
Approved for public release

LLNL-PRES-808399

Best Practices for Using
Proxy Apps as Benchmarks

IDEAS Webinar

April 15, 2020

David Richards, LLNL

Joe Glenski, HPE

2LLNL-PRES-808399

The presentation contains the work of many co-authors

• Jeanine Cook (SNL)

• Jeffery Kuehn (LANL)

• Omar Aaziz (SNL)

• Courtenay Vaughan (SNL)

• Hal Finkel (ANL)

• The ECP Proxy App Team

• Oscar Hernandez (ORNL)

• Verónica Vergara (ORNL)

• Reuben D. Budiardja (ORNL)

• Bronson Messer (ORNL)

• Jack Wells (ORNL)

• Wayne Joubert (ORNL)

• Swen Boehm (ORNL)

This talk is an abridged version of a breakout session
originally presented at the 2020 ECP Annual Meeting

https://proxyapps.exascaleproject.org/reports/

https://proxyapps.exascaleproject.org/reports/

3LLNL-PRES-808399

Today’s talk is full of proxy app and benchmark goodness

For Developers of
Proxy Apps & Benchmarks

• What is needed to make a proxy
app into a benchmark?

• How do I make my benchmark
attractive for users?

• How can I reduce the chances that
my proxy app will be misused?

• How can I quantify the fidelity of my
proxy app or benchmark?

For Users of
Proxy Apps & Benchmarks

• How do I know if a proxy app is a
good benchmark?

• What do I need to know about using
proxy apps?

• How can I choose a good set of
benchmarks?

• Where can I find good
benchmarks?

For Computing Facilities

• How can I use benchmarks to get
good information from vendors?

• How can I tell if benchmarks really
represent my workload?

• How can I decide which
benchmarks to include in my suite?

4LLNL-PRES-808399

Benchmarks are sample workloads intended to quantify and
compare different aspects of system performance

• Frequently used to guide system design and/or
purchasing decisions

• Workloads range from a few lines of code to entire
production applications

• Benchmark collections cover a huge array of workloads
– SPEC: CPU, GPU, Cloud, MPI, OpenMP, etc.
– NAS parallel benchmarks
– DOE procurement benchmarks

• Effective benchmarks need a way to quantify the results
and ensure results are comparable between users

5LLNL-PRES-808399

Proxy applications are models for one or more features
of a parent application

• Proxy apps omit many features of parent apps

• Proxy apps come in various sizes
– Kernels, skeleton apps, mini apps

• Proxies can be models for
– Performance critical algorithms
– Communication patterns
– Programming models and styles

• Like any model, proxies can be misused beyond
their regime of validity

Many benchmarks are proxy apps
Proxy apps are not automatically good benchmarks

6LLNL-PRES-808399

Beware: models are easy to mis-use

Some blame lies with developers

• Proxies are often widely published even when they are
originally intended for internal use

• Developers need to be more clear which proxies make
good benchmarks (and what inputs to use)

• Better documentation that is easier to digest is usually
needed to help guide researchers

• Verification and reproducibility are frequently not
considered as part of proxy design

• Writing code is fun
Writing documentation is not

But proxy app users aren’t innocent

• Proxies are relatively easy to build and run without
devoting much thought to the process

• Proxy users aren’t always familiar with caveats and
limitations of proxies

• Many papers and reports present proxy app performance
information without describing input parameters

• Sensitivity analysis is rare

• Did you verify performance expectations or correctness?

An understanding of what you are using and why it’s
important are essential when using proxy apps

7LLNL-PRES-808399

A proxy app becomes a benchmark when it is matched with:

A Figure of Merit (FOM)

• An FOM is a measure of application
throughput performance

• Good FOMs usually scale with performance
– 2X problem run 2X faster (than 1X problem on

old platform) = 4X FOM
– 1X problem run 4X faster = 4X FOM
– FOM may need to consider application

algorithm scaling with system size

A Set of Run Rules

• Run rules may include:
– Problem specification
– Code version
– Weak or strong scaling constraints
– Allowable code modifications
– Wall time constraints
– Misc limits such as memory per MPI rank, node

count(s) to run jobs on, etc.

Unless the FOM and run rules are chosen carefully
the benchmark may be meaningless

8LLNL-PRES-808399

Best practices for effective proxy apps and benchmarks

For Developers of
Proxy Apps & Benchmarks

• Write documentation

• Ensure benchmark run rules
address issues of scalability, fidelity,
ease of use, etc.

