov/casc/sundials

▪ ODE and DAE time integrators:

— CVODE: adaptive order and step BDF (stiff) & Adams (non-stiff) methods for ODEs

— ARKODE: adaptive step implicit, explicit, IMEX, and multirate Runge-Kutta methods for ODEs

— IDA: adaptive order and step BDF methods for DAEs

— CVODES and IDAS: provide forward and adjoint sensitivity analysis capabilities

▪ Nonlinear Solvers: KINSOL – Newton-Krylov; accelerated Picard and fixed point

▪ Modular Design: Easily incorporated into existing codes; Users can supply their own

data structures and solvers or use SUNDIALS provided modules

▪ Support on NVIDIA, AMD, and Intel GPUs:

— Vectors: CUDA, HIP, OpenMP Offload, RAJA, SYCL (DPC++)

— Linear solvers: cuSOLVER, MAGMA, iterative methods (GMRES, PCG, etc.)

▪ Future GPU Features: Ginkgo linear solver interface, Kokkos vector module

▪ Open Source: Available via LLNL site, GitHub, and Spack; BSD License; Supported

by extensive documentation, a user email list, and an active user community

Suite of Nonlinear and Differential
/Algebraic Equation Solvers

SUNDIALS is used worldwide in applications

throughout research and industry

Dislocation dynamics

(ParaDiS)

Subsurface flow

(ParFlow)

ExaSky: Multi-Physics/Multi-Algorithm Approach

• Gravity dominates at large
scales, need to solve the
Vlasov-Poisson equation, a
6-dimensional PDE

• Very complex solutions,
reduction to lower
dimensions not possible
because of multi-streaming

• 6-D nature precludes grid-
based methods (other
problems too)

• Use N-body methods with
the understanding that f(x,p)
must be a smooth function

• Gas dynamics coupled in
using Euler equations;
astrophysical effects
(heating, cooling, star
formation enter as subgrid
models)

Hydro simulation with
the Nyx code showing
low (blue) and high
(yellow) density gas at
high redshift.
!
The gas follows a
backbone of structure
determined by the dark
matter distribution. The
dark matter collapses
first and forms the
backbone of cosmic
structure. Galaxies live in
high density clumps.

Cosmology

(Nyx)

Atmospheric Dynamics

(Tempest)

Combustion

(Pele)

http://www.llnl.gov/sundials

hypre Highly scalable multilevel solvers and preconditioners. Unique user-friendly

interfaces. Flexible software design. Used in a variety of applications. Freely available.

http://www.llnl.gov/CASC/hypre

• Conceptual interfaces

• Structured, semi-structured, finite elements, linear algebraic interfaces

• Provide natural “views” of the linear system

• Provide for efficient (scalable) linear solvers through effective data storage schemes

• Scalable preconditioners and solvers

• Structured and unstructured algebraic multigrid solvers

• Maxwell solvers, H-div solvers

• Multigrid solvers for nonsymmetric systems: pAIR, MGR

• Matrix-free Krylov solvers

• Exascale early systems GPU-readiness

• Available: Nvidia GPU (CUDA)

• In progress: AMD GPU (HIP), Intel GPU (DPC++ planned)

• Open-source software

• Used worldwide in a vast range of applications

• Can be used through PETSc and Trilinos

• Provide CPU and GPU support

• Available on github: https://www.github.com/hypre-space/hypre

Magneto-

hydrodynamics

Electro-

magnetics

Elasticity / Plasticity

Facial surgery

Lawrence Livermore National Laboratory

http://www.llnl.gov/CASC/hypre
https://www.github.com/LLNL/hypre

Matrix Algebra on GPU and Multicore
Architectures

• Shared memory systems

• BLAS/LAPACK on GPUs

• Hybrid CPU-GPU Algorithms

• Linear system solvers (+ mixed precision)

• Eigenvalue problem solvers

• Batched LA

• All BLAS-3 (fixed/variable), LU, QR, Cholesky

• Sparse LA

• Solvers: BiCG, BiCGSTAB, GMRES

• Preconditioners: ILU, Jacobi,

• SPMV, SPMM (CSR, ELL, … etc.)

• Support CUDA and ROCM/HIP • https://icl.utk.edu/magm

a

https://icl.utk.edu/magma

SLATE Distributed, GPU-accelerated, dense linear algebra library.

Modern replacement for ScaLAPACK. BSD license.

https://icl.utk.edu/slate/

▪ Made for distributed HPC with accelerators

— BLAS: matrix multiply (C = AB), etc.

— Linear systems (Ax = b): LU, Cholesky, symmetric indefinite

— Least squares (Ax ≈ b): QR, LQ

— Eigenvalue (Ax = λx)

— SVD (A = UΣVH)

▪ GPU-readiness: Uses BLAS++ as abstraction layer

— Initial implementation: Nvidia GPUs (cuBLAS)

— Recent: AMD GPU (hip/rocBLAS).

