
HDF5 Community BOF - Agenda
Topic Presenter
HDF5 update Elena Pourmal, The HDF Group

Virtual Object Layer (VOL) and connectors Quincey Koziol, NERSC / LBNL

DAOS VOL, Subfiling, Querying Scot Breitenfeld, The HDF Group

Applications - CGNS, E3SM, HACC Scot Breitenfeld, The HDF Group

Applications - EQSIM, AMReX (Nyx and Castro) Houjun Tang, LBNL

Q & A

HDF5 Update
March 30, 2021

ECP HDF5 BOF

The HDF Group and ExaIO team @LBNL

2

HDF5 in a nutshell

• HDF5 is a data model, I/O library
and binary format for storing and
managing data
• One of the most used I/O libraries
and file formats across DOE
• Maintained and developed by
The HDF Group in collaboration
with the ExaIO ECP team
• Originally designed for storing data
on POSIX FS; extended to other storage

HDF5

3

Community involvement and outreach
• HDF5 is on GitHub https://github.com/hdfgroup/hdf5
• The HDF Group holds
• Bi-monthly Webinars/Tutorials and weekly face-to-face teleconferences with HDF5 users
• HDF User Group (HUG) Meetings (2019, 2020, and 2021 is in planning stage)
• Performance improvements and contributions to other software

(netCDF-4, CGNS, h5py)

Before HDF5 optimization (Day)

After HDF5 optimization (minute)

Baseline - File per MPI rank

Courtesy Greg Sjaardema, Sandia National Labs

4

Accessing data on “non-Posix” storage
• HDF5 VOL connectors (HDF5 VOLs)
• Cloud, Object Store
• Example: DAOS VOL connector
• Introduces new features to HDF5
• Asynchronous I/O
• Independent HDF5 metadata updates
• New HDF5 object - maps

HDF5 API

VOL Layer

VFD Layer

Native VOL

DAOS
VOL

SE
C2

M
PI

O

File System DAOS

HDF5 Tools Test Suite

…

…

DAOS APIPOSIX API

External
Test Suite

External
VOL

Connector

Through
MPI I/O

5

HDF5 development to improve I/O performance
• ECP features (details later today)
• HDF5 VOLs (Async, Cache VOLs, HDF5 GPU VFD)
• Sub-filing - a compromise between file-per-process and a single shared file;

implemented as HDF5 Virtual File Driver (VFD)
• Performance Tools Enhancements
• Multi-level I/O tracing tool Recorder is now in Spack
• Jupyter notebook tutorial for working with Darshan HDF5 output; GitHub source
• Performance study of ECP applications (FLASH, NWChem, Chombo,

QMCPack and HACC)
• Publish findings and recommendations in a white paper.
• HACC with HDF5 delivers comparable performance with pure MPI-IO implementation by

tuning stripe settings on Lustre and the HDF5 alignment parameter or metadata block
sizes.

6

HDF5 Benchmark
• hdf5-iotest benchmark
• Exercises different organization of data in HDF5 files using different HDF5 features

(chunking, collective and independent I/O modes, datasets of different dimensionality,
alignment, alignment threshold, and metadata block size; each configuration writes
80MBs per time stamp); available in Spack

7

HDF5 and Spack
• The HDF Group is now an official maintainer of HDF5 in Spack
• GNU Autotools builds and testing
• Defaults to HDF5 1.10.7 parallel
• Command “spack install hdf5”
• Maintenance releases 1.12.0, 1.10.0-1.10.7, 1.8.10 – 1.8.22 are also available

• Imminent change (in review by the Spack team)
• CMake builds and testing
• Szip compression (licensed) is replaced with its OS version (libaec)
• Added three maintenance branches 1_12, 1_10, 1_8
• Command “spack install hdf5@develop-1.12”

• Added HDFView

8

HDF5 and Spack
• Additional variants (prototypes) in progress

• Additional compression plugins (registered with The HDF Group)
• BITGROOM, BLOSC, BSHUF, BZIP2, JPEG, LZ4, LZF, MAFISC, ZFP, SZ, and ZSTD

• ExaIO HDF5 VOL connectors (Async, Cache, external pass-through)
• Example: command “spack install
hdf5~zfp~mafisc+szip~zstd~blosc~bshuf~bitgroom+av~pv~cv+mpi+threadsafe”
disables everything except szip, mpi, and threadsafe. The +av means to build Async VOL.