• Make it easy to identify the figure of
merit

• Provide a method to verify correct
results

For Users of
Proxy Apps & Benchmarks

• Read documentation

• Don’t assume every proxy app is
useful as a benchmark

• Remember that benchmarks have
well-defined run rules and a figure
of merit

• DOE system procurement suites
can be a good place to look for
benchmark problems

For Computing Facilities

• Avoid large input or output files and
complex library dependencies

• Make benchmark suites easy to
build and automate

• Cover all aspects of the ecosystem:
Programming models, compilers,
debuggers, performance tools

9LLNL-PRES-808399

Quicksilver is a proxy for Mercury (Monte Carlo transport)

• Particles interact with matter by a variety of “reactions”

• The probability of each reaction and its outcomes are captured in
experimentally measured “cross sections” (Latency bound table lookups)

• Follows many particles (millions or more) and uses random numbers to
sample the probability distributions (Very branchy, divergent code)

• Particles contribute to diagnostic “tallies” (Potential data races)

Absorption Scattering Fission

Quicksilver attempts to capture these key traits of Mercury

10LLNL-PRES-808399

Defining a good Quicksilver benchmark problem is very challenging

Challenges
• Huge variation in scale:

Benchmark must be equally valid on 1 node or
10,000 nodes

• Simulation geometry:
Any geometry that resembles production use
will be difficult to scale

Annular Core Research Reactor

Imagine trying to scale this model!

11LLNL-PRES-808399

Defining a good Quicksilver benchmark problem is very challenging

Challenges
• Huge variation in scale:

Benchmark must be equally valid on 1 node or
10,000 nodes

• Simulation geometry:
Any geometry that resembles production use
will be difficult to scale

• Load Balance:
Imbalanced load distorts performance

• Realistic behavior:
Production behavior arises from complex
geometry and multiple materials

Annular Core Research Reactor

Spatial decomposition is
imbalanced at every scale

12LLNL-PRES-808399

Simplified physics can drastically alter program behavior
Quicksilver’s synthetic cross sections struggle to match this complexity

Scattering

Absorption

Fission

Nuclear Cross Sections for 235U

Absorption

Nuclear Cross Sections for H2O

Elastic
Scattering

Inelastic
Scattering

Need scattering from H20 and fission from 235U

13LLNL-PRES-808399

Defining a good Quicksilver benchmark problem is very challenging

Challenges

• Huge variation in scale:
Benchmark must be equally valid on 1 node or
10,000 nodes

• Simulation geometry:
Any geometry that resembles production use
will be difficult to scale

• Load Balance:
Imbalanced load distorts performance

• Realistic behavior:
Production behavior arises from complex
geometry and multiple materials

Solutions

• Homogeneous single material geometry:
Trivially scalable and load balanced

• Run rules to constrain problem:
Fixed mesh size and elements per node.
Also set target range for wall time per step

• Made-up Materials:
Material properties tailored to interact with
simplified physics to produce desired
behavior. Blend of real materials

14LLNL-PRES-808399

The Quicksilver CTS2 benchmark problem represents memory
access patterns more accurately than the default problem

• The default Quicksilver problem is
only a “smoke test” intended for
developers

• Energy spectrum determines memory
access pattern for cross section
lookups

• Smoke test overpopulates high
energies compared to intended
benchmark

• Moral: Beware default problems
unless you know they are intended to
be representative

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

75 82 89 96 10
3

11
0

11
7

12
4

13
1

13
8

14
5

15
2

15
9

16
6

17
3

18
0

18
7

19
4

20
1

20
8

21
5

22
2

Re
la

tiv
e

Po
pu

la
tio

n

Energy Group

Particle Energy Spectrum

Smoke Test
CTS2 Benchmark

15LLNL-PRES-808399

Best practices for benchmark problems

For Developers of
Proxy Apps & Benchmarks

• Ensure benchmark run rules
address issues of scalability, fidelity,
ease of use, etc.

