What’s new in Spack?

New features and the Spack Roadmap

Todd Gamblin
IDEAS Best Practices for HPC Software Developers Webinar Advanced Technology Office
July 15, 2020 Livermore Computing

s
»

LLNL-PRES-811119 | | B Lawrence Livermore
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory - National l_aboratory

under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Spack provides a spec syntax to describe customized DAG
configurations

$ spack install mpileaks unconstrained
S spack install mpileaks@3.3 @ custom version
S spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler

$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option

S spack install mpileaks@3.3 cppflags="-03 —g3" set compiler flags

S spack install mpileaks@3.3 target=skylake set target microarchitecture

$ spack install mpileaks@3.3 "mpich@3.2 %gcc@4.9.3 ~ dependency information

= Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional — specify only what you need.
— Customize install on the command line!

= Spec syntax is recursive
— Full control over the combinatorial build space

‘ Lawrence Livermore National Laboratory O gith u b .Lom / Spa Ck ’ @S pac k pm N “S;_S‘%

LLNL-PRES-811119

Sabrsmat Wusiear Eevariy Arbrereat st

Not shown: patches, resources, conflicts,

Spack packages are templates other directives.
They use a simple Python DSL to define how to build

from spack import *

Base package
(CMake support)

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle
transport proxy/mini app.

Metadata at the class level
homepage = "https://computation.linl.gov/projects/co-design/kripke"
url = "https://computation.linl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256="'3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
version(‘1.2.2’, sha256="'eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8albc839ae8fb5f96d50224186601f55554a25f64a’)

Versions

variant('mpi', default=True, description='Build with MPI.") Variants (bUIld Options)
variant('openmp', default=True, description='Build with OpenMP enabled.’)
depends_on('mpi', when="+mpi’)

depends_on('cmake@3.0:', type="build’) Depen dencies

(note: same spec syntax)

LTy

def cmake_args(self):
return [
'-DENABLE_OPENMP=%s" % ('+openmp’ in self.spec),
-DENABLE_MPI=%s' % ('+mpi’ in self.spec),
1 o

def install(self, spec, prefix):

Kripke does not provide install target, so we have to copy , . .
things into place. Don't typically need install() for

mkdirp(prefix.bin) CMakePackage, but we can Work
install('../spack-build/kripke', prefix.bin) around codes that don't have it.

Install logic
in instance methods

\

W Lowrence Livermore National Laboratory O github.com/spack %" @spackpm NAYSE

e e e -

Spack handles combinatorial software complexity.

Dependency DAG

7

mpileaks

[dyninst

Installation Layout

T
callpath L —"

libdwarf

C ——— 3l libelf

spack/opt/
linux-x86_64/
gcc-4.7.2/
mpileaks-1.1-0f54bf34cadk/
intel-14.1/
hdf5-1.8.15-Ikf14aq3nqiz/
bga/
xl-12.1/
hdf5-1-8.16-fgb3al5abrwx/

Each unigue dependency graph is a unique
configuration.

Each configuration installed in a unique directory.
— Configurations of the same package can coexist.

Hash of entire directed acyclic graph (DAG) is
appended to each prefix.

Installed packages automatically find dependencies
— Spack embeds RPATHs in binaries.

— No need to use modules or set LD_LIBRARY_PATH

— Things work the way you built them

‘ Lawrence Livermore National Laboratory
LLNL-PRES-811119

O github.com/spack %" @spackpm NIYSE

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks Acallpath@1.0+debug Alibelf@0.8.11 User input: abstract spec with some constraints
spec.yaml|
g mpileaks mpileaks@2.3 f;::Cw:\eaks-
= 19CC@4'7'24 ;ch:lin;Ax-XSS 64
=Linux-ppc compiler:
g \ \ nanfc:gcc
—_— version: 4.9.2
~N dependencies:
g uu;)c pt-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath@l.o callpath@l.o callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
+debug %gcc@ad. 7. 3+debug mpich: aadar6ifj23yijgmdabeakpejcli72t3
i nux—ppc64 hash: 33hjjhxi7p6gyznSptgyes7sghyprujh
variants: {}
/ version: '1.0'
- adept-utils:
/ \ arch: linux-x86_64
Concretize . . St i
i i mpich@3.0.4 dyninst@8.1.2 ore name: gec
mpt dyninst %gcc@4.7.3 %gcc@4.7.3 version: 4.9.2
=linux-ppc64 =linux-ppc64 dependencies: N
boost: teesjv7ehpeSksspjim5dk43a7gnowlq
mpich: aadar6ifj23yijgmdabeakpejcli72t3
\ hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1
i libdwarf@20130729 - boost:
Libdwarf %gCC@4. 7.3 arch: linux-x86_64
=linux-ppc64 compiler:
/ / vers\o‘ng:AB.Z
dependencies: {}
hash: teesjv7ehpeSksspjim5dk43a7gnowlq
variants: {}
1 libelf@0.8.11 version: 1.59.0
libelf@0.8.11 %gcc@4.7.3
=linux-ppc64
Abstract, normalized spec Concrete spec is fully constrained Detailed provenance is stored
with some dependencies. and can be passed to install. with the installed package

‘ Lawrence Livermore National Laboratory O gith u b .Lom / Spa Ck ’ @S pac k pm N “S;_S‘%