• Additional HDF5 releases in progress
• HDF5 1.13.* (from develop branch) for the early releases of ECP productized features
• Async, Cache, Pass-through VOLs
• DAOS VOL
• GPU VFD
• Datalib VOL
• ADIOS VOL
• GPU VOLs

• VOL connectors have to pass external VOL test suite

9

HDF5 Resources

• Check documentation on https://portal.hdfgroup.org
• Send email to help@hdfgroup.org
• Join https://forum.hdfgroup.org/
• Attend THG Webinars and Tutorials
• Announced on HDF-FORUM, ECP Training Events page and ECP Training Newsletter
• New: Call the Doctor - The Weekly HDF clinic (on Tuesdays at 8:30 am

or 1:00 pm Central)

Proprietary and Confidential. © 2016, The HDF Group.

Thank you!
Questions?

HDF5: Virtual Object Layer

ECP HDF5 Birds-of-a-Feather
March 30, 2021
Quincey Koziol
koziol@lbl.gov

Many Team Members and Contributors

• LBNL: Suren Byna, Houjun Tang, Tony Li, Bin Dong
• ANL: Venkat Vishwanath, Huihuo Zheng, Paul Coffman
• The HDF Group: Scot Breitenfeld, Elena Pourmal, John

Mainzer, Richard Warren, Dana Robinson, Neil Fortner, Jerome
Soumagne, Jordan Henderson, Neelam Bagha, …
• Northwestern University: Kai-yuan Hou
• North Carolina State University: John Ravi

2March 30th, 2021

Overview

• HDF5 Virtual Object Layer (VOL) Introduction
• ECP VOL Connectors

• Asynchronous I/O
• Node-local Caching

• GPU-IO
• GPU Direct Storage (GSD) HDF5 Virtual File Driver

March 30th, 2021 3

HDF5 Virtual Object Layer (VOL)

• VOL Framework is an abstraction layer within HDF5 Library
• Redirects I/O operations into VOL “connector”, immediately after an API

routine is invoked
• Non-I/O operations handled with library “infrastructure”

• VOL Connectors
• Implement storage for HDF5 objects, and “methods” on those objects

• Dataset create, write / read selection, query metadata, close, …
• Can be transparently invoked from a dynamically loaded library, without

modifying application source code
• Or even rebuilding the app binary!

• Can be stacked, allowing many types of connectors
• “Pass-through” and “Terminal” connector types

4March 30th, 2021

HDF5 Containers (Files)

lat	lon	temp
12 | 23 | 3.1
15 | 24 | 4.2
17 | 21 | 3.6

Experiment Notes:
Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

/

SimOutViz

Parameters
10;100;1000

Timestep
36,000

HDF5 files, groups,
and links
organize
data objects.

HDF5 datasets
and attributes

store
application data.

VOL: High-Level Overview

6March 30th, 2021

HDF5 API

….

….

All other
HDF5
routines

Pa
ss
-th
ro
ug
h

Te
rm
in
al

Virtual
Object
Layer
(VOL)

Operations on a container

HDF5 Library
Infrastructure

N
at

iv
e

As
yn

ch
ro

no
us

D
AO

S

R
ES

T

H
er

m
es

C
ac

hi
ng

D
at

a
El

ev
at

or

In
de

pe
nd

en
t

M
et

ad
at

a

Co
nn

ec
to

rs
Application

Virtual Object Layer (VOL) Connectors

• Implement callbacks for HDF5 data model operations
• “Terminates” call by performing action directly, or “passes operation

through” by invoking VOL API connector interface:
• Pass-through - can be stacked, must eventually have terminal connector

• Examples:
• Provenance tracking
• Asynchronous I/O
• Caching

• Terminal - non-stackable, final connector
• Examples:

• Remote access (e.g. cloud, streaming, etc)
• Non-HDF5 file access (e.g. ADIOS BP, netCDF “classic”, etc)
• Object stores (e.g. DAOS, S3, etc)

7March 30th, 2021

VOL: Connector Architecture

8March 30th, 2021

HDF5 API and language bindings

Virtual Object Layer (VOL) Framework

Pass-through VOL connectors (e.g., async IO, provenance)

RE
ST

DA
O

S

Da
ta

El
ev

at
or

AD
IO

S
BP

PO
SI

X

S3 HD
FS

….

