
Reducing	Technical	Debt	with	
Reproducible	Containers

Tanu	Malik
2019 BSSw Fellow
Assistant Professor

School of Computing
DePaul University

Chicago, IL

IDEAS-ECP Webinar, November 4th, 2020

IDEAS-ECP Webinar, November 2020 2

WhoamI

My	expertise	is:
Databases	and	distributed	computing
Data	provenance:	history	and	lineage	of	data	and	software
Computational	reproducibility:	Repeating and	recreating	some	one	else’s	work

Systems	built:	http://sciunit.run

I	want	to	know	more	about:
Reproducibility	case	studies	in	HPC	and	how	containers	are	used.

Problems	I’m	currently	working	on:
Provenance	alignment:	Using	provenance	to	highlight	sources	of	irreproducibility
State	maintenance	in	lineage	graphs:	Making	Jupyter Notebooks	reproducible

Tanu	Malik
Assistant	Professor,	
School	of	Computing
Director,	Data	Systems	and	Opt.	Lab
DePaul	University
Chicago,	IL
https://facsrv.cs.depaul.edu/~tmalik1
Tanu.Malik@depaul.edu

IDEAS-ECP Webinar, November 2020 1

https://facsrv.cs.depaul.edu/~tmalik1/

Outline

PART	1:	How	technical	debt	affects	reproducibility?	

PART	2:	If	reproducible	containers	provide	a	start?

PART	3:	Guidance	and	summary

IDEAS-ECP Webinar, November 2020 3

PART	1:	How	technical	debt	affects	
reproducibility?	

IDEAS-ECP Webinar, November 2020 4

IDEAS-ECP Webinar, November 2020

Monetary	debt

5

Monetary	debt	meets	the	objective	“sooner”

IDEAS-ECP Webinar, November 2020 6

Technical	debt1	 is	no	different

IDEAS-ECP Webinar, November 2020 7

1A	metaphor	introduced	by	Ward	Cunningham	in	1992.

Technical	debt1	 is	no	different

IDEAS-ECP Webinar, November 2020 8

</>
</>
</>

1A	metaphor	introduced	by	Ward	Cunningham	in	1992.

Technical	debt is	no	different.

IDEAS-ECP	Webinar,	November	2020

Technical	
debt

Time

Pr
od
uc
tiv
ity

Journal	deadline

Good	scientific	software	

Poor	scientific	software

9

Dimensions	of	Technical	Debt

• Poor	quality	code
• Poor	design
• Environment	debt
• Documentation	debt
• Testing	debt

IDEAS-ECP	Webinar,	November	2020 10

Consequence	of	Mismanaged	Debt

IDEAS-ECP Webinar, November 2020

REPOS
SESSE

D

11

Consequence	of	Mismanaged	Debt

</>
</>
</>

IDEAS-ECP	Webinar,	November	2020

REPOS
SESSE

D

IRREP
RODU

CIBLE

12

Dimensions	of	Scientific	Technical	Debt

• Poor	quality	code
• Poor	design
• Environment	debt
• Documentation	debt
• Testing	debt

IDEAS-ECP	Webinar,	November	2020 13

1E.	Tom,	A.	Aurum,	R.	Vidgen,	An	exploration	of	technical	debt,	Journal	of	Systems	and	Software,	Volume	86,	
Issue	6,	2013,	Pages	1498-1516,	ISSN	0164-1212,	https://doi.org/10.1016/j.jss.2012.12.052.

Dimensions of Scientific Technical Debt

• Poor quality code
• Poor design
üEnvironment debt
üDocumentation debt
• Testing debt

IDEAS-ECP Webinar, November 2020 14

IDEAS-ECP Webinar, November 2020 15

https://www.newscientist.com/gallery/software-bugs

IDEAS-ECP Webinar, November 2020 16

IDEAS-ECP Webinar, November 2020 17

https://www.nature.com/articles/d41586-020-01685-y

Cost of Scientific Technical Debt

IDEAS-ECP Webinar, November 2020 18

Supercomputing Artifact Description and
Evaluation Initiative

IDEAS-ECP Webinar, November 2020

https://sc20.supercomputing.org/planning-committee/

19

https://sc20.supercomputing.org/planning-committee/

Lack of artifacts will reject a paper

380

80

5

43

24

1

0 50 100 150 200 250 300 350 400

Submissions (Phase 1)

Per reviewer

with VG/E AD/AE (Phase 1)

Submissions (Phase 2)

with VG/E AD/AE (Phase 2)

Unacceptable AD/AE

Total Number

Number

IDEAS-ECP Webinar, November 2020 20

Technical debt incurs burden

• Reproducibility is an after
thought.
• Identifying files for an

application is a challenge
• Missing workflows
• Really, that data/algorithm

should be part of the bundle?

IDEAS-ECP Webinar, November 2020 21

• “Sticks” from reviewers work
• Authors who have not taken

AD/AE process seriously do submit
additional work

• Time consuming task
• No tools to check if everything

relevant for the publication is
submitted

• No mapping of experiments to
content in the paper.
• No infrastructure for efficiently

verifying claimed results

PART	2:	Do	reproducible	containers	
provide	a	start?

