MPICH for Exascale: Supporting MPI|-4 and ECp—— \
SR e

Approved for public release

Yanfei Guo (ANL), Ken Raffenetti (ANL), Hui Zhou (ANL)

Office of

é ., éENERGY Science

[7.X<

YA T ays
i vI/q-‘?f

Agenda

Intro

MPICH Updates
- GPU

— Collective

~ MPI-4

Partner Updates
— Intel MPI (Nusrat Islam)
— MVAPICH (Dr. Dhabaleswar Panda)

« Q&A

Exascale MPI (MPICH)

« Funded by DOE for 29 years
- Has been a key influencer in the adoption of MPI m
— First/most comprehensive implementation of every MPI standard Im

— Allows supercomputing centers to not compromise on what features they

demand from vendors

. DOE R&D100 award in 2005 MPICH is not just a software

: L . It’s an Ecosystem
« MPICH and its derivatives are the world’s most widely used MPI

implementations TAU PETS

MPE c

— Supports all versions of MPI including the recent MPI-3.1

HPCTool
kit
ParaStat
« MPICH Adoption in US Exascale Machines oo ion MP!
— Aurora, ANL, USA (MPICH)
— Frontier, ORNL, USA (Cray MPI) o

— El Capitan, LLNL, USA (Cray MPI)

MPICH ABI Compatibility Initiative

« Binary compatibility for MPI implementations
— Started in 2013
— Explicit goal of maintaining ABI compatibility between multiple MPICH

derivatives /3
— Collaborators: é |nte|
Argonne
 MPICH (since v3.1, 2013)
« Intel MPI Lib i 5.0, 2014 AN
n e I rary (Slnce V) E THE SUPERCOMPUTER COMPANY
« Cray MPT (starting v7.0, 2014) =
- MVAPICH?2 (starting v2.0, 2017) MVAPICH ParaStation
« Parastation MPI (starting v5.1.7-1, 2017)
. RIKEN MPI (starting v1.0, 2016) QO 2 e

RIKEN AICS Computational Science

* Open initiative: other MPI implementations are welcome to join

* http://www.mpich.org/abi

http://www.mpich.org/abi

MPICH Distribution Model

 Source Code Distribution
— MPICH Website, Github

« Binary Distribution through OS Distros and Package
Managers

— Redhat, CentOS, Debian, Ubuntu, Homebrew (Mac)

 Distribution through HPC Package Managers
— Spack, OpenHPC
 Distribution through Vendor Derivatives

_—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

MPICH

Home About Downloads Documentation Support ABI Compatibility Initiative Supported g

Downloads

MPICH is distributed under a BSD-like license. NOTE: MPICH binary packages are

] pmodels / mpich

<> Code Issues 339 Pull requests 90 Actions Projects 7 Wik

Official MPICH Repository http://www.mpich.org

mpi c fortran hpc Manage topics
{D 12,676 commits ¥ 5 branches T 0 packages © 64 relea:
Branch: master v New pull request (o]

open @ Spack

THE
INUX
FOUNDATION

MPICH Releases

 MPICH typically follows an 18-month cycle for major releases (3.x),
barring some significant releases

— Minor bug fix releases for the current stable release happen every few
months

— Preview releases for the next major release happen every few months
» Current stable release is in the 3.4.x series

— mpich-3.4.1 was released last week
« Upcoming major release is in the 4.0 series

— mpich-4.0a1 is released

MPICH-3.4 Series

« CHA4 device being the default

Replacement for CH3 as default option, CH3 still
maintained till all of our partners have moved to CH4

— Co-design effort

» Weekly telecons with partners to discuss design and
development issues

— Three primary objectives:

» Low-instruction count communication

— Ability to support high-level network APIs (OFI, UCX)

— E.g., tag-matching in hardware, direct PUT/GET communication
« Support for very high thread concurrency

— Improvements to messagL e rates in highly threaded environments
(MPI_THREAD MULTIPLE

— Support for multiple network endpoints (THREAD_MULTIPLE or not)
» Support for GPU

The CH4 in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

_—
\\ EXASCALE
) COMPUTING
\ PROJECT
o

30

1400

1200

=
o
o
o

800

600

400

Timesteps per Second

200

POC: Ken Raffenetti
<raffenet@mcs.anl.gov>

M PICH/CHA4 Efficiency
mmmm— \PICH/Original Efficiency
e © MPICH/CH4 Speedup

512 (368) 1024 (184) 2048 (90) 4096 (45) 8192 (23)

Number of nodes (atoms per core)

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Percentage Speedup

Message size (B)

e P THREAD_SINGLE
e MP|_THREAD_MULTIPLE with MPI_COMM_WORLD
e MP|_THREAD_MULTIPLE with separate COMMs