….

SW
M

R

VF
Ds

HD
F5

 C
or

e
Li

br
ar

y
VO

L
connectors

M
PI I/O

Native Connector

Async VOL Connector

• Pass-through VOL connector
• Can be stacked on any other connector, to provide asynchronous

operations to it
• Uses an “event set” to manage async operations

• Can extract more performance, e.g. enable async read and write:

9March 30th, 2021

Async

Sync

Async VOL Connector

• Pass-through VOL connector
• Can be stacked on any other connector, to provide asynchronous

operations to it
• Uses an “event set” to manage async operations

• Can extract more performance, e.g. enable async read and write:

10March 30th, 2021

Async

Sync

Async VOL Connector

• Pass-through VOL connector
• Can be stacked on any other connector, to provide asynchronous

operations to it
• Uses an “event set” to manage async operations

• Can extract more performance, e.g. enable async read and write:

11March 30th, 2021

Async

Sync

Async VOL Connector – Benefits

12March 30th, 2021

Async VOL Connector – Programming Example

13March 30th, 2021

fid = H5Fopen(..);
gid = H5Gopen(fid, ..);
did = H5Dopen(gid, ..);
status = H5Dwrite(did, ..);

status = H5Dwrite(did, ..);

...
<other user code>
...

Async VOL Connector – Programming Example

14March 30th, 2021

es_id = H5EScreate(); // Create event set for tracking async operations
fid = H5Fopen_async(.., es_id); // Asynchronous, can start immediately
gid = H5Gopen_async(fid, .., es_id); // Asynchronous, starts when H5Fopen completes
did = H5Dopen_async(gid, .., es_id); // Asynchronous, starts when H5Gopen completes
status = H5Dwrite_async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,

// may run concurrently with other H5Dwrite in event set
status = H5Dwrite_async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,

// may run concurrently with other H5Dwrite in event set
...
<other user code>
...
H5ESwait(es_id); // Wait for operations in event set to complete, buffers

// used for H5Dwrite must only be changed after wait

Async VOL Connector – Programming Example

15March 30th, 2021

es_id = H5EScreate(); // Create event set for tracking async operations
fid = H5Fopen_async(.., es_id); // Asynchronous, can start immediately
gid = H5Gopen_async(fid, .., es_id); // Asynchronous, starts when H5Fopen completes
did = H5Dopen_async(gid, .., es_id); // Asynchronous, starts when H5Gopen completes
status = H5Dwrite_async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,

// may run concurrently with other H5Dwrite in event set
status = H5Dwrite_async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,

// may run concurrently with other H5Dwrite in event set
...
<other user code>
...
H5ESwait(es_id); // Wait for operations in event set to complete, buffers

// used for H5Dwrite must only be changed after wait

Async VOL Connector – Programming Example

16March 30th, 2021

es_id = H5EScreate(); // Create event set for tracking async operations
fid = H5Fopen_async(.., es_id); // Asynchronous, can start immediately
gid = H5Gopen_async(fid, .., es_id); // Asynchronous, starts when H5Fopen completes
did = H5Dopen_async(gid, .., es_id); // Asynchronous, starts when H5Gopen completes
status = H5Dwrite_async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,

// may run concurrently with other H5Dwrite in event set
status = H5Dwrite_async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,

// may run concurrently with other H5Dwrite in event set
...
<other user code>
...
H5ESwait(es_id); // Wait for operations in event set to complete, buffers

// used for H5Dwrite must only be changed after wait

Async VOL Connector

17March 30th, 2021

● Available now: https://github.com/hpc-io/vol-async
● Future work:

● Switch to TaskWorks thread engine
○ A portable, high-level, task engine designed for HPC workloads
○ Task dependency management, background thread execution.