IDEAS-ECP Webinar, November 2020 22

Reproducibility ecosystem

IDEAS-ECP Webinar, November 2020 23

Github

FigshareOpenData.gov Docker.com

Sharing images via the cloudPackage managers

An introduction to Docker for reproducible research
C Boettiger - ACM SIGOPS Operating Systems Review, 2015 - dl.acm.org

Zenodo.org

https://dl.acm.org/doi/abs/10.1145/2723872.2723882?casa_token=eqsOvyM-sB8AAAAA:THhqRdPjiY1crRBXJFSmujnR4fRWnzoGjN_rshI_jq9uQhm0G0r9ZIkltUcbCsDgZNObE29nsoRckiE
https://scholar.google.com/citations?user=zj2rRtEAAAAJ&hl=en&oi=sra

Docker: Using containers from build to run

IDEAS-ECP Webinar, November 2020 24

https://www.exascaleproject.org/event/conthpc

Containers provide constrained resource
isolation

IDEAS-ECP Webinar, November 2020

CPU Memory Filesystem Network

25

Authors must program a Dockerfile

IDEAS-ECP Webinar, November 2020 26

Containers do not reduce technical debt

• Declarative encapsulation of dependencies for isolated execution
• E.g. various shell utilities and library versions unknown to user

IDEAS-ECP Webinar, November 2020 27

Automatic Encapsulation of Dependencies:
The Sciunit

IDEAS-ECP Webinar, November 2020 28

Key Idea: Identify dependencies during
program execution

• Captures application dependencies during executions
• Repeats executions (with guarantees) within isolated environments

IDEAS-ECP Webinar, November 2020 29

Sciunit: Audit

IDEAS-ECP Webinar, November 2020 30

Sciunit Sciunit

• Audit uses ptrace to observe
dependencies and environment
variables
• Identifies binaries, libraries, scripts,

and environment variables that
application is dependent on.

• Dependencies are copied into a
directory in the filesystem
• Inclusion of data files is optional
• user may or may not want to package

based on the size of the dataset.

D.H. Ton That, G. Fils, Z. Yuan, T. Malik. Sciunits: Reusable Research Objects.
In IEEE eScience Conference (eScience), 374-383, 2017

Audits provenance during execution time

IDEAS-ECP Webinar, November 2020 31

Utilizing Provenance in Reusable Research Objects, In Special Issue on Using Computational Provenance, MDPI Informatics, Vol 5(1), 2018.
Light-weight Database Virtualization. In IEEE International Conference on Data Engineering, ICDE, 2015.
Auditing and Maintaining Provenance in Software Packages. In International Provenance and Annotation Workshop (IPAW), 97-109, 2014

Sciunit

Sciunit: Share as a Zip file or Docker container

IDEAS-ECP Webinar, November 2020 32

Computational
Artifacts

(from websites)
Sciunit Log

Provenance Graph

Documentation

Docker FileIdentification of
Inputs, Outputs,

Processes,
Dependencies

Sciunit
Containment

Documenting Computing Environments for Reproducible Experiments, In Parallel Computing: Technology Trends, 756-765, 2020

Sciunit: Repeat

IDEAS-ECP Webinar, November 2020 33

Sciunit Sciunit

• Sciunit uses namespace isolation
during repeat
• Redirection of each call into the

package

Efficient Provenance Alignment in Reproduced Executions, In Theory and Practice of Provenance, 2020.
ScIInc: A Container Runtime for Incremental Recomputation”, InIEEE 15th International Conference on eScience (eScience), 291-300, 2019, doi: 10.1109/eScience. 2019.00040.

Sciunit

Sciunit steps and external requirements

IDEAS-ECP Webinar, November 2020

1. Create 2. Share 3. Repeat

34

Network-enabled Sciunit: Audit

35

2&3. Run task 1 2&3. Run task 2

Network-enabled
Sciunit

1. Network-enabled
Sciunit

1. Network-enabled
Sciunit

Possible with
Network-

enabled Sciunit

Note:
1. Identify remote host & copy Sciunit to it
2&3. Configure & run task with Sciunit

4. Retrieve & manually merge

Spawn task
1

Spawn task
2

4. Merge

4. Merge

IDEAS-ECP Webinar, November 2020

Network-enabled Sciunit: Repeat on single node

36

Note:
1. Repeat all computations at root node.
2. Network system calls are supplied
through the content data captured during
the original audit.

No connection

Run application

Network-enabled
Sciunit

IDEAS-ECP Webinar, November 2020

Network-enabled Sciunit: Repeat on multiple nodes

37Run task 1 Run task 2

Network-enabled
Sciunit

Network-enabled
Sciunit & sub-

container

Requirements:
1. Identical number of nodes
2. Descriptions of new hostnames or IP
addresses

Network-enabled
Sciunit & sub-

container

Run application

IDEAS-ECP Webinar, November 2020

Usecases

[16[City of Chicago, “Food Inspection Evaluation,” https://chicago.github. io/food-inspections-evaluation/, 2017, [Online; accessed 7-May-2017].

[17] M. M. Billah, J. L. Goodall et al., “Using a data grid to automate data preparation pipelines required for regional-scale hydrologic modeling,” Environmental Modelling & Software,
vol. 78, 2016.

[18] D. DBGroup, “Incremental Query Execution,” 2019, [Online; accessed 3-April-2019]. [Online]. Available: https://TonHai@bitbucket. org/TonHai/iqe.git

IDEAS-ECP Webinar, November 2020 38

TABLE I: Usecases descriptions.

FIE [16] VIC [17] IQE [18]

Source code languages R, Bash C, C++, Python, C shell script, Fortran Python
Source code files 29 97 5
Data files 14 11,481 5
Dependency files 659 357 112
Size of all files 306.6 MB 1.2 GB 22 MB
Normal run time 286.756 s 40.259 s 5.226 s

respectively. These larger sizes can be explained by Docker’s
need to add into the images all information about the linux
base kernel as well as libraries, dependencies, and input
parameters. SciInc only containerizes the digital artifacts
(libraries, dependencies or files) that are touched during the
execution, significantly reducing the container sizes. Moreover,
SciInc uses deduplication techniques when storing its con-
tainers. As a result, in the case of FIE and VIC, the sizes of
SciInc containers are even slightly smaller than the original
application package sizes (App. size, in Figure 3).
Auditing and re-execution times. Figure 4 presents the

normal run-times, auditing and re-execution times of different
projects with SciInc and Docker.

