Best Practices for Using Proxy Apps as Benchmarks

Approved for public release

IDEAS Webinar

April 15, 2020

David Richards, LLNL Joe Glenski, HPE

The presentation contains the work of many co-authors

- Jeanine Cook (SNL)
- Jeffery Kuehn (LANL)
- Omar Aaziz (SNL)
- Courtenay Vaughan (SNL)
- Hal Finkel (ANL)
- The ECP Proxy App Team

- Oscar Hernandez (ORNL)
- Verónica Vergara (ORNL)
- Reuben D. Budiardja (ORNL)
- Bronson Messer (ORNL)
- Jack Wells (ORNL)
- Wayne Joubert (ORNL)
- Swen Boehm (ORNL)

This talk is an abridged version of a breakout session originally presented at the 2020 ECP Annual Meeting

https://proxyapps.exascaleproject.org/reports/

Today's talk is full of proxy app and benchmark goodness

For Developers of Proxy Apps & Benchmarks

- What is needed to make a proxy app into a benchmark?
- How do I make my benchmark attractive for users?
- How can I reduce the chances that my proxy app will be misused?
- How can I quantify the fidelity of my proxy app or benchmark?

For Users of Proxy Apps & Benchmarks

- How do I know if a proxy app is a good benchmark?
- What do I need to know about using proxy apps?
- How can I choose a good set of benchmarks?
- Where can I find good benchmarks?

For Computing Facilities

- How can I use benchmarks to get good information from vendors?
- How can I tell if benchmarks really represent my workload?
- How can I decide which benchmarks to include in my suite?

Benchmarks are sample workloads intended to quantify and compare different aspects of system performance

- Frequently used to guide system design and/or purchasing decisions
- Workloads range from a few lines of code to entire production applications
- Benchmark collections cover a huge array of workloads
 - SPEC: CPU, GPU, Cloud, MPI, OpenMP, etc.
 - NAS parallel benchmarks
 - DOE procurement benchmarks
- Effective benchmarks need a way to quantify the results and ensure results are comparable between users

Proxy applications are models for one or more features of a parent application

- Proxy apps omit many features of parent apps
- Proxy apps come in various sizes
 - Kernels, skeleton apps, mini apps
- Proxies can be models for
 - Performance critical algorithms
 - Communication patterns
 - Programming models and styles
- Like any model, proxies can be misused beyond their regime of validity

Many benchmarks are proxy apps Proxy apps are not automatically good benchmarks

Beware: models are easy to mis-use

Some blame lies with developers	But proxy app users aren't innocent
 Proxies are often widely published even when they are	 Proxies are relatively easy to build and run without
originally intended for internal use	devoting much thought to the process
 Developers need to be more clear which proxies make	 Proxy users aren't always familiar with caveats and
good benchmarks (and what inputs to use)	limitations of proxies
 Better documentation that is easier to digest is usually	 Many papers and reports present proxy app performance
needed to help guide researchers	information without describing input parameters
Verification and reproducibility are frequently not	Sensitivity analysis is rare
considered as part of proxy design	Did you verify performance expectations or correctness?

Writing code is fun
Writing documentation is not

EXASCALE COMPUTING An understanding of what you are using and why it's important are essential when using proxy apps

A proxy app becomes a benchmark when it is matched with:

A Figure of Merit (FOM)

- An FOM is a measure of application throughput performance
- Good FOMs usually scale with performance
 - 2X problem run 2X faster (than 1X problem on old platform) = 4X FOM
 - 1X problem run 4X faster = 4X FOM
 - FOM may need to consider application algorithm scaling with system size

A Set of Run Rules

- Run rules may include:
 - Problem specification
 - Code version
 - Weak or strong scaling constraints
 - Allowable code modifications
 - Wall time constraints
 - Misc limits such as memory per MPI rank, node count(s) to run jobs on, etc.

Unless the FOM and run rules are chosen carefully the benchmark may be meaningless

Best practices for effective proxy apps and benchmarks

For Developers of Proxy Apps & Benchmarks

- Write documentation
- Ensure benchmark run rules address issues of scalability, fidelity, ease of use, etc.
- Make it easy to identify the figure of merit
- Provide a method to verify correct results

For Users of Proxy Apps & Benchmarks

- Read documentation
- Don't assume every proxy app is useful as a benchmark
- Remember that benchmarks have well-defined run rules and a figure of merit
- DOE system procurement suites can be a good place to look for benchmark problems

For Computing Facilities

- Avoid large input or output files and complex library dependencies
- Make benchmark suites easy to build and automate
- Cover all aspects of the ecosystem: Programming models, compilers, debuggers, performance tools

Quicksilver is a proxy for Mercury (Monte Carlo transport)

Particles interact with matter by a variety of "reactions"
 Absorption Scattering Fission

- The probability of each reaction and its outcomes are captured in experimentally measured "cross sections" (Latency bound table lookups)
- Follows many particles (millions or more) and uses random numbers to sample the probability distributions (Very branchy, divergent code)
- Particles contribute to diagnostic "tallies" (Potential data races)

Quicksilver attempts to capture these key traits of Mercury

11 NI -PRES-808399

Defining a good Quicksilver benchmark problem is very challenging

Challenges

- Huge variation in scale: Benchmark must be equally valid on 1 node or 10,000 nodes
- <u>Simulation geometry:</u> Any geometry that resembles production use will be difficult to scale

Imagine trying to scale this model!