● Merge compatible VOL operations
○ If two async dataset write operations are putting data into same dataset, can merge into only one call to

underlying VOL connector
○ Turn multiple ‘normal’ group create operations into a single ‘multi’ group create operation

● Use multiple background threads
○ Needs HDF5 library thread-safety work, to drop global mutex

Cache VOL Connector - Integrating node-local
storage into parallel I/O

18March 30th, 2021

Cache VOL
• Using node-local storage for caching / staging

data for fast and scalable I/O.
• Data migration to and from the remote storage is

performed in the background.
• Managing data movement in multi-tiered

memory / storage through stacking multiple
connectors

• All complexity is hidden from the users
Node-local storage (SSD, NVMe, etc)

Remote storage

Typical HPC storage hierarchy

Theta @ ALCF: Lustre + SSD (128 GB / node),

ThetaGPU (DGX-3) @ ALCF: NVMe (15.4 TB / node)

Summit @ OLCF: GPFS + NVMe (1.6 TB / node)

Repo: https://github.com/hpc-io/vol-cache.git

Parallel Write (H5Dwrite)

19March 30th, 2021

Partial overlap of compute with I/O

Parallel file system
Shared HDF5 file

Node-local storage

1. Data is synchronously copied from the
memory buffer to memory mapped files
on the node-local storage using POSIX I/O.

2. Move data from memory mapped
file to the parallel file system
asynchronously by calling the dataset
write function from the Async VOL
stacked below the Cache VOL

3. Wait for all the tasks to finish in
H5Dclose() / H5Fclose()

Compute RAM->NLS Compute
I/O: NLS->PFS

Compute I/O (RAMàPFS) Computew/o caching

w/ caching

Details are hidden from the application developers.

Parallel Read (H5Dread)

20March 30th, 2021

Single shared HDF5 file

MPI_Win

Parallel file system

Compute
node RAM

MPI_Put

Create memory mapped files and attached them
to a MPI_Win for one-sided remote access

1. Reading data
from parallel file
system

2. Caching data
using MPI_Put

Node-local
storage

One-sided communication for accessing
remote node storage.
• Each process exposes a part of its memory to

other processes (MPI Window)
• Other processes can directly read from or write

to this memory, without requiring that the
remote process synchronize (MPI_Put, MPI_Get)

MPI_Get

Compute I/O Compute

Compute I/O Computew/o Caching

w/ Caching

Reading data from
NLS using MPI_Put

First time reading the data Reading the data directly from node-local storage

Performance evaluation on Theta @ ALCF

21March 30th, 2021

Parallel write performance on Theta w/ and w/o caching data on
RAM or node-local SSDs. (Lustre stripe count is 48, and Lustre stripe
size is 16MB). Each processor writes 16 MB data to a shared file.

Parallel read performance on Theta. At each step, each processor
reads a random batch (32) of samples (224×224×3) from a shared
HDF5 file. All the processors together read the entire dataset in one
iteration. The read performance is measured after the first iteration
finishes.

Parallel read

Parallel write

VCD100: VOL Connector Development 100

• Subscribe to the hdf5vol mailing list:
• Email hdf5vol-subscribe@hdfgroup.org with “subscribe” as subject

• Clone the “external pass-through” example VOL connector
• An “external” VOL connector that has all VOL callbacks implemented as

transparent “no-ops”, just invoking the underlying VOL connector
• External VOL connectors can be loaded with environment variables

• https://bitbucket.hdfgroup.org/projects/HDF5VOL/repos/external_pass_through
/browse

• Build the external pass-through connector with logging enabled:
• Follow instructions in README in the git repo