Fig. 4: Normal runs, auditing and re-execution times in
SciInc and Docker with different projects.

A first observation is that auditing (Sci. Audit, in Figure 4)
with SciInc only takes slightly longer time than a normal
run (Normal run, in Figure 4). SciInc spends 0.6, 18 and 29
seconds of extra-time to build the containers for IQE (84KB),
FIE (307MB) and VIC (1.2GB) respectively. The increase
in time during auditing comes from the fact that SciInc
needs to copy all digital artifacts required for the application
execution into the container and to commit the containers into
its database; the larger the application, the longer it may take
to build a container.
Docker takes longer to build an image than the original

run and longer than a SciInc containerization (see Doc.
build, in Figure 4). For example, Docker spends more than
4X longer time to build an image for FIE and 9X longer time
to build an image for VIC. As previously mentioned, to build
an image, Docker must add all information about the linux
kernel, libraries, dependencies, input files and so on. Most of
the time, in comparison with SciInc, the image built by
Docker contains more digital artifacts than it needs for its

re-execution. Furthermore, the process of building an image
includes installing all required libraries, which can require a
long time to complete.
It is also important to emphasize that the image building

times that we reported in this experiment are only the time
to run the Docker build command (i.e., docker build); a
step which occurs after all the Docker configurations are set.
Normally, it takes more time to create a Dockerfile and to
verify the image than to run the build command. Creating a
Dockerfile requires some knowledge about the application to
correctly specify all the information about the linux kernel,
libraries, input files, source, etc. Any missing materials will
result in an error and require extra time to rebuild the image.
In our case, the actual time to build and verify Docker images
for IQE, FIE and VIC measured in hours. It may take much
more time or even be impossible to build a Docker image if
one does not have enough knowledge about the application.
In contrast, SciInc requires no extra-time for installation

or configuration. SciInc automatically builds the container
when the application runs and guarantees a successful re-
execution of its container.
As shown in Figure 4, SciInc also outperforms Docker

in terms of re-execution time (see Sci. exec and Doc. exec). In
all evaluated cases, re-execution times in SciInc are slightly
higher than normal runs and smaller than those in Docker. To
re-execute applications, Docker will run processes in isolated
containers which run on a host machine. The additional
virtualization layer increases the time of execution. SciInc
re-executes the application directly on the host machine with
ptrace and redirects all system call paths to paths within the
special root path of the container; there is no virtualization
layer.

B. Incremental recomputation
In this section we first present the overhead of automatic

checkpoint creation and then discuss the speed-up (gain) which
may be realized through the restoration of a checkpointed
process.
Since Docker does not support incremental recomputation

we did not select Docker as a candidate in this section. Instead
we consider IncPy [15], [14], a known tool for incremental
execution with Python. However, there is a fundamental dif-
ference between IncPy and SciInc. IncPy is an enhanced
Python interpreter that speeds up script execution times by
automatically memoizing function calls, whereas SciInc
supports incremental recomputation at the container level
through checkpoint restore. The experiments in this section
aim to show the differences and tradeoffs in incremental

Sciunit (native) versus Docker sizes

IDEAS-ECP Webinar, November 2020 39

Process Checkpoints To checkpoint process versions we
use functionality provided by Checkpoint and Restore in
Userspace (CRIU) [12]. CRIU snapshots the state of a compu-
tation (which may consist of multiple processes) and then later
restore the computation to a running state. For each piece of
state that the kernel records about a process, checkpoint-restore
queries the kernel twice: first about the value of the process
state, to prepare for dumping the state during a checkpoint, and
second to pass that state back to the kernel when the process
is restored. CRIU defines this process state recursively, i.e.,
the process state consists of virtual memory mappings, open
files, credentials, timers, process ID of the parent process, and
all its children. Technically, a straightforward integration of
SciInc with CRIU is not possible. CRIU also collects state
of a running process by freezing the process using ptrace,
and copies the state into a file. Since SciInc also relies
on ptrace as a system call interposition method for tracking
interactions between files and processes, it creates a circular
dependency problem: if a process is being provenance-tracked
with ptrace, then it cannot be checkpointed also with ptrace, as
no operating system kernel allows double tracing of a process.
Consequently SciInc cannot integrate with CRIU API but
must incorporate explicit checkpoint/restore functionality as
part of the provenance tracking.
To checkpoint, the SciInc runtime only snapshots the

process, which Algorithm 3 determines to version. Since CRIU
assumes process state is recursively defined, and Algorithm 3
only checkpoints a specific process, we have changed the
checkpoint method to only checkpoint a specific processes
as requested by the runtime. This significantly reduces the
overhead of checkpointing and makes it efficient for restoring
processes for container replay.
File Versioning Versioning of files requires a method to

de-duplicate content. Our current method is based on cre-
ating an archive of the container and using content-defined
chunking [13] to divide the content of the containers into
small chunks identified by a hash value. We compare new
chunks to stored chunks, and when-ever matches occur, we
replace redundant chunks with small references that point to
stored chunks. We use rsync’s algorithm for content-defined
de-duplication. However, unlike rsync, we use a combination
of fixed-size and rolling hashes. Once the algorithm computes
rolling hashes for a file and detects a different block, it stores
the difference itself as a delta to get a specific version of a file.
[6] describes a more detailed description of rolling hashes and
computed deltas.