• Focus on representing program
behavior, not “realistic” inputs

• Provide sample inputs and FOM
data for common hardware

• Choose reasonable wall time

For Users of
Proxy Apps & Benchmarks

• Don’t assume default problems are
good benchmark problems

• Understand and obey run rules

• Verify benchmark performance on
standard hardware

For Computing Facilities

• Ensure benchmark problems cover
the desired range of system use
cases

• Avoid temptation to ask for every
benchmark you can think of

16LLNL-PRES-808399

Cosine similarity quantifies the fidelity of benchmark suites using a
“workload fingerprint”

• Cosine similarity quantifies the relative alignment
of vectors in an arbitrary vector space
– Think: “Projection of A in the direction of B”
– cos! is an angular distance metric independent of

vector magnitude

• Similar workload fingerprints mean similar
response to a particular design constraint
– Codes with similar memory B/W fingerprint derive

similar benefit from memory B/W improvement

• Allows data-driven selection of codes
– Alternative to SME debates of perceived

relevance, familiarity, ease, etc.
– Labs and vendors have limited time & staff to

construct and respond to RFPs

! " # ≡ %
!"#

$
&!'! = ∥ ! ∥∥ # ∥ cos -

∴ cos % = ∑!"#$ (!)!
∥ + ∥∥ , ∥

17LLNL-PRES-808399

Modern Processors can track hundreds of performance events
But they can’t all be counted at once

Cache Pipeline
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT FP_ASSIST.ANY
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM FP_ASSIST.X87_INPUT
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS MEM_UOPS_RETIRED.STLB_MISS_LOADS
L2_LINES_IN.I MEM_UOPS_RETIRED.STLB_MISS_STORES
MEM_LOAD_UOPS_RETIRED.L3_MISS LD_BLOCKS.STORE_FORWARD
L2_RQSTS.RFO_HIT UOPS_ISSUED.SINGLE_MUL
L2_RQSTS.CODE_RD_MISS LD_BLOCKS.NO_SR
MEM_LOAD_UOPS_RETIRED.L2_MISS UOPS_ISSUED.FLAGS_MERGE
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_NONE ILD_STALL.LCP
MEM_LOAD_UOPS_RETIRED.L3_HIT DSB2MITE_SWITCHES.PENALTY_CYCLES
L2_LINES_IN.S DSB2MITE_SWITCHES
ICACHE.MISSES MISALIGN_MEM_REF.STORES
L2_RQSTS.ALL_CODE_RD LSD.CYCLES_4_UOPS
L2_TRANS.CODE_RD LSD.UOPS
MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM LSD.ACTIVE
ICACHE.HIT ARITH.FPU_DIV_ACTIVE
L2_RQSTS.DEMAND_DATA_RD_HIT UOPS_DISPATCHES_CANCELLED.SIMD_PRF
L2_RQSTS.DEMAND_DATA_RD_MISS BACLEARS.ANY

It takes dozens of runs to measure all eventsIt takes dozens of runs to measure all events

18LLNL-PRES-808399

Some counters are highly correlated to performance differences
Selectivity is similar to principal component analysis

Cache Selectivity Pipeline Selectivity
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT 2.721 FP_ASSIST.ANY 3.162
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM 2.213 FP_ASSIST.X87_INPUT 3.162
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS 2.178 MEM_UOPS_RETIRED.STLB_MISS_LOADS 2.839
L2_LINES_IN.I 1.531 MEM_UOPS_RETIRED.STLB_MISS_STORES 2.577
MEM_LOAD_UOPS_RETIRED.L3_MISS 1.482 LD_BLOCKS.STORE_FORWARD 2.212
L2_RQSTS.RFO_HIT 1.410 UOPS_ISSUED.SINGLE_MUL 2.114
L2_RQSTS.CODE_RD_MISS 1.406 LD_BLOCKS.NO_SR 2.039
MEM_LOAD_UOPS_RETIRED.L2_MISS 1.383 UOPS_ISSUED.FLAGS_MERGE 1.977
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_NONE 1.305 ILD_STALL.LCP 1.796
MEM_LOAD_UOPS_RETIRED.L3_HIT 1.305 DSB2MITE_SWITCHES.PENALTY_CYCLES 1.777
L2_LINES_IN.S 1.267 DSB2MITE_SWITCHES 1.777
ICACHE.MISSES 1.131 MISALIGN_MEM_REF.STORES 1.656
L2_RQSTS.ALL_CODE_RD 1.073 LSD.CYCLES_4_UOPS 1.650
L2_TRANS.CODE_RD 1.070 LSD.UOPS 1.608
MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM 1.067 LSD.ACTIVE 1.580
ICACHE.HIT 1.023 ARITH.FPU_DIV_ACTIVE 1.551
L2_RQSTS.DEMAND_DATA_RD_HIT 1.018 UOPS_DISPATCHES_CANCELLED.SIMD_PRF 1.434
L2_RQSTS.DEMAND_DATA_RD_MISS 0.999 BACLEARS.ANY 1.358