• Modify to your purposes

22March 30th, 2021

GPU-I/O – Fast data access from GPU Memory

23March 30th, 2021

HDF5 File
Format

File Split
Files

File on
Parallel
Filesystem

Other

Virtual File
Layer

POSIX

I/O

Split

Files
MPI I/O Custom

Internals Memory

Mgmt

Datatype

Conversion

I/O

Filters

Chunked

Storage

Version

Compatibility
et cetera…

Data Model Objects
Files, Groups, Datasets,

Attributes, …

Tunable Properties
Chunk Size, I/O Driver, …

HD
F5

 Li
br

ar
y

St
or

ag
e

netCDF-4High Level

APIs

HDFview
Ap

ps
h5dump

Java
H5Hut

API

C++/FORTRAN/Python

Infrastructure
Datatype, Dataspace, IDs, …

APIs

…

GPU-I/O – Fast data access from GPU Memory

24March 30th, 2021

HDF5 File
Format

File Split
Files

File on
Parallel
Filesystem

Other

Virtual File
Layer

POSIX

I/O

Split

Files
MPI I/O Custom

Internals Memory

Mgmt

Datatype

Conversion

I/O

Filters

Chunked

Storage

Version

Compatibility
et cetera…

Data Model Objects
Files, Groups, Datasets,

Attributes, …

Tunable Properties
Chunk Size, I/O Driver, …

HD
F5

 Li
br

ar
y

St
or

ag
e

netCDF-4High Level

APIs

HDFview
Ap

ps
h5dump

Java
H5Hut

API

C++/FORTRAN/Python

Infrastructure
Datatype, Dataspace, IDs, …

APIs

…

File

GDS

HDF5 GDS Virtual File Driver (VFD)

25March 30th, 2021

• Drop-in replacement for POSIX I/O VFD
• Therefore: serial I/O only, currently

• Single API call to enable from applications:
• H5Pset_fapl_gds() bash-3.2$ (cd test; ./testhdf5)

For help use: ./testhdf5 -help
Linked with hdf5 version 1.13 release 0
Testing -- Configure definitions (config)
Testing -- Encoding/decoding metadata (metadata)
Testing -- Checksum algorithm (checksum)
Testing -- Ternary Search Trees (tst)
Testing -- Memory Heaps (heap)
Testing -- Skip Lists (skiplist)
Testing -- Reference Counted Strings (refstr)
Testing -- Low-Level File I/O (file)
Testing -- Generic Object Functions (objects)
Testing -- Dataspaces (h5s)
Testing -- Dataspace coordinates (coords)
Testing -- Shared Object Header Messages (sohm)
Testing -- Attributes (attr)
Testing -- Selections (select)
Testing -- Time Datatypes (time)
Testing -- Deprecated References (ref_deprec)
Testing -- References (ref)
Testing -- Variable-Length Datatypes (vltypes)
Testing -- Variable-Length Strings (vlstrings)
Testing -- Group & Attribute Iteration (iterate)
Testing -- Array Datatypes (array)
Testing -- Generic Properties (genprop)
Testing -- UTF-8 Encoding (unicode)
Testing -- User-Created Identifiers (id)
Testing -- Miscellaneous (misc)

All tests were successful.

• Ready for beta testers:
– Passing all the HDF5 regression tests:
– Available on the ‘cu_dev’ branch of

HDF5 git repo:
• https://github.com/hpc-io/hdf5/tree/cu_dev

HDF5 GDS VFD – Early Performance Results

26March 30th, 2021

HDF5 GDS Read HDF5 GDS Write

(Single thread, one GPU I/O to a single NVME drive)

27March 30th, 2021

HDF5 Application

Compute
node

Compute
node

Compute
node

HDF5 Library

MPI Library

HDF5 file on Parallel File System

Switch network + I/O servers

Disk architecture and layout of data on disk

In Progress

HDF5 GDS VFD – Parallel I/O

DAOS VOL Connector
• HDF5 VOL connector for I/O to Distributed

Asynchronous Object Storage (DAOS)

• Minimal code changes needed to use,
enable via environment variables or through
HDF5 APIs.

