

Reducing Technical Debt with Reproducible Containers

Tanu Malik

2019 BSSw Fellow

Assistant Professor

School of Computing

DePaul University

Chicago, IL

IDEAS-ECP Webinar, November 4th, 2020

IDEAS-ECP Webinar, November 2020

WhoamI

Tanu Malik Assistant Professor, School of Computing Director, Data Systems and Opt. Lab DePaul University Chicago, IL <u>https://facsrv.cs.depaul.edu/~tmalik1</u> Tanu.Malik@depaul.edu My expertise is: Databases and distributed computing Data provenance: history and lineage of data and software Computational reproducibility: Repeating and recreating some one else's work

Systems built: http://sciunit.run

I want to know more about:

Reproducibility case studies in HPC and how containers are used.

Problems I'm currently working on:

Provenance alignment: Using provenance to highlight sources of irreproducibility State maintenance in lineage graphs: Making Jupyter Notebooks reproducible

Outline

PART 1: How technical debt affects reproducibility?

PART 2: If reproducible containers provide a start?

PART 3: Guidance and summary

PART 1: How technical debt affects reproducibility?

Monetary debt

Monetary debt meets the objective "sooner"

Technical debt 1 is no different

¹A metaphor introduced by Ward Cunningham in 1992.

Technical debt 1 is no different

¹A metaphor introduced by Ward Cunningham in 1992.

Technical debt is no different.

Dimensions of Technical Debt

- Poor quality code
- Poor design
- Environment debt
- Documentation debt
- Testing debt

Consequence of Mismanaged Debt

Consequence of Mismanaged Debt

Dimensions of Scientific Technical Debt

- Poor quality code
- Poor design
- Environment debt
- Documentation debt
- Testing debt

¹E. Tom, A. Aurum, R. Vidgen, An exploration of technical debt, Journal of Systems and Software, Volume 86, Issue 6, 2013, Pages 1498-1516, ISSN 0164-1212, https://doi.org/10.1016/j.jss.2012.12.052.

Dimensions of Scientific Technical Debt

- Poor quality code
- Poor design
- ✓ Environment debt
- ✓ Documentation debt
- Testing debt

Bad bugs: The worst disasters caused by software fails

5 June 2013

Clever software can make our lives easier but a glitch can have disastrous consequences. In the past decades, computer bug catastrophes have caused deaths and disrupted lives on a large scale. **Sally Adee** takes us through six major software fails.

https://www.newscientist.com/gallery/software-bugs

A Scientist's Nightmare: Software Problem Leads to Five Retractions

Greg Miller

+ See all authors and affiliations

Science 22 Dec 2006: Vol. 314, Issue 5807, pp. 1856-1857 DOI: 10.1126/science.314.5807.1856

Critiqued coronavirus simulation gets thumbs up from code-checking efforts

Influential model judged reproducible – although software engineers called its code 'horrible' and 'a buggy mess'.

https://www.nature.com/articles/d41586-020-01685-y

Cost of Scientific Technical Debt

Supercomputing Artifact Description and Evaluation Initiative

https://sc20.supercomputing.org/planning-committee/

Lack of artifacts will reject a paper

Technical debt incurs burden

- Reproducibility is an after thought.
- Identifying files for an application is a challenge
- Missing workflows
 - Really, that data/algorithm should be part of the bundle?

- "Sticks" from reviewers work
 - Authors who have not taken AD/AE process seriously do submit additional work
- Time consuming task
 - No tools to check if everything relevant for the publication is submitted
- No mapping of experiments to content in the paper.
 - No infrastructure for efficiently verifying claimed results

PART 2: Do reproducible containers provide a start?