LLNL-PRES-811119

Sabrsmat Wusiear Eevariy Arbrereat st

Use ‘spack spec’ to see the results of concretization

S spack spec mpileaks
Input spec

mpileaks

Concretized

mpileaks@1.0%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Aadept-utils@1.0.1%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Aboost@1.61.0%gcc@5.3.0+atomic+chrono+date_time~debug+filesystem~graph
~icu_support+iostreams+locale+log+math~mpi+multithreaded+program_options
~python+random +regex+serialization+shared+signals+singlethreaded+system
+test+thread+timer+wave arch=darwin-elcapitan-x86_64
Abzip2@1.0.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Azlib@1.2.8%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Aopenmpi@2.0.0%gec@5.3.0"mxm~pmi~psm~psm2~slurm~sglite3~thread_multiple~tm~verbs+vt arch=darwin-elcapitan-x86_64
Ahwloc@1.11.3%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Mibpciaccess@0.13.4%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Mibtool@2.4.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
"mA@1.4.17%gcc@5.3.0+sigsegv arch=darwin-elcapitan-x86_64
Mibsigsegv@2.10%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Acallpath@1.0.2%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Adyninst@9.2.0%gcc@5.3.0™stat_dysect arch=darwin-elcapitan-x86_64
Aibdwarf@20160507%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Alibelf@0.8.13%gcc@5.3.0 arch=darwin-elcapitan-x86_64

Lawrence Livermore National Laboratory O gith ub.com / spa ck

LLNL-PRES-811119

Yy’ @spackpm

NYSE

Sabrsnat Wusioar Bocrty Arkmeesie st

6

Spack is used worldwide!

Over 4,300 software packages
Over 2,900 monthly active users (on docs site)

Over 600 contributors
from labs, academia, industry

4
"‘“““’ Plot shows sessions on
spack.readthedocs.io for one month

I 488

‘ Lawrence Livermore National Laboratory O githu b.Com/SpaCk y @S p acC kp m N&‘HMS;‘:%

LLNL-PRES-811119

Users on our documentation site have also been increasing

Active Users

v 1 Day Active Users ~' 7 Day Active Users +' 14 Day Active Users + 28 Day Active Users Jan & 2018 - Jul 12. 2020 ~
3,000
2,000

1,000 e N ' L-‘..‘ | / mww,\m

:i’_ ‘-"“‘%—.ﬂﬂ"-\ fw\wwww

2019 2020
1 Day Active Users 7 Day Active Users 14 Day Active Users 28 Day Active Users
82 873 1,565 2,952
% of Total: 100.00% (82) % of Total: 100.00% (873) % of Total: 100.00% (1,565) % of Total: 100.00% (2,952)

Lawrence Livermore National Laboratory O gith ub.com / spa ck

LLNL-PRES-811119

Y’ @spackpm NIYSE

Spack is being used on many of the top HPC systems

Official deployment tool for the
U.S. Exascale Computing Project

=\ =i
7 of the top 10 supercomputers E (l \) I) @
High Energy Physics community \\u ﬁ.

— Fermilab, CERN, collaborators EXASCALE COMPUTING PROJECT

Astra (Sandia) Fugaku coming to RIKEN in 2021

_ _ DOE/MEXT collaboration
Fugaku (Japanese National Supercomputer Project)

Summit (ORNL), Sierra (LLNL) SuperMUC-NG (LRZ, Germany) Edison, Cori, Perlmutter (NERSC)

W ovrence Livermore National Laboratory O github.com/spack % @spackpm NAYSE 9

Sabrsmat Wusiear Eevariy Arbrereat st

One month of Spack development is pretty busy!

June 13, 2020 - July 13, 2020 Period: 1 month ~
Overview
=] [
398 Active Pull Requests 111 Active Issues
11 333 ¥ 65 @ 61 (0 50
Merged Pull Requests Proposed Pull Requests Closed Issues New Issues

Excluding merges, 113 authors have pushed 345 commits
to develop and 532 commits to all branches. On develop,
567 files have changed and there have been 16,144
additions and 2,496 deletions.

AREBEI s NYAQER EwlR

‘ Lawrence Livermore National Laboratory O gith ub.com / SpaCk

LLNL-PRES-811119

» st Wosiar Borrty Arkeresiea

4y @spackpmlO NS 10

Contributions to Spack continue to grow!

Contributions (lines of code) over time in core, by organization

70000 1 LLNL mm NERSC mm Cardiff
EPFL mm FAU mm HZDR
60000 1 Kitware Hamburg . SNL
ANL/UIUC ORNL I lowa State
50000 1w Fermilab NASA-GISS mmm NCSA
. ANL RIT Australia BOM
40000 1 mmm Heidelberg mmm TAMU-CC mEE Other
30000 -
20000 +
10000 4
0 ﬁ
Contributions (lines of code) over time in packages, by organization
LLNL I FAU I ORNL
100000 ANL/UIUC ~ mmm 3vGeomatics M OpenFOAM
lowa State Heidelberg . SjTU
80000 - lowa Kirchhoff B Fermilab
. EPFL Hamburg m CERN
E ANL Genentech Perimeterinst
60000 1 Wmm LANL Bl HiSilicon B Other
40000 -
20000 A
0 T T T
> 0)
£ & N
» D Q

In November 2015, LLNL provided
most of the contributions to Spack

Since then, we’ve gone from 300 to
over 4,000 packages

Most packages are from external
contributors!

Many contributions in core, as well.