Annular Core Research Reactor

Defining a good Quicksilver benchmark problem is very challenging

Challenges

- Huge variation in scale: Benchmark must be equally valid on 1 node or 10,000 nodes
- <u>Simulation geometry:</u> Any geometry that resembles production use will be difficult to scale
- Load Balance: Imbalanced load distorts performance

Realistic behavior:

Production behavior arises from complex geometry and multiple materials

Annular Core Research Reactor

Simplified physics can drastically alter program behavior Quicksilver's synthetic cross sections struggle to match this complexity

Defining a good Quicksilver benchmark problem is very challenging

Challenges **Solutions** Huge variation in scale: Homogeneous single material geometry: ٠ Benchmark must be equally valid on 1 node or Trivially scalable and load balanced 10,000 nodes • Run rules to constrain problem: Simulation geometry: Fixed mesh size and elements per node. Any geometry that resembles production use Also set target range for wall time per step will be difficult to scale Made-up Materials: Material properties tailored to interact with Load Balance: Imbalanced load distorts performance simplified physics to produce desired behavior. Blend of real materials Realistic behavior: Production behavior arises from complex geometry and multiple materials

The Quicksilver CTS2 benchmark problem represents memory access patterns more accurately than the default problem

- The default Quicksilver problem is only a "smoke test" intended for developers
- Energy spectrum determines memory access pattern for cross section lookups
- Smoke test overpopulates high energies compared to intended benchmark
- **Moral:** Beware default problems unless you know they are intended to be representative

Best practices for benchmark problems

For Developers of Proxy Apps & Benchmarks

- Ensure benchmark run rules address issues of scalability, fidelity, ease of use, etc.
- Focus on representing program behavior, not "realistic" inputs
- Provide sample inputs and FOM data for common hardware
- Choose reasonable wall time

For Users of Proxy Apps & Benchmarks

- Don't assume default problems are good benchmark problems
- Understand and obey run rules
- Verify benchmark performance on standard hardware

For Computing Facilities

- Ensure benchmark problems cover the desired range of system use cases
- Avoid temptation to ask for every benchmark you can think of

Cosine similarity quantifies the fidelity of benchmark suites using a "workload fingerprint"

- Cosine similarity quantifies the relative alignment of vectors in an arbitrary vector space
 - Think: "Projection of A in the direction of B"
 - $\cos\theta$ is an angular distance metric independent of vector magnitude
- Similar workload fingerprints mean similar response to a particular design constraint
 - Codes with similar memory B/W fingerprint derive similar benefit from memory B/W improvement
- · Allows data-driven selection of codes
 - Alternative to SME debates of perceived relevance, familiarity, ease, etc.
 - Labs and vendors have limited time & staff to construct and respond to RFPs

Modern Processors can track hundreds of performance events But they can't all be counted at once

Cache

MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS L2_LINES_IN.I MEM LOAD UOPS RETIRED.L3 MISS L2_RQSTS.RFO_HIT L2_RQSTS.CODE_RD_MISS MEM_LOAD_UOPS_RETIRED.L2_MISS MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_NONE MEM_LOAD_UOPS_RETIRED.L3_HIT L2_LINES_IN.S ICACHE.MISSES L2_RQSTS.ALL_CODE_RD L2_TRANS.CODE_RD MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM ICACHE.HIT L2_RQSTS.DEMAND_DATA_RD_HIT L2_RQSTS.DEMAND_DATA_RD_MISS

Pipeline

FP ASSIST.ANY FP_ASSIST.X87_INPUT MEM_UOPS_RETIRED.STLB_MISS_LOADS MEM_UOPS_RETIRED.STLB_MISS_STORES LD BLOCKS.STORE FORWARD UOPS ISSUED.SINGLE MUL LD_BLOCKS.NO_SR UOPS ISSUED.FLAGS MERGE ILD STALL.LCP DSB2MITE SWITCHES.PENALTY CYCLES DSB2MITE_SWITCHES MISALIGN_MEM_REF.STORES LSD.CYCLES_4_UOPS LSD.UOPS LSD.ACTIVE ARITH.FPU DIV ACTIVE UOPS_DISPATCHES_CANCELLED.SIMD_PRF

BACLEARS.ANY

It takes dozens of runs to measure all events

Some counters are highly correlated to performance differences Selectivity is similar to principal component analysis