An introduction to **Docker** for **reproducible research** <u>C Boettiger</u> - ACM SIGOPS Operating Systems Review, 2015 - dl.acm.org

Docker: Using containers from build to run

https://www.exascaleproject.org/event/conthpc

Containers provide constrained resource isolation

Authors must program a Dockerfile

	# fetch node v4 LTS codename argon	
	FROM node:argon	
	<pre># Request samplename build argument</pre>	
	ARG samplename	
6		
	# Create app directory	
	RUN mkdir —p /usr/src/spfx—samples	
9	WORKDIR /usr/src/spfx-samples	FROM buildkit-export AS buildkit-buildkitd.oci onlv
10		COPY from=buildkitd.oci_only /usr/bin/buildkitd.oci_only /usr/bin/¬
	#Install app dependencies	COPY from=buildctl /usr/bin/buildctl /usr/bin/-
	RUN git clone https://github.com/SharePoint/sp-dev-fx-webparts.git	ENTRYPOINT ["buildkitd.oci_only"] -
	WORKDIR /usr/src/spfx-samples/samples/\$samplename	T
		#·Copy·togetner·all·binaries·tor·containerd·worker·mode¬
15	<pre># install gulp on a global scope</pre>	COPY from=runc /usr/bin/runc /usr/bin/¬
16	RUN npm install gulp -g	COPY from=buildkitd.containerd_only /usr/bin/buildkitd.containerd_only /usr/bin/¬
		COPY from=buildctl /usr/bin/buildctl /usr/bin/-
18	# RUN ["npm", "install", "gulp"]	ENTRYPOINT ["buildkitd.containerd_only"]
19	RUN npm install	TRANS AC southing and muching
20	RUN npm cache clean	FRUM alpine AS containera-runtime
		COPY from=containerd /go/src/github.com/containerd/containerd/bin/containerd* /usr/bin/
	# Expose required ports	COPY from=containerd /go/src/github.com/containerd/containerd/bin/ctr /usr/bin/¬
	EXPOSE 4321 35729 5432	VOLUME /var/lib/containerd
		VOLUME / run/containerd
25	# Run sample	ENTRYPOINT ["containerd"]
26	CMD ["gulp", "serve"]	

Containers do not reduce technical debt

- Declarative encapsulation of dependencies for isolated execution
 - E.g. various shell utilities and library versions unknown to user

Automatic Encapsulation of Dependencies: The Sciunit

Key Idea: Identify dependencies during program execution

- Captures application dependencies during executions
- Repeats executions (with guarantees) within isolated environments

Sciunit: Audit

- Audit uses *ptrace* to observe dependencies and environment variables
 - Identifies binaries, libraries, scripts, and environment variables that application is dependent on.
- Dependencies are copied into a directory in the filesystem
- Inclusion of data files is optional
 - user may or may not want to package based on the size of the dataset.

D.H. Ton That, G. Fils, Z. Yuan, T. Malik. Sciunits: Reusable Research Objects. In *IEEE eScience Conference* (eScience), 374-383, 2017

Audits provenance during execution time

Utilizing Provenance in Reusable Research Objects, In *Special Issue on Using Computational Provenance*, MDPI Informatics, Vol 5(1), 2018. Light-weight Database Virtualization. In *IEEE International Conference on Data Engineering*, ICDE, 2015. Auditing and Maintaining Provenance in Software Packages. In *International Provenance and Annotation Workshop* (IPAW), 97-109, 2014

IDEAS-ECP Webinar, November 2020

jpg dependencies

figure

IDEAS-ECP Webinar, November 2020

X Xopen ("lib/libc.so.6") File System Operating System

Sciunit

chdir("/usr"

Sciunit: Repeat

- Sciunit uses namespace isolation during repeat
- Redirection of each call into the package

Efficient Provenance Alignment in Reproduced Executions, In Theory and Practice of Provenance, 2020. ScIInc: A Container Runtime for Incremental Recomputation", InIEEE 15th International Conference on eScience (eScience), 291-300, 2019, doi: 10.1109/eScience. 2019.00040.

Sciunit steps and external requirements

3. Repeat

CloudLab

Network-enabled Sciunit: Repeat on single node

Run application

No connection

Node 2

Node 3

Note:

1. Repeat all computations at root node.

2. Network system calls are supplied through the content data captured during the original audit.

Network-enabled Sciunit: Repeat on multiple nodes

Requirements:

addresses

Usecases

TABLE I: Usecases descriptions.

	FIE [16]	VIC [17]	IQE [18]
Source code languages	R, Bash	C, C++, Python, C shell script, Fortran	Python
	29	97	5
Data files	14	11,481	5
Dependency files	659	357	112
Size of all files	306.6 MB	1.2 GB	22 MB
Normal run time	286.756 s	40.259 s	5.226 s

[16[City of Chicago, "Food Inspection Evaluation," https://chicago.github. io/food-inspections-evaluation/, 2017, [Online; accessed 7-May-2017].