We are committed to sustaining
Spack’s open source ecosystem!

‘ Lawrence Livermore National Laboratory

LLNL-PRES-811119

O github.com/spack

%" @spackpm NISH 11

Sabrsmat Wusiear Eevariy Arbrereat st

Spack has a release workflow

= We are creating GitHub projects (Kanban
boards) per release
— Includes major (0.13.0, 0.14.0) and minor
(0.13.1, 0.13.2, etc.) releases
— Each release shows the timeframe
— You can easily see what’s on the roadmap!

= Makes it easy to rely on release branches
— You can expect us to backport fixes for
critical bugs onto these branches

= Shooting for quarterly releases
— Expect some movement of features from

release to release
— If we don’t finish some things, we’ll move

them forward

Per-release Kanban boards allow the community to
track releases better!

‘ Lawrence Livermore National Laboratory O githu b.com/spack , @S pac kp m ngn&o% 12

LLNL-PRES-811119

Spack has stable release branches

= Develop is where most of the action happens

0 branch: develop (latest version) Latest t f ” ‘

I . — Latest commits Trom pull requests

T\ merge v@.14.1 into develop _ Package updates

| o branch: releases/v0.14, tag: v0.14.1

AR = Release branches have release tags, minimize churn
| 0 tag: ve.14.0 — Only bugfixes are backported from develop to stable
l.!l/ merge v@.13.2 into develop releases

I — Major new features and package recipe changes happen
| o branch: releases/v0.13, tag: v@.13.2 H

o | merge vB.13.1 into develop n develop

AY

[orthgs va1s.1 = releases/v0.14 is the release branch for:

0 | merge vB8.13.8 into develop

I\ — v0.14.0

!,T tag: v@.13.0 — v0.14.1

| o — v0.14.2

|/ — Etc.

0

‘ Lawrence Livermore National Laboratory O githu b.Com/SpaCk , @S pac kp m N“'S.j%

LLNL-PRES-811119 . QYO e Gy = b et N Bty skt

Spack 0.13 was released in November, at SC19

= Spack stacks: combinatorial environments for facility
deployment

= Spack detects and builds for specific microarchitectures

= Chaining: use dependencies from external "upstream"
Spack instances

‘ IL.f:Lff:::BIl.il\lrle;mnre National Laboratory O gith u b .com / sp a ck , @ S p ac k p m

Sabrsmat Wusiear Eevariy Arbrereat st

Ever tried to figure out what
your processor is?

+ You can get a lot of information from:
— /proc/cpuinfo on linux

— sysctl tool on macs

+ But it’s not exactly intuitive

Humans call this architecture
“broadwell”

oh.

$ cat /proc/cpu1nf0

nrocesson @

vendor_ld : Genuinelntel

cpu family H)

model : 79

model name : Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

stepping g ¢

microcode : @xb0eRO38

cpu MHz : 2101.000

cache size . 46080 KB

physical id H)

siblings ;18

core id : 8

cpu cores : 18

apicid H)

initial apicid : @

fpu . yes

fpu_exception . yes

cpuid level : 20

flags : Fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge
mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe sy
scall nx pdpelgb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good
nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 m

onitor ds_cpl vmx smx est tmZ ssse3 sdbg fma cx16 xtpr pdcm pcid dca s
sed4_1 ssed4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx fl6c
rdrand lahf_lm abm 3dnowprefetch epb cat_13 cdp_13 invpcid_single int
el_ppin intel_pt ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept
vpid fsgsbase tsc_adjust bmil hle avx2 smep bmi2 erms invpcid rtm cgm
rdt_a rdseed adx smap xsaveopt cgm_llc cqm_occup_llc cgm_mbm_total cq

m_mbm_local dtherm ida arat pln pts md_clear spec_ctrl intel_stibp flu

1 4190.37
clflush size : 64
cache_alignment : 64
address sizes : 46 bits physical, 48 bits virtual
power management:

(=

Lawrence Livermore National Laboratory O github_com/spack

LLNL-PRES-811119

@spackpm NS

Spack now understands specific target microarchitectures

Skylake

= Spack knows what type of machine you’re on
— Detects based on /proc/cpuinfo (Linux), sysctl (Mac) PR

— Allows comparisons for compatibility, e.g.: aarch64 ppco4 ppcodle xB6 x86_64

power7 power8 power9
skylake > broadwell

zen2 > x86_64

power9le
[] Key featu res: HI‘I.HIbarcelona I;;Il;;zer piledriver steamroller excavator zen zen2
— Know which compilers support which chips with GenuineIntel - x86_64 _
nocona westmere haswell mic_knl cascadelake
which fla gs core2 sandybridge broadwell skylake_avx512 icelake

nehalem ivybridge skylake cannonlake

— Determine compatibility

— Enable creation and reuse of optimized binary pentiunZ pentiun3 pentiumé prescott
packages Class OpenBlas(Package):

— Easily query available architecture featy o jnliovj-erosteets, speck: $ spack install lbann target=cascadelake
portable build recipes G et b L § spack install petsc target=zen

return args

i i F i eatur -
‘ [f::_rs:;:atﬂ:gmore National Laboratory O g|thu b.comgﬁaa{ ?e@s p ac k p m

Archspec: a library for reasoning about microarchitectures

Standalone library, extracted from Spack

Use fine-grained, human-readable labels, e.g.:
— broadwell, haswell, skylake

— instead of x86_64, aarch64, ppc64 etc.