Reduce effort by collecting only selective events

19LLNL-PRES-808399

BROADWELL

ExaMiniMD LAMMPS MiniQMC QMCPack sw4lite sw4 SWFFT HACC pennant snap
ExaMiniMD 0.00 10.24 84.61 83.55 61.94 64.17 86.71 85.58 75.88 44.50

LAMMPS 10.24 0.00 75.12 73.95 53.63 56.50 79.66 78.51 70.97 34.97
MiniQMC 84.61 75.12 0.00 5.97 42.91 47.75 51.57 51.28 66.16 43.41
QMCPack 83.55 73.95 5.97 0.00 37.71 42.28 45.85 45.52 60.31 40.89

sw4lite 61.94 53.63 42.91 37.71 0.00 6.47 27.99 26.86 30.17 24.55
sw4 64.17 56.50 47.75 42.28 6.47 0.00 23.59 22.42 23.83 29.89

SWFFT 86.71 79.66 51.57 45.85 27.99 23.59 0.00 1.22 18.65 51.79
HACC 85.58 78.51 51.28 45.52 26.86 22.42 1.22 0.00 18.14 50.70

pennant 75.88 70.97 66.16 60.31 30.17 23.83 18.65 18.14 0.00 51.63
snap 44.50 34.97 43.41 40.89 24.55 29.89 51.79 50.70 51.63 0.00

We computed cosine similarity for several proxies and parents

Proxies are similar to parents
Unrelated applications are clearly different

BR
O

AD
W

EL
L

ExaMiniMD LAMMPS MiniQMC QMCPack sw4lite sw4 SWFFT HACC pennant snap
ExaMiniMD 0.00 10.24 84.61 83.55 61.94 64.17 86.71 85.58 75.88 44.50

LAMMPS 10.24 0.00 75.12 73.95 53.63 56.50 79.66 78.51 70.97 34.97
MiniQMC 84.61 75.12 0.00 5.97 42.91 47.75 51.57 51.28 66.16 43.41
QMCPack 83.55 73.95 5.97 0.00 37.71 42.28 45.85 45.52 60.31 40.89

sw4lite 61.94 53.63 42.91 37.71 0.00 6.47 27.99 26.86 30.17 24.55
sw4 64.17 56.50 47.75 42.28 6.47 0.00 23.59 22.42 23.83 29.89

SWFFT 86.71 79.66 51.57 45.85 27.99 23.59 0.00 1.22 18.65 51.79
HACC 85.58 78.51 51.28 45.52 26.86 22.42 1.22 0.00 18.14 50.70

pennant 75.88 70.97 66.16 60.31 30.17 23.83 18.65 18.14 0.00 51.63
snap 44.50 34.97 43.41 40.89 24.55 29.89 51.79 50.70 51.63 0.00

ExaMiniMD LAMMPS MiniQMC QMCPack sw4lite sw4 SWFFT HACC pennant snap
ExaMiniMD 0.00 8.97 81.96 68.83 38.66 39.55 28.51 37.76 43.58 22.20

LAMMPS 8.97 0.00 81.38 68.47 38.60 39.33 29.50 38.49 42.40 20.45
MiniQMC 81.96 81.38 0.00 16.35 47.28 47.63 58.78 49.85 46.58 65.55
QMCPack 68.83 68.47 16.35 0.00 36.05 36.40 46.19 37.82 36.33 53.30

sw4lite 38.66 38.60 47.28 36.05 0.00 4.05 20.56 17.09 12.89 21.69
sw4 39.55 39.33 47.63 36.40 4.05 0.00 19.82 15.87 11.91 22.79

SWFFT 28.51 29.50 58.78 46.19 20.56 19.82 0.00 10.33 24.49 21.44
HACC 37.76 38.49 49.85 37.82 17.09 15.87 10.33 0.00 19.92 26.67

pennant 43.58 42.40 46.58 36.33 12.89 11.91 24.49 19.92 0.00 25.00
snap 22.20 20.45 65.55 53.30 21.69 22.79 21.44 26.67 25.00 0.00