MPICH with CH4 Device Overview

Application
MPI Interface

Machine-independent
Collectives Group Management

_______________ Abstract Device Interface (ADI)

CH4
CH4 Core
Architecture-specific Active Message
Collectives Fallback

Shmmods
<

—_—
\\ EXASCALE
) COMPUTING
\ PROJECT
O d

Supporting GPU in MPI Communication (1/3)

« Native GPU Data Movement

— Multiple forms of “native” data movement

— GPU Direct RDMA is generally achieved through Libfabrics
or UCX (we work with these libraries to enable it)

— GPU Direct IPC is integrated into MPICH
 GPU Fallback Path

— GPU Direct RDMA may not be available due to system

setup (e.qg. library, kernel driver, etc.)

— GPU Direct IPC might not be possible for some system

configurations

— GPU Direct (both forms) might not work for noncontiguous

data
— Datatype and Active Message Support

The GPU support in MPICH is developed in close collaboration with vendor

partners including Including AMD, Cray, Intel, Mellanox and NVIDIA

_—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

POC: Yanfei Guo

<yquo@anl.gov>

Application

————————————— MPI Interface - - - === == === -~
MPI Layer

I EETE [Derived Datatype } Group

independent
Collectives Management (Yaksa) Management

————————— Abstract Device Interface (ADI) ———— ==

CH4
CH4 Core

Architecture-specific Active Message GPU Support
Collectives Fallback Fallback

Netmods Shmmods
[ort [uox |

A 4

Intel
OneAPI

Supporting GPU in MPI Communication (2/3)

 MPICH support for using complex noncontiguous

. MPI Datatypes CPU
buffers with GPU y s D
— Buffer with complex datatype is not directly supported by the
network library CUDA m

. . . Backend
— Packing complex datatype from GPU into contiguous send buffer Datatype j
— Unpacking received data back into complex datatype on GPU FEIEE HIP :m
. . _ Backend
« Yaksa: A high performance datatype engine :
— Used for internal datatype representation in MPICH ZE* :m
— Front-end provide interface for MPI datatypes St
— Multiple backend to leverage different hardware for datatype handle Velisn Brlaias i
— Generated GPU kernels for packing/unpacking o Vaksa HoH Vaksa D2D
6
24
[}
=
=2
O o—o—o o o o o o o o o _—
The GPU support in MPICH is developed in close collaboration with vendor TAYooNTRIEYXX fr Txxxx$==
partners including Including AMD, Cray, Intel, Mellanox and NVIDIA — N - ®od § o - A
Number of integers in the Z dimension

—
S \
\ EXASCALE
) COMPUTING
\ PROJECT
=

Supporting GPU in MPI Communication (3/3)

« Supporting Multiple GPU Node [GPU) [GPU
— Data movement between GPU devices T T
— Utilizing high bandwidth inter-GPU links (e.g. NVLINK)

« GPU-IPC Communication via Active Message

Src Buffer Dest Buffer

— Create IPC handles for GPU buffers] |
— Send IPC handles to target process L J \
— Receiver initiate Read/Write using the IPC handle

- Fallback Path in General SHM Active Message T T
— When IPC is not available for the GPU-pair G ol PC Handle |

‘ %—im Communicauun Layer

The GPU support in MPICH is developed in close collaboration with vendor
partners including Including AMD, Cray, Intel, Mellanox and NVIDIA

o \
\ EXASCALE
) COMPUTING
\ PROJECT

New Collective Infrastructure

* Thanks to Intel for the significant work on this infrastructure

e Two major improvements:

— C++ Template-like structure (still written in C)
* Allows collective algorithms to be written in template form
* Provides “generic” top-level instantiation using point-to-point operations

 Allows device-level machine specific optimized implementations (e.g., using triggered operations for OFl|
or HCOLL for UCX)

— Several new algorithms for a number of blocking and nonblocking collectives (performance tuning
still ongoing)

Contributed by Intel (with some minor help from Argonne)

Collective Selection Framework

» Choose Optimal Collective Algorithms

— Optimized algorithm for certain communicator size, message size
— Optimized algorithm using HW collective support
— Making decision on each collective call

» Generated Decision Tree

— JSON file describing choosing algorithms with conditions
— JSON file created by profiling tools
— JSON parsed at MPI_Init time and applied to the library

Contributed by Intel (with some minor help from Argonne)

MPICH 4.0 Release Series
Implement MPI-4 Standard

and more ...

