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Agenda

• Intro

• MPICH Updates

– GPU

– Collective

– MPI-4

• Partner Updates

– Intel MPI (Nusrat Islam)

– MVAPICH (Dr. Dhabaleswar Panda)

• Q&A
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Exascale MPI (MPICH)
• Funded by DOE for 29 years

• Has been a key influencer in the adoption of MPI
– First/most comprehensive implementation of every MPI standard
– Allows supercomputing centers to not compromise on what features they 

demand from vendors
• DOE R&D100 award in 2005

• MPICH and its derivatives are the world’s most widely used MPI 
implementations

– Supports all versions of MPI including the recent MPI-3.1
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MPICH is not just a software
It’s an Ecosystem

• MPICH Adoption in US Exascale Machines
– Aurora, ANL, USA (MPICH)
– Frontier, ORNL, USA (Cray MPI)
– El Capitan, LLNL, USA (Cray MPI)
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MPICH ABI Compatibility Initiative
• Binary compatibility for MPI implementations

– Started in 2013

– Explicit goal of maintaining ABI compatibility between multiple MPICH 
derivatives

– Collaborators:
• MPICH (since v3.1, 2013)

• Intel MPI Library (since v5.0, 2014)

• Cray MPT (starting v7.0, 2014)

• MVAPICH2 (starting v2.0, 2017)

• Parastation MPI (starting v5.1.7-1, 2017)

• RIKEN MPI (starting v1.0, 2016)

• Open initiative: other MPI implementations are welcome to join
• http://www.mpich.org/abi

http://www.mpich.org/abi
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MPICH Distribution Model
• Source Code Distribution

– MPICH Website, Github
• Binary Distribution through OS Distros and Package 

Managers
– Redhat, CentOS, Debian, Ubuntu, Homebrew (Mac)

• Distribution through HPC Package Managers
– Spack, OpenHPC

• Distribution through Vendor Derivatives
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MPICH Releases

• MPICH typically follows an 18-month cycle for major releases (3.x), 
barring some significant releases
– Minor bug fix releases for the current stable release happen every few 

months
– Preview releases for the next major release happen every few months

• Current stable release is in the 3.4.x series
– mpich-3.4.1 was released last week

• Upcoming major release is in the 4.0 series
– mpich-4.0a1 is released



7

MPICH-3.4 Series

• CH4 device being the default
– Replacement for CH3 as default option, CH3 still

maintained till all of our partners have moved to CH4
– Co-design effort 

• Weekly telecons with partners to discuss design and 
development issues

– Three primary objectives:
• Low-instruction count communication

– Ability to support high-level network APIs (OFI, UCX)
– E.g., tag-matching in hardware, direct PUT/GET communication

• Support for very high thread concurrency
– Improvements to message rates in highly threaded environments 

(MPI_THREAD_MULTIPLE)
– Support for multiple network endpoints (THREAD_MULTIPLE or not)

• Support for GPU
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POC: Ken Raffenetti
<raffenet@mcs.anl.gov>

The CH4 in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA
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MPICH with CH4 Device Overview
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Supporting GPU in MPI Communication (1/3)

The GPU support in MPICH is developed in close collaboration with vendor
partners including Including AMD, Cray, Intel, Mellanox and NVIDIA

• Native GPU Data Movement
– Multiple forms of “native” data movement
– GPU Direct RDMA is generally achieved through Libfabrics

or UCX (we work with these libraries to enable it)
– GPU Direct IPC is integrated into MPICH

• GPU Fallback Path
– GPU Direct RDMA may not be available due to system 

setup (e.g. library, kernel driver, etc.)
– GPU Direct IPC might not be possible for some system 

configurations
– GPU Direct (both forms) might not work for noncontiguous 

data
– Datatype and Active Message Support
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POC: Yanfei Guo
<yguo@anl.gov>
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Supporting GPU in MPI Communication (2/3)

The GPU support in MPICH is developed in close collaboration with vendor
partners including Including AMD, Cray, Intel, Mellanox and NVIDIA

• MPICH support for using complex noncontiguous 
buffers with GPU

– Buffer with complex datatype is not directly supported by the 
network library

– Packing complex datatype from GPU into contiguous send buffer
– Unpacking received data back into complex datatype on GPU

• Yaksa: A high performance datatype engine
– Used for internal datatype representation in MPICH
– Front-end provide interface for MPI datatypes
– Multiple backend to leverage different hardware for datatype handle
– Generated GPU kernels for packing/unpacking
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Supporting GPU in MPI Communication (3/3)