Cache	Selectivity	Pipeline	Selectivity
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT	2.721	FP_ASSIST.ANY	3.162
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM	2.213	FP_ASSIST.X87_INPUT	3.162
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS	2.178	MEM_UOPS_RETIRED.STLB_MISS_LOADS	2.839
L2_LINES_IN.I	1.531	MEM_UOPS_RETIRED.STLB_MISS_STORES	2.577
MEM_LOAD_UOPS_RETIRED.L3_MISS	1.482	LD_BLOCKS.STORE_FORWARD	2.212
L2_RQSTS.RFO_HIT	1.410	UOPS_ISSUED.SINGLE_MUL	2.114
L2_RQSTS.CODE_RD_MISS	1.406	LD_BLOCKS.NO_SR	2.039
MEM_LOAD_UOPS_RETIRED.L2_MISS	1.383	UOPS_ISSUED.FLAGS_MERGE	1.977
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_NONE	1.305	ILD_STALL.LCP	1.796
MEM_LOAD_UOPS_RETIRED.L3_HIT	1.305	DSB2MITE_SWITCHES.PENALTY_CYCLES	1.777
L2_LINES_IN.S	1.267	DSB2MITE_SWITCHES	1.777
ICACHE.MISSES	1.131	MISALIGN_MEM_REF.STORES	1.656
L2_RQSTS.ALL_CODE_RD	1.073	LSD.CYCLES_4_UOPS	1.650
L2_TRANS.CODE_RD	1.070	LSD.UOPS	1.608
MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM	1.067	LSD.ACTIVE	1.580
ICACHE.HIT	1.023	ARITH.FPU_DIV_ACTIVE	1.551
L2_RQSTS.DEMAND_DATA_RD_HIT	1.018	UOPS_DISPATCHES_CANCELLED.SIMD_PRF	1.434
L2_RQSTS.DEMAND_DATA_RD_MISS	0.999	BACLEARS.ANY	1.358

Reduce effort by collecting only selective events

We computed cosine similarity for several proxies and parents

	ExaMiniMD	LAMMPS	MiniQMC	QMCPack	sw4lite	sw4	SWFFT	HACC	pennant	snap
ExaMiniMD	0.00	10.24	84.61	83.55	61.94	64.17	86.71	85.58	75.88	44.50
LAMMPS	10.24	0.00	75.12	73.95	53.63	56.50	79.66	78.51	70.97	34.97
MiniQMC	84.61	75.12	0.00	5.97	42.91	47.75	51.57	51.28	66.16	43.41
QMCPack	83.55	73.95	5.97	0.00	37.71	42.28	45.85	45.52	60.31	40.89
sw4lite	61.94	53.63	42.91	37.71	0.00	6.47	27.99	26.86	30.17	24.55
sw4	64.17	56.50	47.75	42.28	6.47	0.00	23.59	22.42	23.83	29.89
SWFFT	86.71	79.66	51.57	45.85	27.99	23.59	0.00	1.22	18.65	51.79
HACC	85.58	78.51	51.28	45.52	26.86	22.42	1.22	0.00	18.14	50.70
pennant	75.88	70.97	66.16	60.31	30.17	23.83	18.65	18.14	0.00	51.63
snap	44.50	34.97	43.41	40.89	24.55	29.89	51.79	50.70	51.63	0.00