• HDF5 Tools are supported
• h5dump, h5ls, h5diff, h5repack, h5copy, etc

• Supports async I/O

https://github.com/HDFGroup/vol-daos

VPIC – explicit async (ANL testbed)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

16 16(async) 32 32(async) 64 64(async) 128 128(async)

Ti
m

e (
s)

Number of Processes

eparticle
iparticle
ehydro
ihydro
�elds

Subfiling
• Subfiling is a compromise between file-per-process (fpp) and a single

shared file (ssf)
• Multiple files organized as a Software RAID-0 Implementation

i. Configurable “stripe-depth” and “stripe-set size”
ii. A default “stripe-set” is created by using 1 file per node
iii. A default “stripe-depth” is 32MB

• One metadata (.h5) file stitching the small files together

• Benefits
• Better use of parallel I/O subsystem
• Reduces the complexity of fpp
• Reduced locking and contention issues to improve performance at larger

processor counts over sff

Subfiling

a. I/O Concentrators are implemented as independent threads attached to a normal HDF5 process.
b. MPI is utilized for communicating between HDF5 processes and the set of I/O Concentrators.
c. Because of (b), applications need to use MPI_Init_thread to initialize the MPI library.

For Subfiling, the HDF5 content is separated into
two components:

1. The Metadata – written to a regular HDF5 file
1. Final implementation has metadata embedded

in subfiles
2. The RAW data – written logically to a RAID-0

file, and is spread over a number of individual
files, each managed by an I/O concentrator.

The resulting collection can be read using Sub-
filing or eventually coalesced via a post-
processing step into a single HDF5 file.

Subfiling

Initial Results
(h5bench – vpicio)
• Parallel runs on SUMMIT

showing results from 256
to 16384 cores.

• The number of Subfiles
utilized range from 6 (for a
256 MPI rank application
run) to 391 (for the 16K
MPI rank application);
based on 42 cores per
node.

5March 30th, 2021

Feature: Querying datasets ‡

Objective
• Create complex queries on both metadata and data elements within a

HDF5 container
• Retrieve the results of applying those query operations.
Solution
• HDF5 index API routines allow the creation of indexes on the contents

of HDF5 objects, to improve query performance
• HDF5 query API routines enable the construction of query requests for

execution on HDF5 containers
• H5Qcreate
• H5Qcombine
• H5Qapply
• H5Qclose

‡ HDF5 github repo containing the querying and indexing source code:
https://github.com/HDFGroup/hdf5/tree/feature/indexing

Querying and Indexing

(a) Container with data element query applied (b): HDF5 container with combine query applied

Querying and Indexing

0

20

40

60

80

100

1 2 4 8 16 32

Build Index (seconds)

of MPI procs

Ti
m

e
(s

)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

1 2 4 8 16 32

Evaluate Query (seconds)

Parallel scaling of index generation and query resolution is evidenced even for small-
scale experiments.

Ti
m

e
(s

)

of MPI procs

APPS

10March 30th, 2021

• CGNS = Computational Fluid Dynamics (CFD) General Notation System
• An effort to standardize CFD input and output data including:

• Grid (both structured and unstructured), flow solution
• Connectivity, boundary conditions, auxiliary information.

• Two parts:
• A standard format for recording the data
• Software that reads, writes, and modifies data in that format.

• An American Institute of Aeronautics and Astronautics Recommended
Practice

Useful for monitoring HDF5 Performance

 0

 1

 2

 3

 4

 5

 6

 7

 8

1.8.7
1.8.8

1.8.9
1.8.10-patch1

1.8.11
1.8.12

1.8.13
1.8.14

1.8.15-patch1

1.8.16
1.8.17

1.8.18
1.8.19

1.8.20
1.8.21

1.8 1.10.0-patch1

1.10.1
1.10.3

1.10.4
1.10.5

1.10.6
1.10.7

1.10
1.12.0

1.12
develop

Ti
m

e C
G

NS
 "

m
ak

e c
he

ck
",

 S
er

ia
l (

se
co

nd
s)