— In progress Intel GPUs (OpenMP, oneAPI).

▪ Software design

— C++ library built on MPI, OpenMP, batch-BLAS, vendor-BLAS.

— Build: CMake, Makefile, Spack. APIs: C, Fortran, ScaLAPACK.

▪ BLAS++ and LAPACK++

— C++ wrappers for BLAS and LAPACK routines. Independent projects.

Software for Linear Algebra Targeting Exascale

Summit 16 nodes: 672 POWER9 cores+96 NVIDIA V100
CPU + GPU peak 765 Tflop/s in double precision

Matrix multiply
(dgemm)
47x speedup
77% of peak

https://icl.utk.edu/slate/

PLASMA: Parallel Linear Algebra for Multicore Architectures

Functional scope

• Dense: linear systems, least-squares, EIG/SVD

• Tile matrix layout and tile algorithms

• OpenMP: v4 tasking, v4.5 priorities, v5 offload variants

#pragma omp target data map(a[0:n*n],b[0:n*n]) map(alloc:c[0:n*n])

#pragma omp target data use_device_ptr(a,b,c)

{

cudaStream_t omp_stream = (cudaStream_t) omp_get_cuda_stream(dev);

cublasSetStream(handle, stream);

cublasDgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, a, a_ld, b, b_ld, &beta, c, c_ld);

}

double*a_dev=omp_target_alloc(device, a_ld * n);

Compiler framework targets: Clang 11, AOMP 11, XL

16, OneAPI 1, Cray 9, NVHPC

Accessing native libraries for vendor-level on-

device performance

Accessing

device-specific

asynchronous

dispatch for low-level

runtime integration

Device-resident pointers for

persistent on-device storage
int dev = omp_get_default_device(); double *a = mkl_malloc(a_ld * n * 8, 64);

#pragma omp target data map(to:a,b) map(tofrom:c)

{

#pragma omp target variant dispatch use_device_ptr(a,b,c) device(dev) nowait

mkl_dgemm(tA, tB, m, n, k, alpha, a, a_ld, b, b_ld, beta, c, c_ld);

#pragma omp taskwait

}

Ginkgo GPU-centric high performance sparse linear algebra. Sustainable and

extensible C++ ecosystem with full support for AMD, NVIDIA, Intel GPUs.

https://ginkgo-project.github.io/

▪ High performance sparse linear algebra

— Linear solvers: BiCG, BiCGSTAB, CG, CGS, FCG, GMRES, IDR;

— Advanced preconditioning techniques: ParILU, ParILUT, SAI;

— Mixed precision algorithms: adaptive precision Jacobi, FSPAI;

— Decoupling of arithmetic precision and memory precision;

— Batched iterative solvers;

— Linear algebra building blocks: SpMV, SpGEAM,...;

— Extensible, sustainable, production-ready;

▪ Exascale early systems GPU-readiness

— Available: Nvidia GPU (CUDA), AMD GPU (HIP),

Intel GPU (DPC++), CPU Multithreading (OpenMP);

— C++, CMake build;

▪ Open source, community-driven

— Freely available (BSD License), GitHub, and Spack;

— Part of the xSDK and E4S software stack;

— Can be used from deal.II and MFEM;

https://ginkgo-project.github.io/

T
F

lo
p

/s

Number of Summit nodes

0.125

0.250

0.500

1.000

2.000

4.000

8.000

16.000

4 8 16 32 64 128 256

Roofline peak

heffte_GPU (tuned)

heffte_GPU

>90% of roofline peak

Capabilities:

● Multidimensional FFTs

● C2C, R2C, C2R

● Support flexible user data layouts

● Leverage and build on existing FFT capabilities

Pre-exascale environment:

● Summit @ OLCF (Nvidia GPUs), Poplar (AMD GPUs), and others

● In progress: Intel GPU

Current status:

● heFFTe 2.0 with support for CPUs, Nvidia GPUs, AMD GPUs

● Very good strong and weak scaling, reaching up to 90% of roofline peak

Open Source Software

● spack installation and integration in xSDK

● heFFTe Integration and acceleration of CoPA projects using LAMMPS and HACC

● Homepage: http://icl.utk.edu/fft/

Repository: https://bitbucket.org/icl/heffte/

heFFTe
Highly Efficient FFT for Exascale (heFFTe). Scalable, high-performance multidimensional FFTs; Flexible;

User-friendly interfaces (C++/C/Fortran/python); Examples & benchmarks; Testing; Modified BSD license.

http://icl.utk.edu/fft/
https://bitbucket.org/icl/heffte/

ArborX/
DataTransferKit

Open source libraries for geometric search and

parallel solution transfer. Support for grid-based

and mesh-free applications.