BROADWELL

Proxies are similar to parents Unrelated applications are clearly different

	ExaMiniMD	LAMMPS	MiniQMC	QMCPack	sw4lite	sw4	SWFFT	HACC	pennant	snap
ExaMiniMD	0.00	10.24	84.61	83.55	61.94	64.17	86.71	85.58	75.88	44.50
LAMMPS	10.24	0.00	75.12	73.95	53.63	56.50	79.66	78.51	70.97	34.97
MiniQMC	84.61	75.12	0.00	5.97	42.91	47.75	51.57	51.28	66.16	43.41
QMCPack	83.55	73.95	5.97	0.00	37.71	42.28	45.85	45.52	60.31	40.89
sw4lite	61.94	53.63	42.91	37.71	0.00	6.47	27.99	26.86	30.17	24.55
sw4	64.17	56.50	47.75	42.28	6.47	0.00	23.59	22.42	23.83	29.89
SWFFT	86.71	79.66	51.57	45.85	27.99	23.59	0.00	1.22	18.65	51.79
НАСС	85.58	78.51	51.28	45.52	26.86	22.42	1.22	0.00	18.14	50.70
pennant	75.88	70.97	66.16	60.31	30.17	23.83	18.65	18.14	0.00	51.63
snap	44.50	34.97	43.41	40.89	24.55	29.89	51.79	50.70	51.63	0.00
			-							
	ExaMiniMD	LAMMPS	MiniQMC	QMCPack	sw4lite	sw4	SWFFT	НАСС	pennant	snap
ExaMiniMD		LAMMPS 8.97	MiniQMC 81.96	QMCPack 68.83	sw4lite 38.66	sw4 39.55	SWFFT 28.51	HACC 37.76	pennant 43.58	snap 22.20
ExaMiniMD LAMMPS	0.00			-					· ·	<u> </u>
	0.00 8.97	8.97	81.96	68.83	38.66	39.55	28.51	37.76	43.58	22.20
LAMMPS	0.00 8.97 81.96	8.97 0.00	81.96 81.38	68.83 68.47	38.66 38.60	39.55 39.33	28.51 29.50	37.76 38.49	43.58 42.40	22.20 20.45
LAMMPS MiniQMC	0.00 8.97 81.96 68.83	8.97 0.00 81.38	81.96 81.38 0.00	68.83 68.47 16.35	38.66 38.60 47.28	39.55 39.33 47.63	28.51 29.50 58.78	37.76 38.49 49.85	43.58 42.40 46.58	22.20 20.45 65.55
LAMMPS MiniQMC QMCPack	0.00 8.97 81.96 68.83 38.66	8.97 0.00 81.38 68.47	81.96 81.38 0.00 16.35	68.83 68.47 16.35 0.00	38.66 38.60 47.28 36.05	39.55 39.33 47.63 36.40	28.51 29.50 58.78 46.19	37.76 38.49 49.85 37.82	43.58 42.40 46.58 36.33	22.20 20.45 65.55 53.30
LAMMPS MiniQMC QMCPack sw4lite	0.00 8.97 81.96 68.83 38.66 39.55	8.97 0.00 81.38 68.47 38.60	81.96 81.38 0.00 16.35 47.28	68.83 68.47 16.35 0.00 36.05	38.66 38.60 47.28 36.05 0.00	39.55 39.33 47.63 36.40 4.05	28.51 29.50 58.78 46.19 20.56	37.76 38.49 49.85 37.82 17.09	43.58 42.40 46.58 36.33 12.89	22.20 20.45 65.55 53.30 21.69
LAMMPS MiniQMC QMCPack sw4lite sw4	0.00 8.97 81.96 68.83 38.66 39.55 28.51	8.97 0.00 81.38 68.47 38.60 39.33	81.96 81.38 0.00 16.35 47.28 47.63	68.83 68.47 16.35 0.00 36.05 36.40	38.66 38.60 47.28 36.05 0.00 4.05	39.55 39.33 47.63 36.40 4.05 0.00	28.51 29.50 58.78 46.19 20.56 19.82	37.76 38.49 49.85 37.82 17.09 15.87	43.58 42.40 46.58 36.33 12.89 11.91	22.20 20.45 65.55 53.30 21.69 22.79
LAMMPS MiniQMC QMCPack sw4lite sw4 SWFFT	0.00 8.97 81.96 68.83 38.66 39.55 28.51 37.76	8.97 0.00 81.38 68.47 38.60 39.33 29.50	81.96 81.38 0.00 16.35 47.28 47.63 58.78	68.83 68.47 16.35 0.00 36.05 36.40 46.19	38.66 38.60 47.28 36.05 0.00 4.05 20.56	39.5539.3347.6336.404.050.0019.82	28.51 29.50 58.78 46.19 20.56 19.82 0.00	37.76 38.49 49.85 37.82 17.09 15.87 10.33	43.58 42.40 46.58 36.33 12.89 11.91 24.49	22.20 20.45 65.55 53.30 21.69 22.79 21.44

SKYLAKE

	Cosi	Cosine similarities calculated using only cache events										
	ExaMiniMD	LAMMPS	MiniQMC	QMCPack	sw4lite	sw4	SWFFT	HACC	pennant	snap		
ExaMiniMD	0.00	5.02	54.54	38.73	11.70	12.49	6.58	6.38	13.21	7.13		
LAMMPS	5.02	0.00	54.69	38.62	15.66	16.27	4.87	6.38	13.60	10.88		
MiniQMC	54.54	54.69	0.00	17.15	47.12	46.08	50.02	48.98	42.16	49.15		
QMCPack	38.73	38.62	17.15	0.00	32.64	31.67	33.92	32.94	26.29	33.78		
sw4lite	11.70	15.66	47.12	32.64	0.00	1.15	13.41	11.40	11.15	5.07		
sw4	12.49	16.27	46.08	31.67	1.15	0.00	13.74	11.70	10.69	5.69		
SWFFT	6.58	4.87	50.02	33.92	13.41	13.74	0.00	2.24	9.09	8.80		
HACC	6.38	6.38	48.98	32.94	11.40	11.70	2.24	0.00	7.86	6.87		
pennant	13.21	13.60	42.16	26.29	11.15	10.69	9.09	7.86	0.00	9.37		
snap	7.13	10.88	49.15	33.78	5.07	5.69	8.80	6.87	9.37	0.00		