HDF5 version

CGNS serial make, Jellyntimes=10

1.121.101.8

12March 30th, 2021

Useful for monitoring HDF5 Performance

13March 30th, 2021

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1.8.7
1.8.8

1.8.9
1.8.10-patch1

1.8.11
1.8.12

1.8.13
1.8.14

1.8.15-patch1

1.8.16
1.8.17

1.8.18
1.8.19

1.8.20
1.8.21

1.8 1.10.0-patch1

1.10.1
1.10.2

1.10.3
1.10.4

1.10.5
1.10.6

1.10.7
1.10

1.12.0
1.12

develop

Ti
m

e (
s)

HDF5 version

CGNS benchmark_hdf5, Summit (ORNL)nprocs=1764,ntimes=4

1.121.101.8

Improve the performance of reading/writing
H5S_all selected datasets
(1) New in HDF5 1.10.5
• If:

• All the processes are
reading/writing the same data

• And the dataset is less than
2GB

• Then
• The lowest process id in the

communicator will read and
broadcast the data or will write
the data.

(2) Use of compact storage, or
• For compact storage, this same

algorithm gets used.

SCALING OPTIMIZATIONS

Ti
m

e
(s

ec
.)

Greg Sjaardema, Sandia National Labs

ORIGINAL

MPI_Bcast

READ-PROC0-AND-BCAST
WITHIN APPLICATION

COMPACT STORAGE
FILE-PER-PROCESS

Challenging HDF5 Use Cases

• Ideally, HDF5 parallel performance should be comparable (or
better) to raw binary I/O.

• Issues with third-party libraries (netCDF, CGNS…) using HDF5:
• Can be metadata heavy due to the need to conform to a standard format.
• The standard’s format may dictate raw data output pattern.

• May lead to optimal write performance but poor read performance, or vice-versa.

• Mitigating performance issues
• Implement new features in HDF5 to address metadata performance

• Collective metadata, using the core file driver for metadata creation, etc…
• Work with third-party libraries to use parallel file system friendly HDF5

schemes.

16March 30th, 2021

E3SM

E3SM: Earth system model
development and simulation
project
Levels of library usage:

• Scorpio: A high-level Parallel
I/O Library for structured grid
application.

• NetCDF: software libraries and
machine-independent data formats
that support the creation, access,
and sharing of array-oriented
scientific data.
• HDF5

17March 30th, 2021

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

7056
14112

28224
56448

H
5D

S*
 T

im
e (

s)
Number of Ranks

Summit (ORNL) Dimension Scale Study ntimes=5

H5DS by All Ranks
H5DS by One Rank

E3SM – E3SM-IO1

Issue
• E3SM-IO writes hundreds of variables, contributing to small portions of spatial-temporal

values for each of the variables. Note they can be out of order (in each dimension).
• When flattened to file views, data from a process can be highly non-contiguous.
Investigation
• Alternate implementation using only HDF5 (or PnetCDF), no third-party libraries

• A variable is expressed by an HDF5 dataset.
• Rank 0 initializes metadata for the final HDF5 file.
• HDF5 hyperslab is used to merge 2D/3D requests for a dataset into a single data space.
• Memory space is sorted accordingly to align with the newly created dataspace.
• Multi-dataset implementation can merge the collective write for all datasets into a single one.

Performance (Cori: 338 nodes, 21362 processes, 14.7GiB)
• HDF5 write performance (data only): 19.4s
• PnetCDF write performance (data only): 19.0s
• Tuning metadata write performance is in-progress

18March 30th, 2021

[1] https://github.com/QiaoK/E3SM-IO

HACC/GenericIO Study [1]

Variable 1
(v1)

Pattern 1 – HDF5 pattern

Pattern 2 – MPI-IO pattern (or HDF5 compound datatype)

P0 P1 P2 P0 P1 P2

P0 P0

P0 P1 P2
Variable 2 (v2) Variable N (vN)

…

P0 P1 P1 P1 P2 P2 P2… … …

Variables are contiguously stored in the file

Variables are interleaved in the file

v1 v2 vN v1 v2 vN v1 v2 vN

Write Pattern Effects – Data location in the file

[1] https://portal.hdfgroup.org/display/HDF5/Parallel+HDF5?preview=%2F50904591%2F62458303%2FAn_IO_Study_of_ECP_Applications-2020-10-19.pdf

HACC-IO: MPI vs HDF5, why HDF5 is slow?