Query capabilities

”n

— “Does haswell support AVX-512?” “no.

Query compiler flags O github.com/archspec

— “How do | compile for broadwell with icc?” ReadTheDocs: archspec.rtfd.io

Python package for now, but we want more bindings! License: Apache 2.0 OR MIT

— Actual data is in a common JSON file w/schema pip3 install archspec

‘ Lawrence Livermore National Laboratory O githu b.Com/SpaCk ’ @S p acC kp m N“'S_’_S% 17

LLNL-PRES-811119

Sabrsmat Wusiear Eevariy Arbrereat st

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

spack. yaml file W|th
names of required
dependencies

—ﬁl— d_ Dependency

- packages

|nstaII

B

Lockfile describes
exact versions installed

project

= Allows developers to bundle Spack configuration with their repository

= (Can also be used to maintain configuration together with Spack

packages.

E.g., versioning your own local software stack with consistent

compilers/MPl implementations

= Manifest / Lockfile model pioneered by Bundler is becoming standard
spack.yaml describes project requirements
spack.lock describes exactly what versions/configurations were

installed, allows them to be reproduced.

spack:
include external configuration
include:
- ../special-config-directory/
- ./config-file.yaml
add package specs to the list
specs:
- hdf5
= libelf
- openmpi

‘specs’

Concrete spack.lock file (generated)

Lawrence Livermore National Laboratory
LLNL-PRES-811119

(=

O github.com/spack

Y @spa

{
"concrete_specs”: { ete
"6s63s02kstp3zyviezglndmavy6l3nul®: {

"hdfs": { "hdfs
"version": "1.10.5", n
"arch": {

"platform":
"platform_os": “moj
“target": "xB6_64"
h J:
"compiler": { i
"name": "clang",

"version": "10.8.0-apple"
e b
u

"namespace”: "builtin",

"parameters": {
"cxx": false,
ig": false,
"fortran”:
"hl": false,
“mpi": true,
"pic": true,

false,

We have developed Spack stacks:
combinatorial environments for entire facility deployments

e e = Allow users to easily express a huge cross-product
Compi[}s;;iéid.@, %clang@3.8, %intel@18.0.0] of Specs
mpRsE , , — All the packages needed for a facility
packeE;ren:?pRhZ@z'z' HapICnacE. 3, Topenpies. 131 — Generate modules tailored to the site
- EZ#E — Generate a directory layout to browse the packages
s
J petee = Build on the environments workflow
— Manifest + lockfile
spe‘:;:cartesian product of the lists above — Lockfile enables reproducibility
matrix:
- [$packages]
- {gggfi"gli%ersl = Relocatable binaries allow the same binary to be
U used in a stack, regular install, or container build.
lmodéore I — Difference is how the user interacts with the stack
hierarchy: [mpi, lapackl — Single-PATH stack vs. modules.
hash_length: /]

‘ Lawrence Livermore National Laboratory O gith u b .com / Spa Ck y @S pac k pm N ‘Y S;_o"% 19

LLNL-PRES-811119 . QYO e Gy = b et N Bty skt

Spack 0.14.0 was released at the end of February

= Completely reworked GitLab pipeline generation
— spack ci command

= Generate container recipes from environments
— spack containerize command

= Distributed/parallel builds
— srun —N 8 spack install
— Spack instances coordinate effectively via locks

‘ Icfh:n:rg:::all.il\lrle;mn!e National Laboratory O gith u b .com / sp a ck , @ S p ac k p m

New distributed locking algorithm enables parallel builds (0.14)

= Spack instances can coordinate with each other using only filesystem locks (no MPI required)

-y

Requeue?

Get Read
Lock

5, F1

Check
status

i

Drop
Lock?

No

WriteH“ Yes
' 2
-

@

Decrement dependents’

Build Pop next Get Write
[re— : 3
queue task Lock
F F
D
Drop equ.e_ue
Locks transitive
dependents?
End
F = Fail
| = Installed

NI = Not installed

S = Succeed

dependencies’

priorities?2

Drop dependency
read locks too?

Downgrade Write

Independently run instances on login nodes, or
srun —N 8 —n 32 spack install -j 16 <package>

to Read Lock?2

(=

Lawrence Livermore National Laboratory

LLNL-PRES-811119

O github.com/spack

Yy’ @spackpm

Sabrsmat Wusiear Eevariy Arbrereat st

Generate container images from environments (0.14)

spack:
specs:

gromacs+mpi
mpich

container:

RUN

Select the format of the recip
singularity or anything else t
format: docker

Select from a valid list of im
base:

image: "centos:7"

spack: develop

Whether or not to strip binari
strip: true

Additional system packages tha
os_packages:
- libgomp

Extra instructions
extra_instructions:

final: |
echo 'export PS1="\[$(tput bold)

Labels for the image
labels:
app:
mpi:

"gromacs"
"mpich"

Bulld stage with Spack pre-installed and ready to be used
FROM spack/centos?:latest as builder

What t install and how we want to install it
is n & manifest file (spack.yaml)

R pt/spack-environment \

&& (echo “spack:™ %

& echo " specs:" \

& echo " - gromacs+mpi® %\

& echo " - mpich" \

& echo " concretization: together” \

&k echo " config:" \

& echo install_tree: /fopt/software" \

&& echo " view: fopt/view") > fopt/spack-environment/spack.yaml

Install the software, remove unecessary deps
RuN cd fopt/spack-environment &5 spack install && spack gc -y