The GPU support in MPICH is developed in close collaboration with vendor
partners including Including AMD, Cray, Intel, Mellanox and NVIDIA

• Supporting Multiple GPU Node
– Data movement between GPU devices
– Utilizing high bandwidth inter-GPU links (e.g. NVLINK)

• GPU-IPC Communication via Active Message
– Create IPC handles for GPU buffers
– Send IPC handles to target process
– Receiver initiate Read/Write using the IPC handle

• Fallback Path in General SHM Active Message
– When IPC is not available for the GPU-pair
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New Collective Infrastructure

• Thanks to Intel for the significant work on this infrastructure
• Two major improvements:
– C++ Template-like structure (still written in C)

• Allows collective algorithms to be written in template form
• Provides “generic” top-level instantiation using point-to-point operations
• Allows device-level machine specific optimized implementations (e.g., using triggered operations for OFI 

or HCOLL for UCX)
– Several new algorithms for a number of blocking and nonblocking collectives (performance tuning 

still ongoing)

Contributed by Intel (with some minor help from Argonne)
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Collective Selection Framework

•Choose Optimal Collective Algorithms
– Optimized algorithm for certain communicator size, message size
– Optimized algorithm using HW collective support
– Making decision on each collective call

•Generated Decision Tree
– JSON file describing choosing algorithms with conditions
– JSON file created by profiling tools
– JSON parsed at MPI_Init time and applied to the library

Contributed by Intel (with some minor help from Argonne)



MPICH 4.0 Release Series 

Implement MPI-4 Standard

and more …
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Focuses in MPICH 4.0 Release Series

• Full implementation of MPI 4 specification
– MPI Sessions
– Partitioned Communications
– Persistent Collectives, Tool Events, Large Count, and more
– https://www.mpi-forum.org/docs/

•Enhance GPU and threading support
– Make the support more stable and user experience smoother
– Push the production performance to our research projection

• Improve useability
– Explore MPIX space for more natural/direct semantics

POC: Hui Zhou
<zhouh@anl.gov>
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MPICH 4.0 Roadmap

•MPICH-4.0a1 released in February
– Majority of the MPI 4 API implemented

•MPICH-4.0a2 will release in June
– Synchronized to MPI Forum meeting with the expected 

official ratification of MPI 4 standard
– Full implementation of MPI 4 API
– More stable GPU/threading support

•Beta and GA release in early 2022

•Most bug fixes will be back ported to 3.4.x

V3.4
V3.4.1

Nov ‘20 Jan ‘21

V4.0a1

Feb ‘21

V4.0a2

Jun ‘21
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C Binding Generation

• +  3,000 lines of Python script
• - 40,000 lines of C

• API extracted from mpi-standard repo

• Generates –
– Profiling interface
– API documentation
– Parameter validation
– Handle object pointer conversion

• Fortran binding generation will be updated to Python and unified
– F08 binding generation 80% done
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MPI Session

• Libraries to keep MPI usage
opaque to user

• Basic implementation
internally initializes “world” in the
first  MPI_Session_init/MPI_Init

• Better implementation will delay the world initialization to first world-comm

• Fully correct implementation need to support first-class dynamic processes
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Partitioned Communication

• In-between two-sided (pt2pt) and one-sided (RMA) communication

• Basic implementation done, plenty of optimization opportunity ahead!
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Large Count API

• A large count version for every API that has a ”count” or “displacement” 
argument (guess how many?)

• No more work-arounds!

• API use MPI_Count, internally we use MPI_Aint where-ever possible
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Enhanced GPU Support

•MPICH is fully GPU-aware since 3.4.0

•But …
– May experience degraded performance even for non-GPU app 

•GPU initialization cost, GPU pointer query cost, …
– Cloudy with a chance of crash

•GPU testing takes 8 hours!
– Need GPU-aware API

•We are working on it …
– MPIR_CVAR_ENABLE_GPU=0 should recover full CPU-only performance
– Fine-tuned usable GPU-testing and keeping it green
– GPU direct IPC, GPU specific algorithm, …

•Explore MPIX extension
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Better Threading Support

• Enable strong scaling with multiple VCI (virtual communication 
interface)

• Multi-VCI for Point-to-point implemented in 3.4.0
• Multi-VCI for RMA added in 4.0a1
• Multi-VCI for Active Messages coming

• Parallel semantics based on 
communicator/rank/tag

• Explore MPIX for direct threading
semantics
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Weekly MPICH Development Update

If you are excited with we are doing and

like to get more technical –

https://bluejeans.com/266293319

Give us a whistle and we’ll send you an invite.

https://bluejeans.com/266293319