SK
YL

AK
E

Si
m

ila
rit

y
ex

po
se

s
ar

ch
ite

ct
ur

al
 c

on
st

ra
in

ts

21LLNL-PRES-808399

Similarity can reveal unusual stressors on select event groups

ExaMiniMD LAMMPS MiniQMC QMCPack sw4lite sw4 SWFFT HACC pennant snap
ExaMiniMD 0.00 5.02 54.54 38.73 11.70 12.49 6.58 6.38 13.21 7.13

LAMMPS 5.02 0.00 54.69 38.62 15.66 16.27 4.87 6.38 13.60 10.88
MiniQMC 54.54 54.69 0.00 17.15 47.12 46.08 50.02 48.98 42.16 49.15
QMCPack 38.73 38.62 17.15 0.00 32.64 31.67 33.92 32.94 26.29 33.78

sw4lite 11.70 15.66 47.12 32.64 0.00 1.15 13.41 11.40 11.15 5.07
sw4 12.49 16.27 46.08 31.67 1.15 0.00 13.74 11.70 10.69 5.69

SWFFT 6.58 4.87 50.02 33.92 13.41 13.74 0.00 2.24 9.09 8.80
HACC 6.38 6.38 48.98 32.94 11.40 11.70 2.24 0.00 7.86 6.87

pennant 13.21 13.60 42.16 26.29 11.15 10.69 9.09 7.86 0.00 9.37
snap 7.13 10.88 49.15 33.78 5.07 5.69 8.80 6.87 9.37 0.00

Cosine similarities calculated using only cache events

QMC use cache differently from other apps

22LLNL-PRES-808399

Similarity can help find gaps & redundancies in suites

Redundancy

Gap

23LLNL-PRES-808399

Application behavior can vary with input choice

regular-grid cell-in-place
regular-grid-by-

faces face-in-place cell face

regular-grid 0.00 6.27 22.37 8.34 16.07 12.43

cell-in-place 6.27 0.00 18.29 4.88 10.69 6.97

regular-grid-by-
faces 22.37 18.29 0.00 15.70 11.05 13.09

face-in-place 8.34 4.88 15.70 0.00 8.76 5.67

cell 16.07 10.69 11.05 8.76 0.00 4.91

face 12.43 6.97 13.09 5.67 4.91 0.00

sum 65.49 47.10 80.50 43.35 51.47 43.06

Angular difference in signatures for clamr_cpuonly -n_1024_-i_200_-t_1000

Don’t assume a single run represents all behavior

24LLNL-PRES-808399

Best practices for benchmark selection and fidelity

For Developers of
Proxy Apps & Benchmarks

• Quantify the fidelity of your proxy
relative to the actual workload

• Provide multiple inputs

For Users of
Proxy Apps & Benchmarks

• Choose proxies and benchmarks
according to the hardware they
stress

• Understand input sensitivities

For Computing Facilities

• Consider gaps and redundancies in
benchmark suites

25LLNL-PRES-808399

Facilities use benchmarks for a wide variety of purposes

Marketing and
Program Development

Application Development
and Readiness

• The Center for Accelerated
Application Readiness (CAAR) is
the vanguard for the broader
application readiness ecosystem
and for future science

Programming Model Development

• SPEC Accel compares
performance of
– Accelerators (GPUs,

Co-processors, etc.)
– Supporting software

tool chains (Compilers,
Drivers, etc.)

– Interface (CPU, PCIe, etc.)

• Three distinct benchmarks for
OpenCL, OpenACC, and OpenMP,
updated in 2017

• These (and other benchmarks) are
used by DOE labs to drive compiler
development

CAAR

26LLNL-PRES-808399

An Example: DOE Proxy Apps in LLVM's Test Suite

LLVM is an open-source compiler infrastructure
used by many parts of our exascale ecosystem...