Similarity can reveal unusual stressors on select event groups

QMC use cache differently from other apps

EXASCALE COMPUTING PROJECT

	Average App1& App2	App1	App2	Proxy 10	Proxy 04	Proxy 05	Proxy 08	Proxy 11	Proxy 01	Proxy 02	Proxy 07	Proxy 09	Proxy 03	Proxy 06	Proxy 12	Exclusive Sum across Proxies	'n	Avg	Exclusive Average across Proxies
App1		0.0	20.54	12.06	18.50	23.40	25.00	24.85	26.74	26.02	19.80	23.97	38 **		-19.28	351.24	12.06	25.09	27.02
App2	14.49	20.5	0.00	28.06	27.71	31.51	31.34	32.49	33.15	28.21	34.85	38.41	35 81	Gap	61.36	461.34	20.54	32.95	35.49
Ргоху10	21.54	12.0	5 <mark>28.06</mark>	0.00	1.61	17.06	19.18	18.00	20.02	24.83	22.13	25.28	42.80	43.61	47.40	333.64	12.06	23.83	25.66
Proxy04	23.53	18.5	0 27.71	17 51	0.00	6.28	7.24	7.16	9.12	15.92	33.39	36.72	40.62	54.79	59.35	329.38	6.28	23.53	25.34
Proxy05	27.73	23.4	31.51	7.06	6.28	0.00	3.28	2.18	3.90	16. 9	37.11	40.17	43.66	56.80	62.00	344.33	2.18	24.60	26.49
Proxy08	28.33	25.0	31.34	19.18	7.25	Redu	Inda	ancy	2 55	15.7	39.45	42.55	43.01	59.69	64.80	356.77	2.55	25.48	27.44
Proxy11	28.90	24.8	5 32.49	8.00	7.16	2.18	2.91	0.00	2.96	17. 9	38.39	41.33	44.29	57.83	62.79	352.58	2.18	25.18	27.12
Proxy01	30.10	26.74	4 33.15	20.53	9.12	3.90	2.55	2.96	0.00	1.81	40.88	43.87	44.31	60.38	65.49	370.79	2.55	26.48	28.52
Proxy02	27.13	26.0	2 28.21	24.83	JS 92	16.99	15.77	17.39	16 7 1	0.00	43.08	46.40	27.94	64.92	69.36	413.64	15.77	29.55	31.82
Proxy07	28.26	19.8	34.85	22.13	33.39	37.44		30.39	40.88	43.08	0.00	6.38	51.38	25.77	30.93	423.53	6.38	30.25	32.58
Ргожу09	31.90	23.9	38.40	25.28	36.72	40.17	42.55	41.33	43.87	46.40	6.38	0.00	54.11	23.21	27.30	449.65	6.38	32.12	34.59
Ргоку03	37.17	38.4	9 35.81	42.80	40.62	43.66	43.01	44.29	44.31	27.94	51.38	54.11	0.00	70.77	73.73	610.93	27.94	43.64	46.99
Ргажу06	51.15	43.6	5 57.92	43.61	54.79	56.80	59.69	57.83	60.38	64.92	25.77	23.21	70.77	0.00	16.33	635.67	16.33	45.41	48.90
Ргоку12	55.08	48.2	61.36	47.40	59.35	62.00	64.80	62.79	65.49	69.36	30.93	27.30	73.73	16.33	0.00	689.13	16.33	49.22	53.01

Similarity can help find gaps & redundancies in suites

	Angular difference in signatures for clamr_cpuonly -n_1024i_200t_1000								
			regular-grid-by-		11	(
	regular-grid	cell-in-place	faces	face-in-place	cell	face			
regular-grid	0.00	6.27	22.37	8.34	16.07	12.43			
cell-in-place	6.27	0.00	18.29	4.88	10.69	6.97			
regular-grid-by- faces	22.37	18.29	0.00	15.70	11.05	13.09			
face-in-place	8.34	4.88	15.70	0.00	8.76	5.67			
cell	16.07	10.69	11.05	8.76	0.00	4.91			
face	12.43	6.97	13.09	5.67	4.91	0.00			
sum	65.49	47.10	80.50	43.35	51.47	43.06			

Application behavior can vary with input choice

Don't assume a single run represents all behavior

Best practices for benchmark selection and fidelity

For Developers of Proxy Apps & Benchmarks	For Users of Proxy Apps & Benchmarks	For Computing Facilities
 Quantify the fidelity of your proxy relative to the actual workload Provide multiple inputs 	 Choose proxies and benchmarks according to the hardware they stress Understand input sensitivities 	Consider gaps and redundancies in benchmark suites

Facilities use benchmarks for a wide variety of purposes

Marketing and **Program Development**

Application Development and Readiness

 The Center for Accelerated Application Readiness (CAAR) is the vanguard for the broader application readiness ecosystem and for future science

ASCR Leadership Computing Challenge

Programming Model Development

- SPEC Accel compares performance of
 - Accelerators (GPUs, Co-processors, etc.)
 - Supporting software tool chains (Compilers,

Drivers, etc.)