VI. EVALUATION

In this section, we describe how the algorithms implemented
within SciInc are evaluated in comparison with other can-
didates with three usecases.
To the best of our knowledge, this SciInc is the first

tool that supports reuse execution or incremental execution
at the container level. We evaluate on two criteria: container-
ization execution (Section VI-A) and incremental execution
(Section VI-B). In each section, we select an appropriate

competitor with which to make a comparison. To show the ef-
fectiveness of containerization in SciInc (Section VI-A) we
compare with Docker [2]. In VI-B we show the differences in
incremental recomputation between SciInc and IncPy [14],
[15]. IncPy is an enhanced Python interpreter that speeds up
script execution times by automatically memoizing function
calls.
System settings. Our experiment was conducted on a

desktop computer with an Intel Core i7-3770 3.4Ghz (8 cores),
20GB of main memory, 1 TB SATA HDD, and running an
Ubuntu 18.04 64-bit operating system. Since our experiment
aims to show the efficiency of incremental execution, we
conduct all experiment in the same platform to reveal the
benefit of incremental execution between executions without
any impact of platform differences. This does not mean our
proposed method cannot be used to repeat across platforms.
Indeed, similar to Docker, SciInc can easily be used to
repeat its containers in any platform as long as SciInc
gets installed there (for more details see [9], [6], [7], [19].
Meanwhile, IncPy can only repeat its packages in the same
environment.
Usecases. We selected three usecases for our evaluation:

(i) Chicago Food Inspections Evaluation (FIE) [16], (ii) the
Variable Infiltration Capacity (VIC) [17], and (iii) Incremental
Query Execution (IQE) [18]. The detailed descriptions of FIE,
VIC and IQE are shown in Table I.

A. Containerizing effectiveness
This comparison measures the effectiveness of container-

izing an application in terms of storage, creation time (i.e.,
containerizing or building time), and re-execution time. We
examine the differences between SciInc and Docker with
the selected projects from Table I.
Container size. Figure 3 shows the container sizes in

SciInc (Sci. container) and Docker (Doc. image) with
different projects having original application sizes (App. Size)
shown in Table I.

Fig. 3: Container sizes in SciInc and Docker with different
projects.

As shown, in Figure 3, Docker images are 19X, 7X and
2.5X larger than SciInc containers for IQE, FIE and VIC

Sciunit audit and repeat times

IDEAS-ECP Webinar, November 2020 40

TABLE I: Usecases descriptions.

FIE [16] VIC [17] IQE [18]

Source code languages R, Bash C, C++, Python, C shell script, Fortran Python
Source code files 29 97 5
Data files 14 11,481 5
Dependency files 659 357 112
Size of all files 306.6 MB 1.2 GB 22 MB
Normal run time 286.756 s 40.259 s 5.226 s

respectively. These larger sizes can be explained by Docker’s
need to add into the images all information about the linux
base kernel as well as libraries, dependencies, and input
parameters. SciInc only containerizes the digital artifacts
(libraries, dependencies or files) that are touched during the
execution, significantly reducing the container sizes. Moreover,
SciInc uses deduplication techniques when storing its con-
tainers. As a result, in the case of FIE and VIC, the sizes of
SciInc containers are even slightly smaller than the original
application package sizes (App. size, in Figure 3).

Auditing and re-execution times. Figure 4 presents the
normal run-times, auditing and re-execution times of different
projects with SciInc and Docker.

Fig. 4: Normal runs, auditing and re-execution times in
SciInc and Docker with different projects.

A first observation is that auditing (Sci. Audit, in Figure 4)
with SciInc only takes slightly longer time than a normal
run (Normal run, in Figure 4). SciInc spends 0.6, 18 and 29
seconds of extra-time to build the containers for IQE (84KB),
FIE (307MB) and VIC (1.2GB) respectively. The increase
in time during auditing comes from the fact that SciInc
needs to copy all digital artifacts required for the application
execution into the container and to commit the containers into
its database; the larger the application, the longer it may take
to build a container.

Docker takes longer to build an image than the original
run and longer than a SciInc containerization (see Doc.
build, in Figure 4). For example, Docker spends more than
4X longer time to build an image for FIE and 9X longer time
to build an image for VIC. As previously mentioned, to build
an image, Docker must add all information about the linux
kernel, libraries, dependencies, input files and so on. Most of
the time, in comparison with SciInc, the image built by
Docker contains more digital artifacts than it needs for its

re-execution. Furthermore, the process of building an image
includes installing all required libraries, which can require a
long time to complete.
It is also important to emphasize that the image building

times that we reported in this experiment are only the time
to run the Docker build command (i.e., docker build); a
step which occurs after all the Docker configurations are set.
Normally, it takes more time to create a Dockerfile and to
verify the image than to run the build command. Creating a
Dockerfile requires some knowledge about the application to
correctly specify all the information about the linux kernel,
libraries, input files, source, etc. Any missing materials will
result in an error and require extra time to rebuild the image.
In our case, the actual time to build and verify Docker images
for IQE, FIE and VIC measured in hours. It may take much
more time or even be impossible to build a Docker image if
one does not have enough knowledge about the application.
In contrast, SciInc requires no extra-time for installation

or configuration. SciInc automatically builds the container
when the application runs and guarantees a successful re-
execution of its container.
As shown in Figure 4, SciInc also outperforms Docker

in terms of re-execution time (see Sci. exec and Doc. exec). In
all evaluated cases, re-execution times in SciInc are slightly
higher than normal runs and smaller than those in Docker. To
re-execute applications, Docker will run processes in isolated
containers which run on a host machine. The additional
virtualization layer increases the time of execution. SciInc
re-executes the application directly on the host machine with
ptrace and redirects all system call paths to paths within the
special root path of the container; there is no virtualization
layer.