27LLNL-PRES-808399

Benchmarks are an essential element of system procurements

• CORAL benchmarks should
– Span the breadth of the NNSA (LLNL, LANL, SNL) workload
– Span the time-dependent(!) and much broader space of LCF (ORNL, ANL) workloads
– Span co-spaces of algorithms, implementations, and use cases
– Provide adequate drivers for system SW and library development

• CORAL benchmarks must
– not be so numerous that vendors cannot provide analyses on O(weeks) time scale

• Significant challenge to cover/span the breadth of concerns, while not being onerous on vendors

– not encumber application developers with 24-7 support responsibilities during those weeks
– use proxies for NNSA apps

The benchmark suite for CORAL-2 had to satisfy
multiple wants and constraints

28LLNL-PRES-808399

The CORAL-2 benchmark suite is a mixture of production codes
and proxies

• Scalable Science Benchmarks: HACC, Nekbone, QMCPACK, LAMMPS

• Throughput Benchmarks: AMG, Kripke, Quicksilver, PENNANT

• Data Science and Deep Learning Benchmarks:
– Big Data Analytic Suite

• [Schmidt, et al., “Defining Big Data Analytics Benchmarks for Next Generation Supercomputers,”
https://arxiv.org/abs/1811.02287]

– Deep Learning Suite

• Skeleton Benchmarks

• Microkernel Benchmarks

https://asc.llnl.gov/coral-2-benchmarks/

https://asc.llnl.gov/coral-2-benchmarks/

29LLNL-PRES-808399

Best practices for benchmarks at facilities

For Developers of
Proxy Apps & Benchmarks

• Make it easy to run your benchmark
in an automated framework

• Carefully consider whether to use
proxies or full applications

For Users of
Proxy Apps & Benchmarks

• Benchmark suites are usually good
indications of facility interests and
concerms

For Computing Facilities

• Build suites that can cover a variety
of use cases

• Avoid overly large benchmark
collections

• Automate as much as possible

• Look for lessons learned that can
be transferred to production codes

A VENDOR VIEW ON
BENCHMARKS IN HPC PROCUREMENTS

Joe Glenski, Distinguished Technologist
IDEAS Webinar April 15, 2020

This presentation may contain forward-looking statements that involve risks, uncertainties and
assumptions. If the risks or uncertainties ever materialize or the assumptions prove incorrect, the
results of Hewlett Packard Enterprise Company and its consolidated subsidiaries ("Hewlett
Packard Enterprise") may differ materially from those expressed or implied by such forward-
looking statements and assumptions. All statements other than statements of historical fact are
statements that could be deemed forward-looking statements, including but not limited to any
statements regarding the expected benefits and costs of the transaction contemplated by this
presentation; the expected timing of the completion of the transaction; the ability of HPE, its
subsidiaries and Cray to complete the transaction considering the various conditions to the
transaction, some of which are outside the parties’ control, including those conditions related to
regulatory approvals; projections of revenue, margins, expenses, net earnings, net earnings per
share, cash flows, or other financial items; any statements concerning the expected development,
performance, market share or competitive performance relating to products or services; any
statements regarding current or future macroeconomic trends or events and the impact of those
trends and events on Hewlett Packard Enterprise and its financial performance; any statements
of expectation or belief; and any statements of assumptions underlying any of the foregoing.
Risks, uncertainties and assumptions include the possibility that expected benefits of the
transaction described in this presentation may not materialize as expected; that the transaction
may not be timely completed, if at all; that, prior to the completion of the transaction, Cray’s
business may not perform as expected due to transaction-related uncertainty or other factors;
that the parties are unable to successfully implement integration strategies; the need to address
the many challenges facing Hewlett Packard Enterprise's businesses; the competitive pressures
faced by Hewlett Packard Enterprise's businesses; risks associated with executing Hewlett
Packard Enterprise's strategy; the impact of macroeconomic and geopolitical trends and events;
the development and transition of new products and services and the enhancement of existing
products and services to meet customer needs and respond to emerging technological trends;
and other risks that are described in our Fiscal Year 2018 Annual Report on Form 10-K, and that
are otherwise described or updated from time to time in Hewlett Packard Enterprise's other
filings with the Securities and Exchange Commission, including but not limited to our subsequent
Quarterly Reports on Form 10-Q. Hewlett Packard Enterprise assumes no obligation and does
not intend to update these forward-looking statements.

31

FORWARD LOOKING STATEMENTS

TOPICS

• The big headache Challenge of Writing Requests For Proposals (RFPs)

• How Benchmarks are Used in Typical RFPs

• Evaluation Metrics

• Projections and Estimates

• Optimization and Code Modification

• Suggestions from Benchmarkers – Do’s and Don’ts

32

Special thanks to Tricia Balle, who provide ideas and material for this presentation

THE CHALLENGE OF WRITING RFPS

• Identify desired system characteristics and ensure the RFP requirements reflect them
• How to eliminate what you do not want and ensure what you do want is scored appropriately?
• How to easily compare vendor offerings?

