
Approved for public release

MPICH for Exascale: Supporting MPI-4 and ECP

Yanfei Guo (ANL), Ken Raffenetti (ANL), Hui Zhou (ANL)

2

Agenda

• Intro

• MPICH Updates

– GPU

– Collective

– MPI-4

• Partner Updates

– Intel MPI (Nusrat Islam)

– MVAPICH (Dr. Dhabaleswar Panda)

• Q&A

3

Exascale MPI (MPICH)
• Funded by DOE for 29 years

• Has been a key influencer in the adoption of MPI
– First/most comprehensive implementation of every MPI standard
– Allows supercomputing centers to not compromise on what features they

demand from vendors
• DOE R&D100 award in 2005

• MPICH and its derivatives are the world’s most widely used MPI
implementations

– Supports all versions of MPI including the recent MPI-3.1

MPICH

Int
el
M
PI

Sunw
ayMP

I

Cray
MPI

Micros
oft

MPI

MVAPI
CH

Tian
he

MPI

MPE
PETS

c

MathWo
rks

HPCTool
kit

TAU

Totalvie
w

DDT

ADL
B

ANSY
S

ParaStat
ion MPI

FG-
MPI

RIK
EN

MPI

MPICH is not just a software
It’s an Ecosystem

• MPICH Adoption in US Exascale Machines
– Aurora, ANL, USA (MPICH)
– Frontier, ORNL, USA (Cray MPI)
– El Capitan, LLNL, USA (Cray MPI)

4

MPICH ABI Compatibility Initiative
• Binary compatibility for MPI implementations

– Started in 2013

– Explicit goal of maintaining ABI compatibility between multiple MPICH
derivatives

– Collaborators:
• MPICH (since v3.1, 2013)

• Intel MPI Library (since v5.0, 2014)

• Cray MPT (starting v7.0, 2014)

• MVAPICH2 (starting v2.0, 2017)

• Parastation MPI (starting v5.1.7-1, 2017)

• RIKEN MPI (starting v1.0, 2016)

• Open initiative: other MPI implementations are welcome to join
• http://www.mpich.org/abi

http://www.mpich.org/abi

5

MPICH Distribution Model
• Source Code Distribution

– MPICH Website, Github
• Binary Distribution through OS Distros and Package

Managers
– Redhat, CentOS, Debian, Ubuntu, Homebrew (Mac)

• Distribution through HPC Package Managers
– Spack, OpenHPC

• Distribution through Vendor Derivatives

6

MPICH Releases

• MPICH typically follows an 18-month cycle for major releases (3.x),
barring some significant releases
– Minor bug fix releases for the current stable release happen every few

months
– Preview releases for the next major release happen every few months

• Current stable release is in the 3.4.x series
– mpich-3.4.1 was released last week

• Upcoming major release is in the 4.0 series
– mpich-4.0a1 is released

7

MPICH-3.4 Series

• CH4 device being the default
– Replacement for CH3 as default option, CH3 still

maintained till all of our partners have moved to CH4
– Co-design effort

• Weekly telecons with partners to discuss design and
development issues

– Three primary objectives:
• Low-instruction count communication

– Ability to support high-level network APIs (OFI, UCX)
– E.g., tag-matching in hardware, direct PUT/GET communication

• Support for very high thread concurrency
– Improvements to message rates in highly threaded environments

(MPI_THREAD_MULTIPLE)
– Support for multiple network endpoints (THREAD_MULTIPLE or not)

• Support for GPU

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

200

400

600

800

1000

1200

1400

512 (36 8) 1024 (1 84) 2048 (9 0) 4096 (4 5) 8192 (2 3)

Pe
rc

en
ta

ge
 S

pe
ed

up

Ti
m

es
te

ps
 p

er
 S

ec
on

d

Number of nodes (atoms per core)

MPICH/CH4 Efficiency
MPICH/Original Efficiency
MPICH/CH4 Speedup

-5
0
5

10
15
20
25
30
35
40
45
50
55

4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

M
es

sa
ge

s/
s

(x
 1

06
)