- Interface (CPU, PCIe, etc.)
- Three distinct benchmarks for OpenCL, OpenACC, and OpenMP, updated in 2017
- These (and other benchmarks) are used by DOE labs to drive compiler development

An Example: DOE Proxy Apps in LLVM's Test Suite MultiSource/Benchmarks/DOE-ProxyApps-C[++]

- Pathfinder
- RSBench
- SimpleMOC
- XSBench
- MiniAMR
- miniGMG

- CLAMR
- HACCKernels
- HPCCG
- PENNANT
- miniFE

LLVM is an open-source compiler infrastructure used by many parts of our exascale ecosystem...

114	Name	Ourrent	0.5
	MultilaurunBernimente/DOII Prosylippe Con/DUIAR /CLAME	1.5458	
	Multipusiellen/meta/DOI ProgAppe CristROOterate/MODIanee	0,4073	-
	Wattinuou Banomaria DOE Prospilgas Ci+/14/000 44/000	0.8004	e .
	MARGAN ARE INCOMENDATION POLICY CONTRACT OF A CONTRACT OF	5.1454	1.1
	Mattinue Reconstable Polyage Control Polyage	0.5891	1
	Matthours (Terchenits 2015 Provideor Connellin) Incolum	0.0006	3
	Without a Bandmarta DOE Prosidear Crimin040 Investidad	0.8643	1
	National Instanto COE Programs Challente Publicate	27940	1.81%
	Autorialiarcharactic ProyAge CMSIlent	0.5223	4
	Muttouce/Renmeta/208 Proy/gos G/Sinpub/OC TeruleRCC	CARDA .	
	MattheaseBardmata/SCR Propipes GYSBent ASBardt	2.2140	-4.18%
	Georgenic Mean	10004	4.0

Benchmarks are an essential element of system procurements

CORAL benchmarks should

- Span the breadth of the NNSA (LLNL, LANL, SNL) workload
- Span the time-dependent(!) and much broader space of LCF (ORNL, ANL) workloads
- Span co-spaces of algorithms, implementations, and use cases
- Provide adequate drivers for system SW and library development

CORAL benchmarks must

- not be so numerous that vendors cannot provide analyses on O(weeks) time scale
 - Significant challenge to cover/span the breadth of concerns, while not being onerous on vendors
- not encumber application developers with 24-7 support responsibilities during those weeks
- use proxies for NNSA apps

The benchmark suite for CORAL-2 had to satisfy multiple wants and constraints

The CORAL-2 benchmark suite is a mixture of production codes and proxies

- Scalable Science Benchmarks: HACC, Nekbone, QMCPACK, LAMMPS
- Throughput Benchmarks: AMG, Kripke, Quicksilver, PENNANT
- Data Science and Deep Learning Benchmarks:
 - Big Data Analytic Suite
 - [Schmidt, et al., "Defining Big Data Analytics Benchmarks for Next Generation Supercomputers," https://arxiv.org/abs/1811.02287]
 - Deep Learning Suite
- Skeleton Benchmarks
- Microkernel Benchmarks

https://asc.llnl.gov/coral-2-benchmarks/

Best practices for benchmarks at facilities

For Developers of Proxy Apps & Benchmarks	For Users of Proxy Apps & Benchmarks	For Computing Facilities
 Make it easy to run your benchmark in an automated framework Carefully consider whether to use proxies or full applications 	Benchmark suites are usually good indications of facility interests and concerms	 Build suites that can cover a variety of use cases Avoid overly large benchmark collections Automate as much as possible Look for lessons learned that can be transferred to production codes

A VENDOR VIEW ON BENCHMARKS IN HPC PROCUREMENTS

Joe Glenski, Distinguished Technologist IDEAS Webinar April 15, 2020

FORWARD LOOKING STATEMENTS

This presentation may contain forward-looking statements that involve risks, uncertainties and assumptions. If the risks or uncertainties ever materialize or the assumptions prove incorrect, the results of Hewlett Packard Enterprise Company and its consolidated subsidiaries ("Hewlett Packard Enterprise") may differ materially from those expressed or implied by such forwardlooking statements and assumptions. All statements other than statements of historical fact are statements that could be deemed forward-looking statements, including but not limited to any statements regarding the expected benefits and costs of the transaction contemplated by this presentation; the expected timing of the completion of the transaction; the ability of HPE, its subsidiaries and Crav to complete the transaction considering the various conditions to the transaction, some of which are outside the parties' control, including those conditions related to regulatory approvals; projections of revenue, margins, expenses, net earnings, net earnings per share, cash flows, or other financial items: any statements concerning the expected development. performance, market share or competitive performance relating to products or services; any statements regarding current or future macroeconomic trends or events and the impact of those trends and events on Hewlett Packard Enterprise and its financial performance; any statements of expectation or belief; and any statements of assumptions underlying any of the foregoing. Risks, uncertainties and assumptions include the possibility that expected benefits of the transaction described in this presentation may not materialize as expected; that the transaction may not be timely completed, if at all: that, prior to the completion of the transaction, Crav's business may not perform as expected due to transaction-related uncertainty or other factors; that the parties are unable to successfully implement integration strategies: the need to address the many challenges facing Hewlett Packard Enterprise's businesses: the competitive pressures faced by Hewlett Packard Enterprise's businesses; risks associated with executing Hewlett Packard Enterprise's strategy; the impact of macroeconomic and geopolitical trends and events; the development and transition of new products and services and the enhancement of existing products and services to meet customer needs and respond to emerging technological trends: and other risks that are described in our Fiscal Year 2018 Annual Report on Form 10-K, and that are otherwise described or updated from time to time in Hewlett Packard Enterprise's other filings with the Securities and Exchange Commission, including but not limited to our subsequent Quarterly Reports on Form 10-Q. Hewlett Packard Enterprise assumes no obligation and does not intend to update these forward-looking statements.