B. Incremental recomputation
In this section we first present the overhead of automatic

checkpoint creation and then discuss the speed-up (gain) which
may be realized through the restoration of a checkpointed
process.
Since Docker does not support incremental recomputation

we did not select Docker as a candidate in this section. Instead
we consider IncPy [15], [14], a known tool for incremental
execution with Python. However, there is a fundamental dif-
ference between IncPy and SciInc. IncPy is an enhanced
Python interpreter that speeds up script execution times by
automatically memoizing function calls, whereas SciInc
supports incremental recomputation at the container level
through checkpoint restore. The experiments in this section
aim to show the differences and tradeoffs in incremental

Experiments

41

• NASA Parallel Benchmark:
• Data transferred (~524 KB (class A) & ~268 KB (class B))

� VIC

IDEAS-ECP Webinar, November 2020

Sample Interaction of Sciunit

Alice’s Computer Bob’s Computer
42

1. > sciunit open mSLLTj#
Opened Sciunit FIE

2. > sciunit list
e1 Dec 4 12:44 ./FIE.sh ./DATA/weather_201710.Rds

3. > sciunit repeat e1
…
0. Download…
1. Calculate violation matrix…
2. Calculate heat map…
3. Generate model data with ./DATA/weather_201710.Rds
4. Apply random forest model…
5. Evaluation…

4. > sciunit given ‘/tmp/weather_201801.Rds’ e1 %
…
1. Generate model data with ‘/tmp/weather_201801.Rds
2. Apply random forest model…
3. Evaluation…

5. > sciunit list
e1 Dec 4 12:44 ./FIE.sh ./DATA/weather_201710.Rds
e2 Dec 14 2:44 ./FIE.sh ./tmp/weather_201801.Rds

Container Limitations

• Container either include the data or exclude the data
• The decision is binary but does not consider necessary and sufficient data

IDEAS-ECP Webinar, November 2020 43

Container Debloating: MiDAS

IDEAS-ECP Webinar, November 2020 44

Example

IDEAS-ECP Webinar, November 2020 45

CODE EXECUTION WITH SPECIALIZATION INPUTS

• Compile instrumented LLVM bitcode into native code

• Execute with high level user inputs – specialization inputs –
bytes

• Generate execution traces with file offsets

• File: test.txt, Offsets: 100- 150,190,230,450

11

Toy Example

void file_read(int bytes) {
int fd, sz;
char *c = (char *) calloc(bytes, sizeof(char));
fd = open("test.txt", O_RDWR);
lseek(fd,100,SEEK_SET);
sz = read(fd, c, bytes);

}

void file_read(int bytes) {

Execution trace

File:

CODE EXECUTION WITH SPECIALIZATION INPUTS

• Compile instrumented LLVM bitcode into native code

• Execute with high level user inputs – specialization inputs –
bytes

• Generate execution traces with file offsets

• File: test.txt, Offsets: 100- 150,190,230,450

11

Toy Example

void file_read(int bytes) {
int fd, sz;
char *c = (char *) calloc(bytes, sizeof(char));
fd = open("test.txt", O_RDWR);
lseek(fd,100,SEEK_SET);
sz = read(fd, c, bytes);

}

void file_read(int bytes) {

Execution trace

File:

Example

IDEAS-ECP Webinar, November 2020 46

CODE EXECUTION WITH SPECIALIZATION INPUTS

• Compile instrumented LLVM bitcode into native code

• Execute with high level user inputs – specialization inputs –
bytes

• Generate execution traces with file offsets

• File: test.txt, Offsets: 100- 150,190,230,450

11

Toy Example

void file_read(int bytes) {
int fd, sz;
char *c = (char *) calloc(bytes, sizeof(char));
fd = open("test.txt", O_RDWR);
lseek(fd,100,SEEK_SET);
sz = read(fd, c, bytes);

}

void file_read(int bytes) {

Execution trace

File:

CODE EXECUTION WITH SPECIALIZATION INPUTS

• Compile instrumented LLVM bitcode into native code

• Execute with high level user inputs – specialization inputs –
bytes

• Generate execution traces with file offsets

• File: test.txt, Offsets: 100- 150,190,230,450

11

Toy Example

void file_read(int bytes) {
int fd, sz;
char *c = (char *) calloc(bytes, sizeof(char));
fd = open("test.txt", O_RDWR);
lseek(fd,100,SEEK_SET);
sz = read(fd, c, bytes);

}

void file_read(int bytes) {

Execution trace

File:

CODE INSTRUMENTATION

• Identify file offsets during code execution

• Source code compiled into LLVM bitcode

• LLVM transformation pass to instrument LLVM bitcode

• Custom wrapper functions for I/O calls – open, read, lseek

9

Toy Example

void file_read(int bytes) {
int fd, sz;
char *c = (char *) calloc(bytes, sizeof(char));
fd = open("test.txt", O_RDWR);
lseek(fd,100,SEEK_SET);
sz = read(fd, c, bytes);

}

fd = open("test.txt", O_RDWR);
lseek(fd,100,SEEK_SET);
sz = read(fd, c, bytes);

open, read, lseek

MiDAS: Minimizing DAtasetS

IDEAS-ECP Webinar, November 2020

MIDAS |MINIMIZING DATASETS

5

Automatically identify & include
ONLY relevant data chunks with
application

Map high level user inputs to
file offsets

WHAT HOW

47

Partial Evaluation & LLVM

• Partial Evaluation→optimization technique to prune codebase
• Uses static inputs to generate a specialized program to accept remaining

dynamic inputs

IDEAS-ECP Webinar, November 2020 48

1 #include <math.h>
2 float compute_building_height(float building_distance){
3 float viewing_angle = pi/4;
4 float building_height =
5 compute_opposite(building_distance,
6 viewing_angle);
7 return building_height;
8 }
9 float compute_opposite(float adjacent, float angle){
10 float opposite = adjacent * tan(angle);
11 return opposite;
12 }

(a) Original code

1 float compute_building_height(float building_distance){
2 float building_height =
3 compute_opposite_specialized(building_distance);
4 return building_height;
5 }
6 float compute_opposite_specialized(float adjacent){
7 float opposite = adjacent * 1;
8 return opposite;
9 }

(b) Specialized code

Figure 1: Apriori knowledge of inputs allows the evaluation
of some control flow choices and variable assignments prior
to runtime, potentially resulting in dead code that can be
eliminated.

gllvm [7], a tool to build LLVM bitcode files using the unmodified
build scripts of C or C++ source programs.