—
’— \
\ EXASCALE
COMPUTING
\ PROJECT
g

Focuses in MPICH 4.0 Release Series

 Full implementation of MPI 4 specification <zhouh@anl.gov>
— MPI Sessions
— Partitioned Communications
— Persistent Collectives, Tool Events, Large Count, and more
— https://www.mpi-forum.org/docs/

 Enhance GPU and threading support
— Make the support more stable and user experience smoother
— Push the production performance to our research projection

e Improve useability
— Explore MPIX space for more natural/direct semantics

MPICH 4.0 Roadmap

« MPICH-4.0a1 released in February
— Majority of the MPI1 4 API implemented

V3.4.1

Jan ‘21

e MPICH-4.0a2 will release in June

— Synchronized to MPI Forum meeting with the expected
official ratification of MPI| 4 standard

— Full implementation of MPI 4 API
— More stable GPU/threading support

e Beta and GA release in early 2022
* Most bug fixes will be back ported to 3.4.x

Feb ‘21

V4.0a1

C Binding Generation

MPI Bcast init:

+ 3,000 lines of Python script

o 40,000 Iines OfC .desc: Creates a persistent request for broadcast

« APl extracted from mpi-standard repo

 Generates —
— Profiling interface
— API documentation
— Parameter validation
— Handle object pointer conversion

Fortran binding generation will be updated to Python and unified
— FO08 binding generation 80% done

MPI| Session

void library_foo_init(void)
{
MPI_Session_init(info, errhan, &session);
° LibrarieS tO keep MPI Usage MPI_Group_from_session_pset(session, "mpi://world", &group);
MPI_Comm_create_from_group(group, "foo (string tag)",
opaque to user info, errhan, &comm);
}
« Basic implementation

internally initializes “world” in the
first MPT Session init/MPI Init

« Better implementation will delay the world initialization to first world-comm

* Fully correct implementation need to support first-class dynamic processes

_—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

Partitioned Communication

* In-between two-sided (pt2pt) and one-sided (RMA) communication

« Basic implementation done, plenty of optimization opportunity ahead!

if (rank == sender) {
MPI_Psend_init(buf, parts, cnt, datatype,
recver, tag, comm, info, &req);
MPI_Start(&req);

if (rank == recver) {
MPI_Precv_init(buf, parts, cnt, datatype,
sender, tag, comm, info, &req);
MPI_Start(&req);

MPI_Pready(1i); MPI_Parrived(req, i, &flag);

MPI_Wait(&req, MPI_STATUS_IGNORE);
MPI_Request_free(&req);

MPI_Wait(&req, MPI_STATUS_IGNORE);
MPI_Request_free(&req);

o=
\\ EXASCALE
) COMPUTING
\ PROJECT
O d

19

Large Count AP

A large count version for every API that has a "count” or “displacement”
argument (guess how many?)

* No more work-arounds!

APl use MPI Count, internally we use MPI Aint where-ever possible

MPI_Type_contiguous_c(10000000000, MPI_INT, &my_type);

MPI_Send_c(buf, 10000000000, MPI_INT, dest, tag, comm);

Sy, \
\ EXASCALE
) COMPUTING
\ PROJECT
C

20

Enhanced GPU Support .

Compute Node
GPU GPU
 MPICH is fully GPU-aware since 3.4.0
e But ... L :
— May experience degraded performance even for non-GPU app //
» GPU initialization cost, GPU pointer query cost, ... [NIC
— Cloudy with a chance of crash \S
« GPU testing takes 8 hours! cpy | HOST [Vi] [iy
- Need GPU-aware API GPU GPU
_ Compute Node

e We are workingon it ...
- MPIR CVAR ENABLE GPU=0 should recover full CPU-only performance

— Fine-tuned usable GPU-testing and keeping it green
- GPU direct IPC, GPU specific algorithm, ...

» Explore MPIX extension

Better Threading Support

« Enable strong scaling with multiple VCI (virtual communication
interface)

* Multi-VCI for Point-to-point implemented in 3.4.0
* Multi-VCI for RMA added in 4.0a1
« Multi-VCI for Active Messages coming

« Parallel semantics based on = 35
communicator/rank/tag 525

« Explore MPIX for direct threading 515

s (
w
o
® 0000060606 66

semantics 2

(9]
(@)
4

no
Message size (B)
—~MPI_THREAD_SINGLE
~+MPI_THREAD_MULTIPLE with MPI_COMM_WORLD
MPI_THREAD_MULTIPLE with separate COMMs

o \
\ EXASCALE
) COMPUTING
\ PROJECT

© > © > © ™
N o 2 P

®© 000600660666 66

o

Weekly MPICH Development Update

If you are excited with we are doing and

like to get more technical —

https://bluejeans.com/266293319

Give us a whistle and we’ll send you an invite.

https://bluejeans.com/266293319