https://github.com/arborx/ArborX
https://github.com/ORNL-CEES/DataTransferKit

▪ ArborX

— Geometric search and clustering algorithms

• Provides both neighborhood search (rNN) and nearest neighbors (kNN)

• Provides density-based clustering algorithms (DBSCAN, HDBSCAN)

— Performance portable

• Serial performance is comparable to widely used libraries (Boost R-tree,

Nanoflann)

• Supports all DOE leadership class machines

— Used for Kokkos performance benchmarking

• The first libraries to support all Kokkos backends (OpenMP, CUDA, HIP, SYCL,

OpenMPTarget)

▪ DataTransferKit

— Efficient and accurate solution transfers between applications of different

mesh layouts on parallel accelerated architectures

— Used for a variety of applications including conjugate heat transfer, fluid

structure interaction, computational mechanics, and reactor analysis

Clad Heat Flux

Clad Surface Temperature

Fuel
Performance

Neutron
transport

Thermal-
hydraulics

Volumetric
transfer/interpolation
for coupling multiple
physics applications

https://github.com/ORNL-CEES/DataTransferKit

Tasmanian
Toolkit for Adaptive Stochastic Modeling and Non-Intrusive ApproximatioN.

Open Source Library for Uncertainty Quantification, surrogate modeling, data

compression, Bayesian inference, and optimization.

https://github.com/ORNL/TASMANIAN

▪ Capabilities

— Sparse Grid Surrogate modeling using structured and unstructured data

• Statistical analysis

• Fast surrogates for multiphysics simulations

— Hierarchical data representation for data-reduction and data-mining

— Markov Chain Monte Carlo methods for Bayesian inference

• Model calibration and validation

• Sensitivity analysis and multidimensional anaisotropy

▪ GPU Accelerated Capabilities

— Fast surrogates using Nvidia (CUDA), AMD (HIP), Intel (DPC++)

— Accelerated linear algebra using UTK MAGMA

— Parallel surrogate construction using libEnsemble

— Mixed single-double precision methods for low memory footprint

Adaptive Sparse Grid Sampling

Multiphysics simulation of Neutrino Radiation

Dynamic Adaptive Sampling

https://portal.nersc.gov/project/sparse/superlu/

ForTrilinos
ForTrilinos. Native Fortran interfaces. Extensive examples

and testing. BSD license.

https://fortrilinos.readthedocs.io/en/latest/

▪ Capabilities

— ForTrilinos: idiomatic Fortran-2003 bindings to Trilinos numerical solvers,

linear and nonlinear

— SWIG-Fortran: generate similar bindings for any C++ library/headers

— Flibcpp: Fortran bindings to C++ standard library

containers/algorithms/random

▪ Readiness

— Thin wrappers require pre-installed Trilinos and Fortran 2003–

compatible compiler

— Supports Trilinos GPU backends, currently with host-only interfaces

DTK

https://fortrilinos.readthedocs.io/en/latest/

Trilinos and Kokkos: Open-Source Toolkits of Mathematical Algorithms for HPC

53 packages in five areas

~100 contributors in total

~50+ active contributors

30-140 commits per week

Trilinos Software

◦ Solid mechanics, fluid dynamics,
electrical circuits, etc.

◦ SIERRA, Empire, SPARC, Xyce,
Drekar, Charon, etc.

Application Impact

Trilinos provides scalable algorithms to CSE applications,

enabling high performance on current and next generation

HPC platforms including several NVIDIA and AMD GPUs

(experimental). Intel GPU support planned.

Framework

Data Services

Linear Solvers Discretization

Nonlinear Solvers

CSE Applications

Trilinos
Linear Algebra

Kernels

Graph

Kernels

Kokkos Kernels

Kokkos Core
Parallel

Execution

Parallel Data

Structures

CSE Applications

Kokkos EcoSystem

TrilinosKokkos

Tools

Debugging

Profiling

Kokkos

Support

Tutorials

Bootcamps

App support

Documentation

Tuning

Kokkos Ecosystem addresses complexity of

supporting numerous many/multi-core architectures

such as NVIDIA, AMD, and Intel GPUs (planned) that

are central to DOE HPC enterprise

Kokkos Core: parallel patterns and data structures;
supports several execution and memory spaces
Kokkos Kernels: performance portable BLAS;
sparse, dense and graph algorithms
Kokkos Tools: debugging and profiling support

This research was supported by the Exascale Computing Project (17-SC-20-SC),
a joint project of the U.S. Department of Energy’s Office of Science and National
Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support
the nation’s exascale computing imperative.

https://www.exascaleproject.org

https://www.exascaleproject.org/

27

Gaps?

Questions?