Strip all the binaries
RUN find -L fopt/view/s -type f -exec readlink -f '{}' %; | \
xargs file -1 | \
grep ‘charset=binary’ |
grep ‘x-executable\ |x-archive\ |x-sharedlib’ | \
awk -F: "{print $1}' | =args strip -s

Modifications to the environment that are necessary to run
RUN cd fopt/spack-environment && \
spack env activate —sh -d . >> fetc/profile.d/z10_spack_environment.sh

Bare 05 image to run the installed executables
FROM centos:7

COPY —from=builder /opt/spack-environment fopt/spack-envircnment
COPY —from=builder fopt/software /opt/software
CORY —from=builder /opt/view /opt/view

docker

cfl —fron=builder /etc/profile.d/z18_spack_environment.sh fetc/profile.d/z18_spack_en) me——

update -y && yum install -y epel-release &5 yum update -y
install -y libgomp
=rf fvar/cache/yum & yum clean all

RUN echo 'export PS1="\[${tput bold)\l\[s{tput setaf 1)\] [gromacs]ils{tput setaf 2)%]%uh[$(tput

spack containerize

Any Spack environment can be

bundled into a container image
— Optional container section allows

finer-grained customization

Generated Dockerfile uses multi-
stage builds to minimize size of final

image
Strips binaries

with spack gc

Removes unneeded build deps

Can also generate Singularity recipes

(=

Lawrence Livermore National Laboratory
LLNL-PRES-811119

github.com/spack

Yy’ @spackpm

NYSE 22

Ratrsnat Wisclese Eavrity Arbvessatin

Spack can now generate Cl Pipelines spack:

definitions:
from environments S s

- compilers:

- '%gcc@5.5.8'

= User adds a gitlab-ci section to environment e

- os=centos7

— Spack maps builds to GitLab runners specs:

. . . . - matrix:
— Generate gitlab-ci.yml with spack ci command - [spkos]
- [$compilers]
- [$oses]
mirrors:

= Canrunin a Kube cluster or on bare metal at an HPC site e loud. nitlab: Httpss//uirror:spackiio

gitlab-ci:

— Sends progress to CDash mappings:
- spack-cloud-ubuntu:
Pipaling Jobs 123 match:

- os=ubuntuld.e4

Stage-0 Siage-1 Soge-2 Sy runner-attributes:
() ditfutils 36 ge.. O () bzip2 1.08 gee.. O (¥ boost 160.0g.. O (*)gdbm 1181 ge.. O tags:

- - - - spack-k8s
-f::. diffutils 36 ge.. O (*)brip2 106 gee.. O -_':ju boost168.0g.. © ()gdbm 1181 ge.. O

image: spack/spack_builder_ubuntu_18.04

°
(<)gsi25gce@s.. O () libxrmi2 28845, O () libtool 246 ge... O () libpciaccess 0. O S p a c k c I - spack-cloud-centos:

match:
(<) gsl 25 gee@5.. O (@) libxmi2 298 9. O (<) libtool 246 ge.. O = 0.. - ps=centos7
() iibiconv 115 ge... O (F)maraBgee. © (Z)readiine 70ge. O (2 safite 3.26.0g... runner-attributes:
tags:
() libicorv 115 ge.., © (F)me148gec.. © o (+)safte 3260g.. O - spack-k8s
() libsigsegu2M . © (“)ncurses B1ge. O Lk ae spackispack i Lder_cenkos 1
cdash:
(<) libsigsegv 2.1 .. O (@ ncurses B1ge.. O

build-group: Release Testing
url: https://cdash.spack.io
project: Spack

site: Spack AWS Gitlab Instance

‘ Lawrence Livermore NalionalMt ware O gith ub.com / Spa ck

LLNL-PRES-811119

Yy @spa

Making use of the new workflow
4 o GitHub Environment repo) (% GitLab “CI/CD” only repo)

3 }' Some checks haven't completed yet Hide all checks —————
1 pending check

Create P R’ » [B ciigitiabjupdate-package-set Pending — Pipeline running on GitLab Details ® @ RlLEe\ (e
4 i, i=Ci=up.. f -
or p us h P R ° This branch has no conflicts with the base branch e | [@ running | -~ L= R

af
L e " ; o) (e)(e)(e)(e)(e
Merging can be performed automatically. latest ” #¢ Auto-generated commit te... (e

Merge pull request ~ You can also open this in GitHub Desktop or view command line instructions,

° All checks have passed Hide all checks) l

1 successful check

v [P cilgitlabjupdate-package-set — Pipeline passed on GitLab Details \‘;} ¢ “) (f} @ Gj @
Merge ready) — use . puutticcima. o3meret O CEE T
° This branch has no conflicts with the base branch - e latest | e 3 Auto-generated commit te... > ‘j YR)

Merging can be performed automatically. IC;J (J)

LIRS T You can also open this in GitHub Deskiop or view command line instructions.

Automated build creates
container with contents
of mirror

a' docker hub

v

Lawrence Livermore National Laboratory O gith ub.com / spa ck
LLNL-PRES-811119

Yy’ @spackpm NYSE 2

° . . o ° ’—:‘\\
Automated builds using GitLab Cl will enable a robust, widely E\(\; |
available HPC software ecosystem. a8 corTn ProcT

. - s RS N
o * Public and private

\ v . "ﬁ package repositories

= = =

w7 l I
~ Automated é v

* =
builds | ;

@ g Spack users

Q,_____.