[17] M. M. Billah, J. L. Goodall et al., "Using a data grid to automate data preparation pipelines required for regional-scale hydrologic modeling," Environmental Modelling & Software, vol. 78, 2016.

.8] D. DBGroup, "Incremental Query Execution," 2019, [Online; accessed 3-April-2019]. [Online]. Available: https://TonHai@bitbucket. org/TonHai/iqe.git

Sciunit (native) versus Docker sizes

Sciunit audit and repeat times

Experiments

- NASA Parallel Benchmark:
 - Data transferred (~524 KB (class A) & ~268 KB (class B))

	Normal	#Calls	Meta Audit	Content Audit
NPB BT-MZ.A.2 NPB LU-MZ.A.2 NPB SP-MZ.A.2	20.30 15.74 14.84	190	~ 2.1%↑	~ 5.3%↑
NPB BT-MZ.B.2 NPB LU-MZ.B.2 NPB SP-MZ.B.2	83.95 71.02 59.12	190	~ <mark>0</mark> .8%↑	~ 3.2%↑

• VIC

Sample Interaction of Sciunit

<pre>1. > sciunit create FIE 2. > sciunit exec ./FIE.sh ./DATA/weather_201710.Rds</pre>	<pre>1. > sciunit open mSLLTj# Opened Sciunit FIE 2. > sciunit list e1 Dec 4 12:44 ./FIE.sh ./DATA/weather_201710.Rds 3. > sciunit repeat e1 0. Download 1. Calculate violation matrix 2. Calculate heat map</pre>
<pre>el Dec 4 12:44 ./FIE.sh ./DATA/weather_201710.Rds 4. > sciunit show id: el sciunit: FIE command: ./FIE.sh ./DATA/weather_201710.Rds size: 306.6 MB started: 2017-12-04 12:44 5. > sciunit push Title for the new article: FIE new: 306.6 MB [01:05, 4.72MB/s] 6. > sciunit copy mSLLTj#</pre>	<pre>3. Generate model data with ./DATA/weather_201710.Rds 4. Apply random forest model 5. Evaluation 4. > sciunit given `/tmp/weather_201801.Rds' e1 % 1. Generate model data with `/tmp/weather_201801.Rds 2. Apply random forest model 3. Evaluation 5. > sciunit list e1 Dec 4 12:44 ./FIE.sh ./DATA/weather_201710.Rds e2 Dec 14 2:44 ./FIE.sh ./tmp/weather_201801.Rds</pre>

Alice's Computer

Bob's Computer

Container Limitations

- Container either include the data or exclude the data
 - The decision is binary but does not consider necessary and sufficient data

Container Debloating: MiDAS

Example

void file_read(int bytes) {

int fd, sz; char *c = (char *) calloc(bytes, sizeof(char)); fd = open("test.txt", O_RDWR); lseek(fd,100,SEEK_SET); sz = read(fd, c, bytes);

test.txt,	100,	150
test.txt,	100,	190
test.txt,	100,	230
test.txt,	100,	450

test.txt,	100,	150
test.txt,	100,	190
test.txt,	100,	230
test.txt,	100,	450

Example

<pre>void file_read(int bytes) {</pre>
int fd, sz;
char *c = (char *) calloc(bytes, sizeof(char));
fd = open("test.txt", O_RDWR);
lseek(fd,100,SEEK_SET);
<pre>sz = read(fd, c, bytes);</pre>
}

test.txt,	100,	150
test.txt,	100,	190
test.txt,	100,	230
test.txt,	100,	450

test.txt,	100,	150
test.txt,	100,	190
test.txt,	100,	230
test.txt,	100,	450

MiDAS: Minimizing DAtasetS

Partial Evaluation & LLVM

- **Partial Evaluation** → optimization technique to **prune codebase**
 - Uses static inputs to generate a specialized program to accept remaining dynamic inputs

```
#include <math.h>
1
        2
               float viewing_angle = pi/4;
3
                                                          3
               float building_height =
4
                                                          4
                 compute_opposite(building_distance,
5
                                                          5
                  viewing_angle);
6
                                                          6
               return building_height;
7
                                                          7
8
        float compute_opposite(float adjacent, float angle){
                                                          8
9
               float opposite = adjacent * tan(angle);
                                                          9
10
               return opposite;
11
        }
12
```

```
float compute_building_height(float building_distance){
    float building_height =
        compute_opposite_specialized(building_distance);
    return building_height;
}
float compute_opposite_specialized(float adjacent){
    float opposite = adjacent * 1;
    return opposite;
}
```