HDF5 with individual datasetMPI-IO Access Pattern

Example of access patterns with 8 ranks writing 9GB.

HACC-IO: MPI vs HDF5
• Same access pattern, but why MPI is faster?

• HDF5 writes 2048 bytes
metadata at the beginning
of the file.

• This causes the alignment
issue for the data writes.

MPI_File_write_at is slower
in HDF5?

MPI only HDF5

HACC-IO: MPI vs HDF5
Study Summary

• HDF5 can use a different data layout to achieve similar MPI-IO
access patterns.

• Stripe settings of the parallell system significantly effects write
performance.

• The default metadata header can greatly slow down the write
performance.
• Proper alignment or metadata data blocksize can deliver similar HDF5

performance as a pure MPI-IO implementation

HDF5 Application Use Cases
EQSIM, Castro, Nyx

Houjun Tang, Berkeley Lab

EQSIM

• High-Performance, Multidisciplinary Simulation
for Regional-Scale Earthquake Hazard and Risk
Assessments

• Provide the first strong coupling and linkage
between simulations of earthquake hazards
(ground motions) and risk (structural system
demands).

• SW4, main code to simulate seismic wave
propagation.

March 30th, 2021 2

EQSIM Workflow

• Seismologists sets up an earthquake event for simulation.

• SW4 generates and outputs ground motions for specified locations.

• Analysis codes (OpenSees, ESSI) produces building response.

3March 30th, 2021

Various input data

1D, 2D, 3D, 4D output data

Visualization and analysis data

SW4 I/O pre HDF5 integration

• Input
• Material model and topography: rfile (binary).
• Forcing function: SRF (ASCII).
• Station location: input file (ASCII).

• Output
• Time-series

• Station output: USGS (ASCII), or SAC (binary), 10k+ files, a few MB each.
• Subsurface output: N/A, 4D, 30+ TB.

• Image: sw4img (binary), 2D or 3D, MB to GB.
• Checkpoint: sw4chk (binary), 3D, 40+ TB.

4March 30th, 2021

SW4 I/O with HDF5 integration

• Input
• Material model and topography: sfile: ½ size, 3x faster, new curvilinear grid.
• Forcing function: SRF-HDF5: 1/3 size, 5x faster.
• Station location: inputHDF5: single file.

• Output
• Time-series

• Station output: SAC-HDF5: 1/5 USGS, same as SAC, single file.
• Subsurface output: SSI, with ZFP compression (155GB / 38TB), 3x

faster.
• Image: imgHDF5, same as native, easy to access.
• Checkpoint: chkHDF5 with ZFP compression (WIP).

5March 30th, 2021

AMReX Applications

• AMReX is a software framework for massively parallel, block-
structured adaptive mesh refinement (AMR) applications.
• HDF5 output format is supported for writing plotfiles and particle

data, asynchronous I/O can also be enabled.

6March 30th, 2021

Nyx is an adaptive mesh, massively-parallel,
cosmological simulation code.

Castro is an adaptive-mesh compressible radiation / MHD /
hydrodynamics code for astrophysical flows.

Results on Summit

7March 30th, 2021

Single-level (Nyx) Workload Multiple-level (Castro) Workload

HDF5 Tutorial at the ECP Annual Meeting 2021

April 16th, 10:00 am - 1:30 pm ET

https://ecpannualmeeting.com

2March 30th, 2021

HDF5 User Group meeting (HUG 2021)

October 12-15, 2021

Call for papers and presentations

https://www.hdfgroup.org/hug/hug21

Thanks and contact info

3

• Contacts
– Suren Byna (LBNL) SByna@lbl.gov
– Scot Breitenfeld (The HDF Group) brtnfld@hdfgroup.org
– Quincey Koziol (LBNL - NERSC) koziol@lbl.gov
– Elena Pourmal epourmal@hdfgroup.org

HDF5 User Support:
HDF Helpdesk: help@hdfgroup.org
HDF Forum: https://forum.hdfgroup.org/