• Ensure the document is clear and unambiguous
• Lack of clarity -> questions
• Questions -> time wasted -> delays in procurement schedule -> installation delays / risk of loss of

funding
• Allow vendors time to ask questions and share most questions and responses

• Clarification questions can identify issues that will affect all vendors
• Releasing benchmarks early can shake out problems before official RFP release
• Do allow for vendor-specific queries to be kept confidential if at all possible!

• Beware of the law of unintended consequences
• A requirement for more HPL performance than budget supports can lead to trouble if vendors

bid what you did not actually want

33

WHY USE BENCHMARKS IN RFPS?

Basic Aim: To measure the vendors’ proposed machine capabilities in comparison to the
customer’s workload requirements.

Basic Requirement: Understand what you value and how you will score proposals, then
provide the smallest set of benchmarks necessary to compare performance.

• Keep expectations of the vendors in proportion to value of the deal

Common Scenarios for Benchmark Use in RFPs:
• To enable evaluation of offered systems and their capability to handle expected workloads.

–Sometimes just a simple evaluation of performance of proposed hardware
–If optimizations are allowed, can also evaluate vendors' support capabilities with eye to support post-delivery

• To design and size the system required to run the workload
• As a hurdle to limit responses from non-HPC savvy vendors

34

EVALUATION METHODS AND METRICS

• A clearly defined evaluation metric is important so we understand where to target
performance and what you value

• Also important to understand how highly benchmarks are weighted in overall scoring
• Are benchmarks a very small proportion of the total final score?
• Will HPL Rmax determine system size, regardless of benchmark performance?

• Beware of benchmark requirements that have nothing to do with the purpose of the machine (e.g., if
you need a lot of network, don’t just use low node count benchmarks).

• If the workload is known to be memory bandwidth limited, maybe include codes similar to STREAM (or
weight them highly) and exclude things like SPEC (mostly clock bound).

• Consider a benchmark such as GPCNet to get a measure of ability of system to handle congestion on
the network

35

EVALUATION METRICS – COMMON SCENARIOS

• Simply run and report performance (often used as a barrier to entry)
• Run each benchmark test in under a specified target time (makes most sense in cases such as

operational weather with predefined constraints)
• Evaluate applications individually (relative to each vendor) Often includes an evaluation of scaling

performance up to system size or scaling limit
• Throughputs

• A well thought out throughput mix can be a useful tool and help evaluate I/O performance
• Throughput metrics are tough for vendors to model and require additional work, so should ideally displace other

benchmarks
• Weighted metrics (for example: “SSP” – Sustained System Performance)

• Bundle mix of applications and kernels (don’t just use small kernels)
• Weight each one appropriately for workload priorities
• Create single metric for easier evaluation (often done with Geomeans)
• Can allow variation within mix at acceptance - especially good for future hardware

36

PROJECTIONS AND ESTIMATES

• Projections are essential for any system with hardware not yet available or for system sizes
beyond what is available

• How to ensure vendors know what they are doing?
• Prior record
• Good explanation of methodology (but don’t expect full details)
• Good relationships
• Full commitments to proposed performance

• Decide if you will allow processor or interconnect vendors to supply benchmark results
• This can lead to identical results submitted by multiple system vendors
• Requiring the system vendor to run benchmarks can demonstrate potential for support in the future
• Who will estimate future system performance and commit to it?

• Be careful of applications that have Random Number Generators or Iterative solvers
• Need iteration counts to be consistent from run to run
• If have to scale out to higher core counts, must know number of iterations for reliable projection

37

OPTIMIZATION AND CODE MODIFICATION

• Best to allow optimization with guidelines, such as:
• Specify types of optimizations allowed (I/O, communications., OpenMP, etc.)
• Specify that scientific validity of results should not change
• Don’t allow optimizations that are specific to the benchmark problem itself
• Require vendor to supply full details of all optimizations made
• Retain ability to reject optimizations if they are too complicated, etc.

• Legacy apps often just don’t scale up efficiently without being adapted to current or future
hardware (processor types, node counts, and networks)

• Optimizations allows ability to evaluate full potential of system hardware, compiler, libraries, etc.
• Also allows ability to evaluate vendor skill (important if collaboration is considered)

38

THE “DO’S” AND “DON’T”S

What benchmarkers like (and don’t like) to see…

39

DO….

• First, figure out what you want, e.g., "the fastest running job, no matter how many nodes it takes", or
"maximum number of jobs on the system"?