Message size (B)

MPI_THREAD_SINGLE

MPI_THREAD_MULTIPLE with MPI_COMM_WORLD

MPI_THREAD_MULTIPLE with separate COMMs

POC: Ken Raffenetti
<raffenet@mcs.anl.gov>

The CH4 in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

8

MPICH with CH4 Device Overview

MPI Layer

Abstract Device Interface (ADI)

MPI Interface
Application

Machine-independent
Collectives

Derived Datatype Management
(Yaksa) Group Management

CH4
CH4 Core

Netmods
OFI UCX

Shmmods
POSIX XPMEM

Architecture-specific
Collectives

Active Message
Fallback

GPU Support
Fallback

GPU IPC

Legacy
CH3

9

Supporting GPU in MPI Communication (1/3)

The GPU support in MPICH is developed in close collaboration with vendor
partners including Including AMD, Cray, Intel, Mellanox and NVIDIA

• Native GPU Data Movement
– Multiple forms of “native” data movement
– GPU Direct RDMA is generally achieved through Libfabrics

or UCX (we work with these libraries to enable it)
– GPU Direct IPC is integrated into MPICH

• GPU Fallback Path
– GPU Direct RDMA may not be available due to system

setup (e.g. library, kernel driver, etc.)
– GPU Direct IPC might not be possible for some system

configurations
– GPU Direct (both forms) might not work for noncontiguous

data
– Datatype and Active Message Support

CH4

MPI Layer

CH4 Core

Netmods

OFI UCX

Shmmods

POSIX XPMEM

Architecture-specific
Collectives

Active Message
Fallback

Abstract Device Interface (ADI)

MPI Interface
Application

Machine-
independent
Collectives

Derived Datatype
Management (Yaksa)

Group
Management

GPU Support
Fallback

GPU IPC

NVIDIA
CUDA

AMD
HIP

Intel
OneAPI

POC: Yanfei Guo
<yguo@anl.gov>

10

Supporting GPU in MPI Communication (2/3)

The GPU support in MPICH is developed in close collaboration with vendor
partners including Including AMD, Cray, Intel, Mellanox and NVIDIA

• MPICH support for using complex noncontiguous
buffers with GPU

– Buffer with complex datatype is not directly supported by the
network library

– Packing complex datatype from GPU into contiguous send buffer
– Unpacking received data back into complex datatype on GPU

• Yaksa: A high performance datatype engine
– Used for internal datatype representation in MPICH
– Front-end provide interface for MPI datatypes
– Multiple backend to leverage different hardware for datatype handle
– Generated GPU kernels for packing/unpacking

Yaksa Datatype Engine

Vector

Indexed

Struct

MPI Datatypes

…

Datatype
Frontend

CPU
Backend

CUDA
Backend

HIP
Backend

ZE*
Backend

CPU

NVIDIA
GPU

AMD
GPU

Intel
GPU

0

2

4

6

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M

Ti
m

e
(m

se
c)

Number of integers in the Z dimension

Yaksa H2H Yaksa D2D

11

Supporting GPU in MPI Communication (3/3)

The GPU support in MPICH is developed in close collaboration with vendor
partners including Including AMD, Cray, Intel, Mellanox and NVIDIA

• Supporting Multiple GPU Node
– Data movement between GPU devices
– Utilizing high bandwidth inter-GPU links (e.g. NVLINK)

• GPU-IPC Communication via Active Message
– Create IPC handles for GPU buffers
– Send IPC handles to target process
– Receiver initiate Read/Write using the IPC handle

• Fallback Path in General SHM Active Message
– When IPC is not available for the GPU-pair

AM SEND

GPU

Memory

Src Buffer

MPICH SHM Communication Layer

IPC Handle

GPU

Memory

Dest Buffer

Incoming Msg

IPC Handle

12

New Collective Infrastructure

• Thanks to Intel for the significant work on this infrastructure
• Two major improvements:
– C++ Template-like structure (still written in C)