(b) Specialized code

Midas

I/O Specialization

- Replace I/O call & preserve functionality
 - Extracted file data in global variable \rightarrow fileData
 - Copy from global variable to *read* buffer \rightarrow *memcpy*
 - Update all I/O call variables→return value of *read*
 - I/O call instruction removed \rightarrow read

%94 = load i32, i32* %9, align 4
%95 = sext i32 %94 to i64
%96 = call i64 @read(i32 %92, i8* %93, i64 %95)
%97 = trunc i64 %96 to i32
store i32 %97, i32* %13, align 4
%98 = load i32, i32* %12, align 4

Specializing I/O Calls in Scientific Libraries

Results | Percentage of File Accessed

- Larger files generated from 30 MB NetCDF data file
- Rewriting data for multiple timesteps
- Data accessed corresponding to *temperature* attribute

Total Size	Accessed Size
30 MB	6.6 MB
700 MB	154 MB
1.4 GB	0.3 GB
9 GB	1.98 GB
12.8 GB	2.82 GB

APPLICATIONS OFTEN ACCESS ONLY A SUBSET OF A LARGE DATASET

PART 3: Summary and Guidance

Summary

- Technical debt affects reproducibility of scientific claims.
 - Process for evaluation of scientific claims is being rethought.
 - Artifact description and evaluation are becoming part of conferences
- Better reliability is needed.
 - Containers will be a prominent choice but their reliability is poor
 - Dependencies must be specified
 - Inefficient to use
 - No guarantees for execution verification
 - Not meant for interactive programs
- New light-weight methods: Sciunit, MiDAS

Use Sciunit for your next paper submission!

- 1. Tools downloaded ~850 times (tracked using pip)
- 2. 8 active contributors to the project
- 3. Actively used in geoscience disciplines that develop computational models and data-analytic pipelines

Website: <u>http://sciunit.run</u>

Issues and contribution: pr@sciunit.run

Guidance for Improving Reproducibility

Guidance for Improving Reproducibility

https://bssw.io/items?topic=reproducibility

1. J. Freire, N. Fuhr, and A. Rauber. *Reproducibility of data-oriented experiments in e-science* (Dagstuhl seminar 16041) Dagstuhl reports. 6(1):108–159, 2016. [Online:accessed 10 Sep 2017]. 57

S S S

1. J. Freire, N. Fuhr, and A. Rauber. *Reproducibility of data-oriented experiments in e-science* (Dagstuhl seminar 16041) Dagstuhl reports. 6(1):108–159, 2016. [Online: accessed 10 Sep 2017]. 58