31

TOPICS

- The big headache Challenge of Writing Requests For Proposals (RFPs)
- How Benchmarks are Used in Typical RFPs
- Evaluation Metrics
- Projections and Estimates
- Optimization and Code Modification
- Suggestions from Benchmarkers Do's and Don'ts

Special thanks to Tricia Balle, who provide ideas and material for this presentation

THE CHALLENGE OF WRITING RFPS

• Identify desired system characteristics and ensure the RFP requirements reflect them

- How to eliminate what you do not want and ensure what you do want is scored appropriately?
- How to easily compare vendor offerings?

• Ensure the document is clear and unambiguous

- Lack of clarity -> questions
- Questions -> time wasted -> delays in procurement schedule -> installation delays / risk of loss of funding

• Allow vendors time to ask questions and share most questions and responses

- Clarification questions can identify issues that will affect all vendors
- Releasing benchmarks early can shake out problems before official RFP release
- Do allow for vendor-specific queries to be kept confidential if at all possible!
- Beware of the law of unintended consequences
 - A requirement for more HPL performance than budget supports can lead to trouble if vendors bid what you did not actually want

WHY USE BENCHMARKS IN RFPS?

Basic Aim: To measure the vendors' proposed machine capabilities in comparison to the customer's workload requirements.

Basic Requirement: Understand what you value and how you will score proposals, then provide the smallest set of benchmarks necessary to compare performance.

• Keep expectations of the vendors in proportion to value of the deal

Common Scenarios for Benchmark Use in RFPs:

- To **enable evaluation** of offered systems and their capability to handle expected workloads.
 - -Sometimes just a simple evaluation of performance of proposed hardware
 - -If optimizations are allowed, can also evaluate vendors' support capabilities with eye to support post-delivery
- To design and size the system required to run the workload
- As a hurdle to limit responses from non-HPC savvy vendors

EVALUATION METHODS AND METRICS

- A clearly defined evaluation metric is important so we understand where to target performance and what you value
- Also important to understand how highly benchmarks are weighted in overall scoring
 - Are benchmarks a very small proportion of the total final score?
 - Will HPL Rmax determine system size, regardless of benchmark performance?
- Beware of benchmark requirements that have nothing to do with the purpose of the machine (e.g., if you need a lot of network, don't just use low node count benchmarks).
- If the workload is known to be memory bandwidth limited, maybe include codes similar to STREAM (or weight them highly) and exclude things like SPEC (mostly clock bound).
- Consider a benchmark such as GPCNet to get a measure of ability of system to handle congestion on the network

EVALUATION METRICS – COMMON SCENARIOS

- Simply run and report performance (often used as a barrier to entry)
- Run each benchmark test in **under a specified target time** (makes most sense in cases such as operational weather with predefined constraints)
- Evaluate applications individually (relative to each vendor) Often includes an evaluation of scaling performance up to system size or scaling limit
- Throughputs
 - A well thought out throughput mix can be a useful tool and help evaluate I/O performance
 - Throughput metrics are tough for vendors to model and require additional work, so should ideally displace other benchmarks
- Weighted metrics (for example: "SSP" Sustained System Performance)
 - Bundle mix of applications and kernels (don't just use small kernels)
 - Weight each one appropriately for workload priorities
 - Create single metric for easier evaluation (often done with Geomeans)
 - Can allow variation within mix at acceptance especially good for future hardware

PROJECTIONS AND ESTIMATES

- Projections are essential for any system with hardware not yet available or for system sizes beyond what is available
- How to ensure vendors know what they are doing?
 - Prior record
 - Good explanation of methodology (but don't expect full details)
 - Good relationships
 - Full commitments to proposed performance
- Decide if you will allow processor or interconnect vendors to supply benchmark results
 - This can lead to identical results submitted by multiple system vendors
 - Requiring the system vendor to run benchmarks can demonstrate potential for support in the future
 - Who will estimate future system performance and commit to it?
- Be careful of applications that have Random Number Generators or Iterative solvers
 - Need iteration counts to be consistent from run to run
 - If have to scale out to higher core counts, must know number of iterations for reliable projection

OPTIMIZATION AND CODE MODIFICATION

- Best to allow optimization with guidelines, such as:
 - Specify types of optimizations allowed (I/O, communications., OpenMP, etc.)
 - Specify that scientific validity of results should not change
 - Don't allow optimizations that are specific to the benchmark problem itself
 - Require vendor to supply full details of all optimizations made
 - Retain ability to reject optimizations if they are too complicated, etc.
- Legacy apps often just don't scale up efficiently without being adapted to current or future hardware (processor types, node counts, and networks)
- Optimizations allows ability to evaluate full potential of system hardware, compiler, libraries, etc.
- Also allows ability to evaluate vendor skill (important if collaboration is considered)

THE "DO'S" AND "DON'T"S

What benchmarkers like (and don't like) to see...