• Make benchmark instructions clear
• Check that README does not conflict with main document
• Get directions and files tested by people not involved in the benchmark preparation before you

release them to vendors
• Remember that your working directory is not a benchmark distribution!

• Supply validation requirements and make sure they are also clear
• e.g. “WRF output should match to within 5%” is not clear

• Watch run length! A good benchmark will run for 5 to 60 minutes.
• Under 1 hour allows us more time to debug, optimize and find the best way to run your applications.

But…. sub-10 second runs are not very useful J
• If you shorten a run, consider evaluating only the post-initialization portion to get a more useful result
• Decent problem sizes will differentiate vendors better

40

MORE DO…

• Set an appropriate deadline for getting results returned

• Allow enough time for the vendor to do the work

• More complicated RFPs take more time

• If the time is too short, the quality of response goes down

• Remember the impact of year end holidays
• Releasing an RFP in early December and asking for response in early January will not get you good

results

• Make sure any penalties around missing performance targets are clearly defined in the RFP
document (we need to understand risks)

• At Acceptance, be pragmatic about meeting targets
• If the system hardware was not yet in production when estimates were made, must expect some

variation in actual performance. Weighted metrics like SSP help with this

41

DON’T…

• Don’t add too many requirements that restrict how benchmarks can be run
• For example, don’t specify number of MPI ranks / OpenMP threads to be used
• Allow vendor flexibility to demonstrate best way to run app on proposed architecture
• Don’t assume anything about numbers of CPUs, cores, accelerators per node (unless they are

mandatory requirements for system). This often occurs when too focused on an existing system
• Allow the use of multiple compilers, MPIs, etc.

• Don’t ask for large numbers of commitments for no clear purpose
• Only ask for numbers that are clear to interpret and are useful
• For example, it is easy to ask for results for a huge variety of MPI tests, but hard to understand what

the results mean for the real workload. And hard for the vendor to provide them

42

MORE DON’T…

• Don’t expect output to be bit identical to that from another system
• How much precision do you really need in your results? If input data are based on measurements

with 3 significant digits, don’t ask for 14 digits of accuracy in comparison to data from original system.
Determine what a scientifically valid result is and ask for that

• If identical runs must give identical output, say so. If runs must give identical output across all rank
and thread counts, say so

– Code must be written to be bit reproducible in the first place

–This can limit optimizations possible

• Don’t require huge amounts of output data to be returned
• Will you really look at all of it? Can you look at output from just the final step/iteration?
• Can you provide a tool that can postprocess the data before return?
• Large return data requirements can add up to a week to write a drive and ship, which leads to

requests for extension or less time available to dedicate to actual benchmarking work

43

IN CONCLUSION

• Define your workload before designing the minimal set of benchmark tests to reflect that
workload

• Write the RFP benchmark requirements as clearly as you can, and have them tested before
releasing to vendors

• Define a clear evaluation metric to enable valid comparison among vendors and to ensure
you end up with the system you want

• Allow vendors to show what their proposed system can do to help your scientific workloads
perform as well and as efficiently as possible

44

THANK YOU

glenski@hpe.com

45

http://hpe.com

46LLNL-PRES-808399

Summary of best practices

For Developers of
Proxy Apps & Benchmarks

• Write documentation

• Ensure benchmark run rules
address issues of scalability, fidelity,
ease of use, etc.

• Make it easy to identify the FOM
and verify correct results

• Focus on representing program
behavior, not “realistic” inputs

• Choose reasonable wall time

• Quantify the fidelity of your proxy
relative to the actual workload

• Provide multiple inputs

For Users of
Proxy Apps & Benchmarks

• Read documentation

• Benchmarks have well-defined run
rules and a figure of merit

• Understand and obey run rules

• Don’t assume every proxy app is
useful as a benchmark

• Understand input sensitivities

• Verify benchmark performance on
standard hardware

• DOE system procurement suites
can be a good place to look for
benchmark problems

For Computing Facilities

• Cover all aspects of the ecosystem:
Programming models, compilers,
debuggers, performance tools

• Avoid temptation to ask for every
benchmark you can think of

• Consider gaps and redundancies in
benchmark suites

• Avoid large input or output files and
complex library dependencies

• Make benchmark suites easy to
build and automate

• Build suites that can cover a variety
of use cases

47LLNL-PRES-808399

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