Guidance for Improving Reproducibility

https://bssw.io/items?topic=reproducibility

https://bssw.io/items?topic=reproducibility

Acknowledgements

Nithin Manne M.S Student

Jason Chuah

M.S. student

Zhihao Yuan Research Engineer

Ton That Dai Hai Postdoctoral Associate

Yuta Nakamura Ph.D. student

Raza Ahmad Research Engineer

Jason Chuah Ph.D student @UVA IDEAS-ECP Webinar, November 2020

Acknowledgements

Ashish Gehani lar SRI International UC

lan Foster UChicago & ANL

Dave Tarboton Utah State

Jon Goodall Univ. of Virginia

Scott Peckham Univ of Colorado Boulder

Eunseo Choi Univ of Memphis

IDEAS-ECP Webinar, November 2020

Acknowledgements | Funding

NSF CNS-1846418, ICER-1639759, ICER-1661918 BSSw Fellowship

- **Bloomberg Foundation**
- **DePaul Seed Grants**

Questions

• <u>tanu.malik@depaul.edu</u>

Example

Python module for managing SUMMA simulations

320 commits	₽ 2 branches	🟷 1 release	🎎 6 contributors	ಶ್ಡು BSD-3-Clause
Branch: master ▼ New pull request				Find File Clone or download -
Choi add a notebook for local executi	on			Latest commit 8675bd9 on Jul 22
hydroshare_notebooks	add hydrosh	are jupyter notebooks		9 months ago
notebooks	add notebo	ok for sensitivity analysis		11 months ago
notebooks_local	add a noteb	ook for local execution		2 months ago
pysumma	update utils	py and notebook for local executi	ion	2 months ago
sopron_2018_notebooks	edit validati	on variable		last year
uva_hpc	add notebo	ok for uva_hpc		last year
.gitignore	Update .giti	gnore		2 years ago
HydroShare.PNG	Add files via	upload		3 months ago
LICENSE	Initial comm	it		2 years ago
README.md	Update REA	DME.md		3 months ago
UML.png	Add files via	upload		3 months ago
setup.cfg	removed ou	ter pysumma directory		2 years ago
🖹 setup.py	update utils	py and notebook for local executi	ion	2 months ago

How to run pySUMMA locally

Installation and Usage

pySUMMA requires Python 3.6 and following packages :

- xarray 0.10.7 : N-D labeled arrays and datasets in python
- numpy 1.16.1 : the fundamental package for scientific computing with Python
- matplotlib 3.0.2 : a Python 2D plotting library
- seaborn 0.9.0 : statistical data visualization
- jupyterthemes 0.20.0 : select and install a Jupyter notebook theme
- hs-restclient 1.3.3 : HydroShare REST API python client library
- ipyleaflet 0.9.2 : A jupyter widget for dynamic Leaflet maps
- Linux Environment (VirtualBox 5.2.8)
 - lubuntu-16.10 executable
 - lubuntu-16.04.4 executable

Download and Install pySUMMA:

1.) Download pySUMMA

~/Downloads git clone https://github.com/uva-hydroinformatics/pysumma.git

Result

Listed Packages	Identified Packages
xarray{0.10.7}	xarray {0.10.7}
numpy{1.16.1}	numpy <mark>{1.16.1}</mark>
matplotlib {3.0.2}	matplotlib <mark>{3.0.2}</mark>
hs-restclient{1.3.3}	hs-restclient {1.3.3}
ipyleaflet{0.9.2}	ipyleaflet <mark>{0.9.2}</mark>
seaborn {0.9.0}	
jupyterthemes {0.20.0}	
Identified Sub-Packages	
Pygments {2.2.0} asyncio backcall {0.1.0} blinker {1.3} certifi {2018.10.15}	
cftime $\{1.0.2.1\}$ geopandas $\{0.4.0\}$ html http ipykernel $\{5.1.0\}$ ipython-	
genutils {0.2.0} ipython {7.1.1} ipywidgets {7.4.2} jedi {0.13.1} jupyter-	
core{4.4.0} netCDF4{1.4.2} pandas{0.23.4} parso{0.3.1} pexpect{4.6.0}	
(0, 0)	

prompt-toolkit $\{2.0.7\}$ ptyprocess $\{0.6.0\}$ pyparsing $\{2.3.0\}$ pysumma $\{0.1\}$ pytz $\{2018.7\}$ pyzmq $\{17.1.2\}$ requests-oauthlib $\{1.0.0\}$ requests-toolbelt $\{0.8.0\}$ tornado $\{5.1.1\}$ traitlets $\{4.3.2\}$ traittypes $\{0.2.1\}$ wcwidth $\{0.1.7\}$

Python Built-In Packages

chardet collections concurrent ctypes dateutil distutils email encodings idna importlib jinja2 json logging markupsafe multiprocessing oauthlib pkg_resources pydoc_data requests sqlite3 unittest urllib urllib3 xml IDEAS-ECP Webinar, November 2020 67

Current and Future Work

- Developing Sciunit audit and repeat with checkpoint-restart
 - Compute- and data-analytic models that vary several parameters and are reexecuted multiple times to test their reproducibility.
 - Useful for Jupyter Notebooks
- Sciunit for reproducibility will provide provenance-based guarantees
 - Several cyberinfrastructure for Artifact Evaluation (OCCAM, CKFoundation)
 - Provenance-based guarantees are missing
- Developing MiDAS for different inputs