DO....

- First, figure out what you want, e.g., "the fastest running job, no matter how many nodes it takes", or "maximum number of jobs on the system"?
- Make benchmark instructions clear
 - Check that README does not conflict with main document
 - Get directions and files tested by people not involved in the benchmark preparation before you release them to vendors
 - Remember that your working directory is not a benchmark distribution!
- Supply validation requirements and make sure they are also clear
 - e.g. "WRF output should match to within 5%" is **not** clear
- Watch run length! A good benchmark will run for 5 to 60 minutes.
 - Under 1 hour allows us more time to debug, optimize and find the best way to run your applications. But.... sub-10 second runs are not very useful ©
 - If you shorten a run, consider evaluating only the post-initialization portion to get a more useful result
 - Decent problem sizes will differentiate vendors better

MORE DO...

• Set an appropriate deadline for getting results returned

- Allow enough time for the vendor to do the work
- More complicated RFPs take more time
- If the time is too short, the quality of response goes down

• Remember the impact of year end holidays

- Releasing an RFP in early December and asking for response in early January will not get you good results
- Make sure any penalties around missing performance targets are clearly defined in the RFP document (we need to understand risks)
- At Acceptance, be pragmatic about meeting targets
 - If the system hardware was not yet in production when estimates were made, must expect some variation in actual performance. Weighted metrics like SSP help with this

DON'T...

- Don't add too many requirements that restrict how benchmarks can be run
 - For example, don't specify number of MPI ranks / OpenMP threads to be used
 - Allow vendor flexibility to demonstrate best way to run app on proposed architecture
 - Don't assume anything about numbers of CPUs, cores, accelerators per node (unless they are mandatory requirements for system). This often occurs when too focused on an existing system
 - Allow the use of multiple compilers, MPIs, etc.

• Don't ask for large numbers of commitments for no clear purpose

- Only ask for numbers that are clear to interpret and are useful
- For example, it is easy to ask for results for a huge variety of MPI tests, but hard to understand what the results mean for the real workload. And hard for the vendor to provide them

MORE DON'T...

• Don't expect output to be bit identical to that from another system

- How much precision do you really need in your results? If input data are based on measurements with 3 significant digits, don't ask for 14 digits of accuracy in comparison to data from original system. Determine what a scientifically valid result is and ask for that
- If identical runs must give identical output, say so. If runs must give identical output across all rank and thread counts, say so
 - Code must be written to be bit reproducible in the first place

-This can limit optimizations possible

• Don't require huge amounts of output data to be returned

- Will you really look at all of it? Can you look at output from just the final step/iteration?
- Can you provide a tool that can postprocess the data before return?
- Large return data requirements can add up to a week to write a drive and ship, which leads to requests for extension or less time available to dedicate to actual benchmarking work

IN CONCLUSION

- Define your workload before designing the minimal set of benchmark tests to reflect that workload
- Write the RFP benchmark requirements as clearly as you can, and have them tested before releasing to vendors
- Define a clear evaluation metric to enable valid comparison among vendors and to ensure you end up with the system you want
- Allow vendors to show what their proposed system can do to help your scientific workloads perform as well and as efficiently as possible

Summary of best practices

For Developers of Proxy Apps & Benchmarks

- Write documentation
- Ensure benchmark run rules address issues of scalability, fidelity, ease of use, etc.
- Make it easy to identify the FOM and verify correct results
- Focus on representing program behavior, not "realistic" inputs
- Choose reasonable wall time
- Quantify the fidelity of your proxy relative to the actual workload
- Provide multiple inputs

For Users of Proxy Apps & Benchmarks

- Read documentation
- Benchmarks have well-defined run rules and a figure of merit
- Understand and obey run rules
- Don't assume every proxy app is useful as a benchmark
- Understand input sensitivities
- Verify benchmark performance on standard hardware
- DOE system procurement suites can be a good place to look for benchmark problems

For Computing Facilities

- Cover all aspects of the ecosystem: Programming models, compilers, debuggers, performance tools
- Avoid temptation to ask for every benchmark you can think of
- Consider gaps and redundancies in benchmark suites
- Avoid large input or output files and complex library dependencies
- Make benchmark suites easy to build and automate
- Build suites that can cover a variety of use cases

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein to not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