With pipeline efforts at E6 labs, users will no longer need to build their own software for high performance.

‘ Lawrence Livermore National Laboratory O gith ub.com / Spa ck

LLNL-PRES-811119

Yy’ @spackpm NYSE 2

Rt Wiiese Eavurity Arbrss

Spack 0.15 was released 2 weeks ago

= Better Cray support

= Packages can specify how they should be found

on the system
— spack external find command

= Better compiler optimization support on macOS
— apple-clang now its own compiler

= Enhancements and simplification to configuration
— spack config add / spack config remove

‘ Lawrence Livermore National Laboratory O git h u b .com / S p ac k
LLNL-PRES-811119

%" @spackpm

spack external find

class Cmake(Package):
executables = ['cmake']

@classmethod
def determine_spec_details(cls, prefix, exes_in_prefix):
exe_to_path = dict(
(os.path.basename(p), p)} for p in exes_in_prefix

if 'cmake' not in exe_to_path:
return None

cmake = spack.util.executable.Executable(exe_to_path['cmake'])

output = cmake('--version', output=str)
if output:

match = re.search(r'cmake.*version\s+(\5+)', output)

if match:
version_str = match.group(1)
return Spec('cmake@{@8}'.format{version_str))

Logic for finding external packages

installations in package.py

cmake:

paths:
cmake@3.15.1: /usr/local

packages.yamlconfiguration

Spack has has compiler detection

for a while
— Finds compilers in your PATH
— Registers them for use

We can find any package now

— Package defines:
» possible command names
* how to query the command

— Spack searches for known
commands and adds them to
configuration

= Community can easily enable
tools to be set up rapidly

Lawrence Livermore National Laboratory
LLNL-PRES-811119

(=

O github.com/spack

%" @spackpm

NIYSE 27

Sabrsmat Wusisr Borrity Arkeesieat

Getting external libraries right is tricky

Current support for external finding is really for build dependencies

Can work for dependencies like MPI that have well-defined commands
— mpicc —showme can be used to query information about libraries
— Provides well defined versions, link path

= Without this, we’d need to inspect libraries, which hard:
— Are they built for the right architecture?
— Are they ABI compatible?
— What variants are enabled?
— What version is the library?

Future work: figure out how to detect more libraries safely
— Could look at tools like pkg-config for this

‘ !j:n:_rg:;:all.il\lrgmnre National Laboratory O gith u b.co m/spack , @S p ac k p m

The concretizer has gotten pretty complicated

Sources for constraints = Current implementation is ad-hoc:

: — T the DAG
Command Line raverse the A |
— Evaluate conditions, add dependencies
= |ssues:

Local config

— Some constraints are strictly ordered
Package — Hard to add new features/logic
repositories — Can be slow

— Fill in defaults from many sources

Environments — Repeat until DAG doesn’t change

’f}.\ : — Limited support for backtracking causes
/||’ Concretizer bp ctracking
° some graphs to resolve incorrectly
Defaults — Lots of conditional complexity
= Design doesn’t scale to all the criteria

3 @spackpm NS4 2

‘ Lawrence Livermore National Laboratory O gith ub.com / Spa ck

LLNL-PRES-811119

What is managed by dependency managers?

1. What packages does this project depend on?
— This is a property of the project.

— Developers determine this NS fog
versien: o S0,
"depends_on": {

2. What version of each package should | install?
— Specified by developers of project and dependencies
— Version pinning may be too specific
— Leaving version ranges open leaves room for error

“har' -
"baz":

Concerns: Simple package model
— Correct/compatible versions? Developers manage
— Latest vs. most tested version? Developers manage
— Most secure version? Developers manage

It’s hard for developers just to manage packages and versions
W Lowrence Livermore National Laboratory O github.com/spack %" @spackpm NAYSE 30

...........................

With a more diverse ecosystem, there’s more
that needs to be managed

Build configuration options
— Optional features/interfaces

— Choice of parallelism model
¢ OpenMP, CUDA, HIP, etc.

Interfaces: which library implementation
— MPI: MPICH, OpenMPI, MVAPICH

— BLAS: OpenBLAS, Intel MKL, ARM math libs, etc. S|mp|e package model
— CUDA versions

Which compiler
— Intel, gcc, PGI, clang, XL, AMD, Cray, NAG, others...
— Compiler version?
— Which optimization flags?
— Which runtime libraries (libstdc++, fortran ABIs)
— Potentially mixed compilers
Complex

Microarchitecture package model

— Mostly SIMD instruction features
+ AVX-512, AVX-256, SSE, ARM SVE, etc.