Figure 2: MiDas: Automates the identification and inclusion
of data chunks required by an application

2.1 Motivating Example
Figure 3a shows an example application that reads data from a
file. Depending on the high-level user input, bytes, the offsets of
the file test.txt as well as the corresponding data chunks accessed
vary. Our goal is to automate the process of identifying and including
the required data chunks along with this application. To do this, we
design an I/O specialization framework,MiDas, shown in Figure 2.

2.2 Code Instrumentation
The source code is first compiled into LLVM bitcode bc using LLVM
compiler clang. This is provided as input to our LLVM transforma-
tion pass. The pass instruments I/O calls, such as open, read, and

1 void file_read(int bytes){
2 int fd, sz;
3 char *c = (char *) calloc(bytes, sizeof(char));
4 fd = open("test.txt", O_RDWR);
5 lseek(fd,100,SEEK_SET);
6 sz = read(fd, c, bytes);
7 }

(a) Application source code

1 1, test.txt, 100, 150
2 1, test.txt, 100, 190
3 1, test.txt, 100, 230
4 1, test.txt, 100, 450

(b) Traces from four executions of the instrumented example applica-
tion with high-level user-provided specialization input, bytes - 50, 90,
130, 350, respectively.

1 %94 = load i32, i32* %9, align 4
2 %95 = sext i32 %94 to i64
3 %96 = call i64 @read(i32 %92, i8* %93, i64 %95)
4 %97 = trunc i64 %96 to i32
5 store i32 %97, i32* %13, align 4
6 %98 = load i32, i32* %12, align 4

(c) LLVM assembly code segment corresponding to original bitcode:
read call highlighted in red is the I/O call to be specialized.

1 %94 = load i32, i32* %9, align 4
2 %95 = sext i32 %94 to i64
3 %96 = bitcast [17 x i8]* @fileData to i8*
4 call void @llvm.memcpy.p0i8.p0i8.i64(i8* %93, i8* %96
5 i64 %95, i32 1, i1 false)
6 %97 = alloca i64
7 store i64 %95, i64* %97
8 %loadRetVal = load i64, i64* %97
9 %98 = trunc i64 %loadRetVal to i32
10 store i32 %98, i32* %13, align 4
11 %99 = load i32, i32* %12, align 4

(d) LLVM assembly code segment corresponding to I/O-Specialized bit-
code: Lines 3 to 8 highlighted in red are inserted to replace the read call
during specialization.

Figure 3: Example application reading a file

lseek, that handle file-related operations to record the file offsets
and spans accessed during execution. Specifically, we add a custom
wrapper function following each I/O call. The input arguments of
the I/O call are passed to the wrapper. Using these arguments, the
wrapper functions construct and maintain a global data structure
that associates a file descriptor or file pointer with a filename. This
data structure also keeps track of the file offsets after each I/O call.
Apart from the aforementioned input arguments, the LLVM pass
also generates a unique identifier per I/O call site and incorporates
it in the wrapper functions. The identifier is used to distinguish
between multiple I/O call sites. During execution, these wrapper
functions print out all the information required for specialization
- I/O call site identifier, filename and file offsets. Instrumentation
of the example application in Figure 3a results in the insertion of

1 #include <math.h>
2 float compute_building_height(float building_distance){
3 float viewing_angle = pi/4;
4 float building_height =
5 compute_opposite(building_distance,
6 viewing_angle);
7 return building_height;
8 }
9 float compute_opposite(float adjacent, float angle){
10 float opposite = adjacent * tan(angle);
11 return opposite;
12 }

(a) Original code

1 float compute_building_height(float building_distance){
2 float building_height =
3 compute_opposite_specialized(building_distance);
4 return building_height;
5 }
6 float compute_opposite_specialized(float adjacent){
7 float opposite = adjacent * 1;
8 return opposite;
9 }

(b) Specialized code

Figure 1: Apriori knowledge of inputs allows the evaluation
of some control flow choices and variable assignments prior
to runtime, potentially resulting in dead code that can be
eliminated.

gllvm [7], a tool to build LLVM bitcode files using the unmodified
build scripts of C or C++ source programs.

Figure 2: MiDas: Automates the identification and inclusion
of data chunks required by an application

2.1 Motivating Example
Figure 3a shows an example application that reads data from a
file. Depending on the high-level user input, bytes, the offsets of
the file test.txt as well as the corresponding data chunks accessed
vary. Our goal is to automate the process of identifying and including
the required data chunks along with this application. To do this, we
design an I/O specialization framework,MiDas, shown in Figure 2.

2.2 Code Instrumentation
The source code is first compiled into LLVM bitcode bc using LLVM
compiler clang. This is provided as input to our LLVM transforma-
tion pass. The pass instruments I/O calls, such as open, read, and

1 void file_read(int bytes){
2 int fd, sz;
3 char *c = (char *) calloc(bytes, sizeof(char));
4 fd = open("test.txt", O_RDWR);
5 lseek(fd,100,SEEK_SET);
6 sz = read(fd, c, bytes);
7 }

(a) Application source code

1 1, test.txt, 100, 150
2 1, test.txt, 100, 190
3 1, test.txt, 100, 230
4 1, test.txt, 100, 450

(b) Traces from four executions of the instrumented example applica-
tion with high-level user-provided specialization input, bytes - 50, 90,
130, 350, respectively.