• Allows collective algorithms to be written in template form
• Provides “generic” top-level instantiation using point-to-point operations
• Allows device-level machine specific optimized implementations (e.g., using triggered operations for OFI

or HCOLL for UCX)
– Several new algorithms for a number of blocking and nonblocking collectives (performance tuning

still ongoing)

Contributed by Intel (with some minor help from Argonne)

13

Collective Selection Framework

•Choose Optimal Collective Algorithms
– Optimized algorithm for certain communicator size, message size
– Optimized algorithm using HW collective support
– Making decision on each collective call

•Generated Decision Tree
– JSON file describing choosing algorithms with conditions
– JSON file created by profiling tools
– JSON parsed at MPI_Init time and applied to the library

Contributed by Intel (with some minor help from Argonne)

MPICH 4.0 Release Series

Implement MPI-4 Standard

and more …

15

Focuses in MPICH 4.0 Release Series

• Full implementation of MPI 4 specification
– MPI Sessions
– Partitioned Communications
– Persistent Collectives, Tool Events, Large Count, and more
– https://www.mpi-forum.org/docs/

•Enhance GPU and threading support
– Make the support more stable and user experience smoother
– Push the production performance to our research projection

• Improve useability
– Explore MPIX space for more natural/direct semantics

POC: Hui Zhou
<zhouh@anl.gov>

16

MPICH 4.0 Roadmap

•MPICH-4.0a1 released in February
– Majority of the MPI 4 API implemented

•MPICH-4.0a2 will release in June
– Synchronized to MPI Forum meeting with the expected

official ratification of MPI 4 standard
– Full implementation of MPI 4 API
– More stable GPU/threading support

•Beta and GA release in early 2022

•Most bug fixes will be back ported to 3.4.x

V3.4
V3.4.1

Nov ‘20 Jan ‘21

V4.0a1

Feb ‘21

V4.0a2

Jun ‘21

17

C Binding Generation

• + 3,000 lines of Python script
• - 40,000 lines of C

• API extracted from mpi-standard repo

• Generates –
– Profiling interface
– API documentation
– Parameter validation
– Handle object pointer conversion

• Fortran binding generation will be updated to Python and unified
– F08 binding generation 80% done

18

MPI Session

• Libraries to keep MPI usage
opaque to user

• Basic implementation
internally initializes “world” in the
first MPI_Session_init/MPI_Init

• Better implementation will delay the world initialization to first world-comm

• Fully correct implementation need to support first-class dynamic processes

19

Partitioned Communication

• In-between two-sided (pt2pt) and one-sided (RMA) communication

• Basic implementation done, plenty of optimization opportunity ahead!

20

Large Count API

• A large count version for every API that has a ”count” or “displacement”
argument (guess how many?)

• No more work-arounds!

• API use MPI_Count, internally we use MPI_Aint where-ever possible

21

Enhanced GPU Support

•MPICH is fully GPU-aware since 3.4.0

•But …
– May experience degraded performance even for non-GPU app

•GPU initialization cost, GPU pointer query cost, …
– Cloudy with a chance of crash

•GPU testing takes 8 hours!
– Need GPU-aware API

•We are working on it …
– MPIR_CVAR_ENABLE_GPU=0 should recover full CPU-only performance
– Fine-tuned usable GPU-testing and keeping it green
– GPU direct IPC, GPU specific algorithm, …

•Explore MPIX extension

Compute Node
GPU

GPU
MEM

GPU

GPU
MEM

HOST
MEMCPU

NIC

Compute Node
GPU

GPU
MEM

GPU

GPU
MEMHOST

MEMCPU

NIC

22

Better Threading Support

• Enable strong scaling with multiple VCI (virtual communication
interface)

• Multi-VCI for Point-to-point implemented in 3.4.0
• Multi-VCI for RMA added in 4.0a1
• Multi-VCI for Active Messages coming

• Parallel semantics based on
communicator/rank/tag

• Explore MPIX for direct threading
semantics

23

Weekly MPICH Development Update

If you are excited with we are doing and

like to get more technical –

https://bluejeans.com/266293319

Give us a whistle and we’ll send you an invite.

https://bluejeans.com/266293319