‘ Lawrence Livermore National Laboratory O githu b.com/spack , @S p ac k p m

LLNL-PRES-811119

SAT solvers look appealing, but they’re very low-level

Some options:

= picosat (used by Conda): basic Boolean SAT solver
— A basic SAT solver finds any valid solution
— We need to optimize for a lot of different criteria
— We'd like to be able to use numbers, some math in the solve

= libsolv: very targeted towards traditional package model
» Packages, versions, standard formats, picking latest version

Doing optimization in a SAT solver is hard!
— Conda implements its own math routines in pure SAT
— This is kind of like implementing your own binary adders and multipliers ©
— Apparently a lot slower than libsolv (cf. Mamba project using libsolv in Conda)

‘ tfx_rg:::all.il\lrgmnre National Laboratory O gith u b.co m/spack , @S p ac k p m

Some higher-level solver options

= SMT: Satisfiability modulo theories
— Z3 seems to be the industry standard: very powerful, very active community

— Support for integer math, implications, higher level logic operations
— Support for multi-criteria optimization

— Traction in the formal verification community
— Nice high level Python interface
— Can generate unsatisfiable cores and proofs for error cases (but proofs are complex)

= ASP: Answer Set Programming (not the other ASP)
— Potassco project seems to be the most actively developed/active (and very fast)
— Nice prolog-like first-order logic syntax; boils down to SAT
— Support for multi-criteria optimization

— Python interface (EEE POtaS SCO

— No support for generating unsat cores or proofs

‘ Lawrence Livermore National Laboratory O githu b.Com/SpaCk , @S pac kp m N“'S,fj% 33

LLNL-PRES-811119

We ended up implementing a prototype concretizer in ASP

Used Clingo, the Potassco grounder/solver package

ASP program has 2 parts:

1. Large list of facts generated from our package repositories
e 6,000 — 9,000 facts is typical — includes dependencies, options, etc.

2. Small logic program (~130 lines)

New algorithm (at least our part) is conceptually simpler:
— Generate facts for all possible dependencies

— Send facts and our logic program to the solver

— Build a DAG from the results

Solve time is much faster than existing concretizer
— Typically a fraction of a second (so far), plus parsing
— Can fall off a cliff — it's NP-complete after all

Some facts for HDF5 package

‘ Lawrence Livermore National Laboratory O github_com/spack @Spackpm N“Sﬁ% 34

LLNL-PRES-811119

ASP makes it easy to put the logic in one place

Define the space:

each package must be aSSigned % If something is a package, it has only one version and that must be a
exactly one VerSion. % possible version.

1 { version(P, V version_possible(P, V 1 node(P

% If a version is declared but conflicted, it's not possible.

Disallow conflicted versions

version_possible(P, V version_declared(P, V version_conflict(P, V

% version weight and optimization
version_weight(P, V, N version(P, V), version_declared(P, V, N

Minimize the total of all version Ne8,P,V : version_weight(P, V, N

Weights (more on this later)

A

. . . ‘ ‘f".j
R Lanronce ivermors Nt Laboratory) sithub.com/spack @spackpm NS4 35

Previously complicated logic became very simple

= Every node in the DAG has a compiler and a target architecture
— Some compilers don’t support generating code for some targets
— But we want to pick the best target possible for each compiler

= Previously this required some complicated logic mixed in with the rest of the solve
1 { node_target(P, T target(T 1 node(P

Each node has 1 target assigned { % one target per node -- optimization will pick the "best" one

Disallow cases where the compiler
doesn’t support the target.

% can't use targets on node if the compiler for the node doesn't support them
node_target(P, T compiler_supports_target(C, V, T
node_compiler(P, C), node_compiler_version(P, C, V
% 1f a target is set explicitly, respect it
node_target(P, T node(P), node_target_set(P, T

node_target_weight(P, N node_ i« target_weight(T, N
N@5,P : node_target_weight(P, N

Minimize the total weight of
all targets

t Lawrence Livermore National Laboratory O github_com/spack @Spackpm N“Sﬁi 36

LLNL-PRES-811119

Dependency logic is pretty concise, too (even with virtuals)

= |t was €asy to exXpress what were ies are rec P-.r.::.E -.-;r-t.._“;_n_ e e
previously pretty complicated constraints: §§ N s s 1 L
— There can be at most one provider of any o8 T e rtuelQ, 31

virtual dependency in the DAG "
— Depending on a virtual means you depend ; rtu 1 :- virtual

on one of its providers «
— Preferences for virtuals can come from der ode virtual (v

multiple sources ents want
— Pick the most preferred virtual packages on(P, D), provider(D, V

nce(P, V, D, N

= Each of these sections stands alone and is
easy to compose with others

most prefer
N*R@3,D

. . . ‘ ‘{‘;i
R Lanronce ivermors Nt Laboratory) sithub.com/spack @spackpm NS4 37

Not everything was simple

The learning curve for ASP is fairly high.
— If you haven’t been exposed to this before, it can take a while to get in the right mindset

The shorter the program, the more thought per line
— The examples before are simple to talk about and they’re easy to maintain
— Writing all of this from scratch took a lot of thought (at least for me)

Structuring optimization criteria can be a challenge

— Took a little while to really think through the implications

— Maximizing criteria tend to expand the DAG unnecessarily, so had to learn to prefer
minimization to maximization for most things.