1 %94 = load i32, i32* %9, align 4
2 %95 = sext i32 %94 to i64
3 %96 = call i64 @read(i32 %92, i8* %93, i64 %95)
4 %97 = trunc i64 %96 to i32
5 store i32 %97, i32* %13, align 4
6 %98 = load i32, i32* %12, align 4

(c) LLVM assembly code segment corresponding to original bitcode:
read call highlighted in red is the I/O call to be specialized.

1 %94 = load i32, i32* %9, align 4
2 %95 = sext i32 %94 to i64
3 %96 = bitcast [17 x i8]* @fileData to i8*
4 call void @llvm.memcpy.p0i8.p0i8.i64(i8* %93, i8* %96
5 i64 %95, i32 1, i1 false)
6 %97 = alloca i64
7 store i64 %95, i64* %97
8 %loadRetVal = load i64, i64* %97
9 %98 = trunc i64 %loadRetVal to i32
10 store i32 %98, i32* %13, align 4
11 %99 = load i32, i32* %12, align 4

(d) LLVM assembly code segment corresponding to I/O-Specialized bit-
code: Lines 3 to 8 highlighted in red are inserted to replace the read call
during specialization.

Figure 3: Example application reading a file

lseek, that handle file-related operations to record the file offsets
and spans accessed during execution. Specifically, we add a custom
wrapper function following each I/O call. The input arguments of
the I/O call are passed to the wrapper. Using these arguments, the
wrapper functions construct and maintain a global data structure
that associates a file descriptor or file pointer with a filename. This
data structure also keeps track of the file offsets after each I/O call.
Apart from the aforementioned input arguments, the LLVM pass
also generates a unique identifier per I/O call site and incorporates
it in the wrapper functions. The identifier is used to distinguish
between multiple I/O call sites. During execution, these wrapper
functions print out all the information required for specialization
- I/O call site identifier, filename and file offsets. Instrumentation
of the example application in Figure 3a results in the insertion of

MiDAS

IDEAS-ECP Webinar, November 2020

MIDAS: OVERVIEW

original
bitcode

specialization
inputs

Instrumentation
of Code

1

specialized bitcode
with data chunks

Code Execution
2

Data Chunk
Extraction

3
Specialization

4

instrumented
bitcode

execution
traces

extracted
data chunks

49

I/O Specialization
• Replace I/O call & preserve functionality
• Extracted file data in global variable→ fileData
• Copy from global variable to read buffer → memcpy
• Update all I/O call variables→return value of read
• I/O call instruction removed → read

IDEAS-ECP Webinar, November 2020

I/O SPECIALIZATION

• Replace I/O call & preserve functionality

• Extracted file data in global variable → fileData

• Copy from global variable to read buffer →memcpy

• Update all I/O call variables → return value of read

• I/O call instruction removed → read

Original LLVM assembly code segment

I/O Specialized LLVM assembly code segment

%94 = load i32, i32* %9, align 4
%95 = sext i32 %94 to i64
%96 = call i64 @read(i32 %92, i8* %93, i64 %95)
%97 = trunc i64 %96 to i32
store i32 %97, i32* %13, align 4
%98 = load i32, i32* %12, align 4

%94 = load i32, i32* %9, align 4
%95 = sext i32 %94 to i64
%96 = bitcast [17 x i8]* @fileData to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %93,

i8* %965i64 %95, i32 1, i1 false)
%97 = alloca i64
store i64 %95, i64* %97
%loadRetVal = load i64, i64* %97
%98 = trunc i64 %loadRetVal to i32
store i32 %98, i32* %13, align 4
%99 = load i32, i32* %12, align 4

%96 = call i64 @read(i32 %92, i8* %93, i64 %95)

%96 = bitcast [17 x i8]* @fileData to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %93,

i8* %96, i64 %95, i32 1, i1 false)
%97 = alloca i64
store i64 %95, i64* %97
%loadRetVal = load i64, i64* %97

fileData

read

I/O SPECIALIZATION

• Replace I/O call & preserve functionality

• Extracted file data in global variable → fileData

• Copy from global variable to read buffer →memcpy

• Update all I/O call variables → return value of read

• I/O call instruction removed → read

Original LLVM assembly code segment

I/O Specialized LLVM assembly code segment

%94 = load i32, i32* %9, align 4
%95 = sext i32 %94 to i64
%96 = call i64 @read(i32 %92, i8* %93, i64 %95)
%97 = trunc i64 %96 to i32
store i32 %97, i32* %13, align 4
%98 = load i32, i32* %12, align 4

%94 = load i32, i32* %9, align 4
%95 = sext i32 %94 to i64
%96 = bitcast [17 x i8]* @fileData to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %93,

i8* %965i64 %95, i32 1, i1 false)
%97 = alloca i64
store i64 %95, i64* %97
%loadRetVal = load i64, i64* %97
%98 = trunc i64 %loadRetVal to i32
store i32 %98, i32* %13, align 4
%99 = load i32, i32* %12, align 4

%96 = call i64 @read(i32 %92, i8* %93, i64 %95)

%96 = bitcast [17 x i8]* @fileData to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %93,

i8* %96, i64 %95, i32 1, i1 false)
%97 = alloca i64
store i64 %95, i64* %97
%loadRetVal = load i64, i64* %97

fileData

read

50

Specializing I/O Calls in Scientific Libraries

IDEAS-ECP Webinar, November 2020

SPECIALIZING I/O CALLS

18

Python apps

NetCDF4-python
module

NetCDF C lib HDF5 C lib

data access

interface

fast I/O
processing
& storage

build from source, instrument, specialize I/O calls

51

Results | Percentage of File Accessed

• Larger files generated from 30 MB NetCDF data file
• Rewriting data for multiple timesteps
• Data accessed corresponding to temperature attribute

IDEAS-ECP Webinar, November 2020

RESULTS | PERCENTAGE OF FILE ACCESSED

• Larger files generated from 30 MB NetCDF data file

• Rewriting data for multiple timesteps

• Data accessed corresponding to temperature attribute → only 22% of file

19

Total Size Accessed Size

30 MB 6.6 MB

700 MB 154 MB

1.4 GB 0.3 GB

9 GB 1.98 GB

12.8 GB 2.82 GB

APPLICATIONS OFTEN ACCESS
ONLY A SUBSET

OF A LARGE DATASET

only 22% of file

RESULTS | PERCENTAGE OF FILE ACCESSED

• Larger files generated from 30 MB NetCDF data file

• Rewriting data for multiple timesteps

• Data accessed corresponding to temperature attribute → only 22% of file

19

Total Size Accessed Size

30 MB 6.6 MB

700 MB 154 MB

1.4 GB 0.3 GB

9 GB 1.98 GB

12.8 GB 2.82 GB

APPLICATIONS OFTEN ACCESS
ONLY A SUBSET

OF A LARGE DATASET

only 22% of file

52

PART	3:	Summary	and	Guidance

IDEAS-ECP Webinar, November 2020 53

Summary

• Technical debt affects reproducibility of scientific claims.
• Process for evaluation of scientific claims is being rethought.
• Artifact description and evaluation are becoming part of conferences

• Better reliability is needed.
• Containers will be a prominent choice but their reliability is poor

• Dependencies must be specified
• Inefficient to use
• No guarantees for execution verification
• Not meant for interactive programs

• New light-weight methods: Sciunit, MiDAS

IDEAS-ECP Webinar, November 2020 54

Use Sciunit for your next paper submission!

1. Tools downloaded ~850 times (tracked using pip)
2. 8 active contributors to the project
3. Actively used in geoscience disciplines that develop computational

models and data-analytic pipelines

Website: http://sciunit.run
Issues and contribution: pr@sciunit.run

IDEAS-ECP Webinar, November 2020 55

http://sciunit.run/

Guidance for Improving Reproducibility

IDEAS-ECP Webinar, November 2020 56

Guidance for Improving Reproducibility

IDEAS-ECP Webinar, November 2020 57

1. J. Freire, N. Fuhr, and A. Rauber. Reproducibility of data-oriented experiments in e-science (Dagstuhl seminar 16041)
Dagstuhl reports. 6(1):108–159, 2016. [Online; accessed 10-Sep-2017].

Portability
Repeatability

Runnability

Replicability
Publishability

https://bssw.io/items?topic=reproducibility

Guidance for Improving Reproducibility

IDEAS-ECP Webinar, November 2020 58

1. J. Freire, N. Fuhr, and A. Rauber. Reproducibility of data-oriented experiments in e-science (Dagstuhl seminar 16041)
Dagstuhl reports. 6(1):108–159, 2016. [Online; accessed 10-Sep-2017].

Portability
Repeatability

Runnability

Replicability
Publishability

Artifact Review and Badging

Guidance for Improving Reproducibility

IDEAS-ECP Webinar, November 2020 59

Hardware

Concurrency
Algorithmic
randomness

Application
complexity

Execution
State

Bugs outside the
application

Identify sources
of

irreproducibility

Guidance for Improving Reproducibility

IDEAS-ECP Webinar, November 2020 60

Hardware

Concurrency
Algorithmic
randomness

Application
complexity

Execution
State

Bugs outside the
application

https://bssw.io/items?topic=reproducibility

Metadata:
Provenance,
Annotations,

Snapshots

Guidance for Improving Reproducibility

IDEAS-ECP Webinar, November 2020 61

Hardware

Concurrency
Algorithmic
randomness

Application
complexity

Execution
State

Bugs outside the
application

https://bssw.io/items?topic=reproducibility

Methods for
analyzing the

metadata

Acknowledgements

IDEAS-ECP Webinar, November 2020

Yuta Nakamura
Ph.D. student

Jason Chuah
M.S. student

Raza Ahmad
Research Engineer

Nithin Manne
M.S Student

Zhihao Yuan
Research Engineer

Ton That Dai Hai
Postdoctoral Associate

62

Jason Chuah
Ph.D student @UVA

Acknowledgements

IDEAS-ECP Webinar, November 2020

Ian Foster
UChicago & ANL

Dave Tarboton
Utah State

Jon Goodall
Univ. of Virginia

Scott Peckham
Univ of Colorado
Boulder

Eunseo Choi
Univ of Memphis

Ashish Gehani
SRI International

63

Acknowledgements | Funding

NSF CNS-1846418, ICER-1639759, ICER-1661918
BSSw Fellowship
Bloomberg Foundation
DePaul Seed Grants

IDEAS-ECP Webinar, November 2020 64

Questions
• tanu.malik@depaul.edu

IDEAS-ECP Webinar, November 2020 65

mailto:Tanu.malik@depaul.edu

Example

IDEAS-ECP Webinar, November 2020 66

Result

IDEAS-ECP Webinar, November 2020 67

Current and Future Work

• Developing Sciunit audit and repeat with checkpoint-restart
• Compute- and data-analytic models that vary several parameters and are

reexecuted multiple times to test their reproducibility.
• Useful for Jupyter Notebooks

• Sciunit for reproducibility will provide provenance-based guarantees
• Several cyberinfrastructure for Artifact Evaluation (OCCAM, CKFoundation)
• Provenance-based guarantees are missing

• Developing MiDAS for different inputs

IDEAS-ECP Webinar, November 2020 68