— Deciding the order in which to optimize different criteria involves some tradeoffs

The solver is very aggressive, which can lead to some surprising cases
— hdf5~mpi *mpich

W ovrence Livermore National Laboratory O github.com/spack % @spackpm NS 38

% spack solve hdf5 ~mpi Ampich

Sometimes the solver can be overly
aggressive

= Previous solver couldn’t figure out how to toggle build options, e.g.:
spack install hdf5 *mpich

= This would fail because mpich is optional; it’s only in the DAG if the mpi variant
is enabled:

spack install hdf5 +mpi *mpich
= But the new solver can be too smart for its own good . Consider:
spack install hdf5 -mpi *mpich

= This quickly finds a really obscure way to depend on MPI:
hdf5 - libaec = cmake - libarchive = 1z4 - valgrind 2 mpi

= Need to disable searches through build dependencies (cmake) to avoid this
kind of weirdness

‘ Ifn»rg:;:!ﬂ:f;more National Laboratory O g|thub_com/spack @Spackpm

Getting information about errors is still tough

Good error messages are important for unsatisfiable cases
— Need to be able to tell the user something useful about the problem
— PubGrub is very good at this

PubGrub essentially generates a proof of why the DAG isn’t satisfiable
— Tells you the salient constraints, points you to what to change

Potassco currently doesn’t have great ways to get this information
— No unsatisfiable cores or proofs

Z3 has support for proof generation, so we’re looking at trying it
— Z3 proofs are complicated; challenge to translate them to good messages
— This is a work in progress

‘ lfm_rg:;se_all.iﬁgmnfe National Laboratory O gith u b.co m/spack , @S p ac k p m

Spack 0.16 Roadmap: permissions and directory structure

= Sharing a Spack instance
— Many users want to be able to install Spack on a cluster and ‘'module load spack’
— Installations in the Spack prefix are shared among users
— Users would spack install to their home directory by default.

— This requires us to move most state out of the Spack prefix
« Installations would go into ~/.spack/...

= Getting rid of configuration in ~/.spack
— While installations may move to the home directory, configuration there is causing issues
— User configuration is like an unwanted global (e.g., LD_LIBRARY_PATH)
¢ Interferes with Cl builds (many users will rm -rf ~/.spack to avoid it)
e Goes against a lot of our efforts for reproducibility
» Hard to manage this configuration between multiple machines
— Environments are a much better fit
» Make users keep configuration like this in an environment instead of a single config

‘ Lawrence Livermore National Laboratory O githu b.Com/SpaCk , @S pac kp m N‘YS,;S% 41

LLNL-PRES-811119 . QYO e Gy = b et N Bty skt

Spack 0.16 roadmap: compilers as dependencies

= We need deeper modeling of compilers to handle Already-installed dep

complex ABI issues P
. . T Compiler-imposed de
— libstdc++, libc++ compatibility ol P e L

— Compilers that depend on compilers

= Future GPU, OpenMP target, etc. libraries have
similar issues
— Entire stack for a large code needs to be consistent

— We currently do not have visibility into what’s under
the compiler

= Packages that depend on languages
— Depend on cxx@2011, cxx@2017, fortran@1995, etc. Compilers agg g‘g’;ﬂ?fe'r']%?ef;”y modeled
— Model langauges, openmp, cuda, etc. as virtuals

‘ tfx_rg:::all.il\lrgmnre National Laboratory O gith u b.CO m/spaCk , @S p acC k p m N“Sﬁi 42

B Lawrence Livermore
National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

PubGrub

= Natalie Weizenbaum implemented awesome error reporting in
Pub, the package manager for Dart

= Builds on a basic CDCL SAT solver with a data structure to keep
track of conflicts and to generate great error messages
— Model of PubGrub so far seems to be package/version
— Has some custom callbacks to evaluate version constraints

= QOptimization is done by exploring versions in order
— We need multi-criteria optimization — more complex tactics
— lots of peoples’ life work has gone into faster solvers than we think
we could implement ourselves.

= Worried about implementing a custom solver in Python
— We're solving more complex problems than most tools
— Poetry, other Python-native solvers can already be quite slow, and
they only deal with packages and versions

‘ Lawrence Livermore National Laboratory O githu b.com/spack , @S p ac k p m

LLNL-PRES-811119

	What’s new in Spack?
	Spack provides a spec syntax to describe customized DAG configurations
	Spack packages are templates�They use a simple Python DSL to define how to build
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Spack is being used on many of the top HPC systems
	One month of Spack development is pretty busy!
	Contributions to Spack continue to grow!
	Spack has a release workflow
	Spack has stable release branches
	Spack 0.13 was released in November, at SC19
	Ever tried to figure out what �your processor is?
	Spack now understands specific target microarchitectures
	Archspec: a library for reasoning about microarchitectures
	Spack environments enable users to build customized stacks from an abstract description
	We have developed Spack stacks:�combinatorial environments for entire facility deployments
	Spack 0.14.0 was released at the end of February
	New distributed locking algorithm enables parallel builds (0.14)
	Generate container images from environments (0.14)�
	Spack can now generate CI Pipelines�from environments
	Slide Number 24
	Automated builds using GitLab CI will enable a robust, widely �available HPC software ecosystem.
	Spack 0.15 was released 2 weeks ago
	spack external find
	Getting external libraries right is tricky
	The concretizer has gotten pretty complicated
	What is managed by dependency managers?
	With a more diverse ecosystem, there’s more that needs to be managed
	SAT solvers look appealing, but they’re very low-level
	Some higher-level solver options
	We ended up implementing a prototype concretizer in ASP
	ASP makes it easy to put the logic in one place
	Previously complicated logic became very simple
	Dependency logic is pretty concise, too (even with virtuals)
	Not everything was simple
	Sometimes the solver can be overly aggressive
	Getting information about errors is still tough
	Spack 0.16 Roadmap: permissions and directory structure
	Spack 0.16 roadmap: compilers as dependencies
	Slide Number 43
	PubGrub

