
LLNL-PRES-811119
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

What’s new in Spack?
New features and the Spack Roadmap

Todd Gamblin
Advanced Technology Office

Livermore Computing
IDEAS Best Practices for HPC Software Developers Webinar
July 15, 2020

LLNL-PRES-811119
2@spackpmgithub.com/spack

 Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional – specify only what you need.
— Customize install on the command line!

 Spec syntax is recursive
— Full control over the combinatorial build space

Spack provides a spec syntax to describe customized DAG
configurations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=skylake set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency information

LLNL-PRES-811119
3@spackpmgithub.com/spack

Spack packages are templates
They use a simple Python DSL to define how to build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(note: same spec syntax)

Not shown: patches, resources, conflicts,
other directives.

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle

transport proxy/mini app.
"""

homepage = "https://computation.llnl.gov/projects/co-design/kripke"
url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

variant('mpi', default=True, description='Build with MPI.’)
variant('openmp', default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when='+mpi’)
depends_on('cmake@3.0:', type='build’)

def cmake_args(self):
return [

'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s' % ('+mpi’ in self.spec),

]

def install(self, spec, prefix):
Kripke does not provide install target, so we have to copy
things into place.
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.

LLNL-PRES-811119
4@spackpmgithub.com/spack

 Each unique dependency graph is a unique
configuration.

 Each configuration installed in a unique directory.
— Configurations of the same package can coexist.

 Hash of entire directed acyclic graph (DAG) is
appended to each prefix.

 Installed packages automatically find dependencies
— Spack embeds RPATHs in binaries.
— No need to use modules or set LD_LIBRARY_PATH
— Things work the way you built them

Spack handles combinatorial software complexity.

spack/opt/
linux-x86_64/

gcc-4.7.2/
mpileaks-1.1-0f54bf34cadk/

intel-14.1/
hdf5-1.8.15-lkf14aq3nqiz/

bgq/
xl-12.1/

hdf5-1-8.16-fqb3a15abrwx/
...

Installation Layout

Dependency DAG

Hash

LLNL-PRES-811119
5@spackpmgithub.com/spack

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

Abstract, normalized spec
with some dependencies.

N
orm

alize

Concretize Store

spec:
- mpileaks:

arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'

- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1

- boost:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies: {}
hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
variants: {}
version: 1.59.0

...

spec.yaml

Detailed provenance is stored
with the installed package

LLNL-PRES-811119
6@spackpmgithub.com/spack

Use `spack spec` to see the results of concretization

$ spack spec mpileaks
Input spec

mpileaks

Concretized

mpileaks@1.0%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^adept-utils@1.0.1%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^boost@1.61.0%gcc@5.3.0+atomic+chrono+date_time~debug+filesystem~graph
~icu_support+iostreams+locale+log+math~mpi+multithreaded+program_options
~python+random +regex+serialization+shared+signals+singlethreaded+system
+test+thread+timer+wave arch=darwin-elcapitan-x86_64

^bzip2@1.0.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^zlib@1.2.8%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^openmpi@2.0.0%gcc@5.3.0~mxm~pmi~psm~psm2~slurm~sqlite3~thread_multiple~tm~verbs+vt arch=darwin-elcapitan-x86_64
^hwloc@1.11.3%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^libpciaccess@0.13.4%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^libtool@2.4.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^m4@1.4.17%gcc@5.3.0+sigsegv arch=darwin-elcapitan-x86_64
^libsigsegv@2.10%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^callpath@1.0.2%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^dyninst@9.2.0%gcc@5.3.0~stat_dysect arch=darwin-elcapitan-x86_64

^libdwarf@20160507%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^libelf@0.8.13%gcc@5.3.0 arch=darwin-elcapitan-x86_64

LLNL-PRES-811119
7@spackpmgithub.com/spack

Spack is used worldwide!

Over 600 contributors
from labs, academia, industry

Over 4,300 software packages
Over 2,900 monthly active users (on docs site)

Plot shows sessions on
spack.readthedocs.io for one month

LLNL-PRES-811119
8@spackpmgithub.com/spack

Users on our documentation site have also been increasing

LLNL-PRES-811119
9@spackpmgithub.com/spack

Spack is being used on many of the top HPC systems

 Official deployment tool for the
U.S. Exascale Computing Project

 7 of the top 10 supercomputers
 High Energy Physics community

— Fermilab, CERN, collaborators

 Astra (Sandia)
 Fugaku (Japanese National Supercomputer Project)

Summit (ORNL), Sierra (LLNL) Edison, Cori, Perlmutter (NERSC)SuperMUC-NG (LRZ, Germany)

Fugaku coming to RIKEN in 2021
DOE/MEXT collaboration

LLNL-PRES-811119
10@spackpmgithub.com/spack

One month of Spack development is pretty busy!

10

LLNL-PRES-811119
11@spackpmgithub.com/spack

 In November 2015, LLNL provided
most of the contributions to Spack

 Since then, we’ve gone from 300 to
over 4,000 packages

 Most packages are from external
contributors!

 Many contributions in core, as well.

 We are committed to sustaining
Spack’s open source ecosystem!

Contributions to Spack continue to grow!

LLNL-PRES-811119
12@spackpmgithub.com/spack

 We are creating GitHub projects (Kanban
boards) per release
— Includes major (0.13.0, 0.14.0) and minor

(0.13.1, 0.13.2, etc.) releases
— Each release shows the timeframe
— You can easily see what’s on the roadmap!

 Makes it easy to rely on release branches
— You can expect us to backport fixes for

critical bugs onto these branches

 Shooting for quarterly releases
— Expect some movement of features from

release to release
— If we don’t finish some things, we’ll move

them forward

Spack has a release workflow

Per-release Kanban boards allow the community to
track releases better!

LLNL-PRES-811119
13@spackpmgithub.com/spack

 Develop is where most of the action happens
— Latest commits from pull requests
— Package updates

 Release branches have release tags, minimize churn
— Only bugfixes are backported from develop to stable

releases
— Major new features and package recipe changes happen

in develop

 releases/v0.14 is the release branch for:
— v0.14.0
— v0.14.1
— v0.14.2
— Etc.

Spack has stable release branches

LLNL-PRES-811119
14@spackpmgithub.com/spack

 Spack stacks: combinatorial environments for facility
deployment

 Spack detects and builds for specific microarchitectures

 Chaining: use dependencies from external "upstream"
Spack instances

Spack 0.13 was released in November, at SC19

LLNL-PRES-811119
15@spackpmgithub.com/spack

Ever tried to figure out what
your processor is?

 You can get a lot of information from:
— /proc/cpuinfo on linux
— sysctl tool on macs

 But it’s not exactly intuitive

what!?

what!?

Humans call this architecture
“broadwell”

oh.

LLNL-PRES-811119
16@spackpmgithub.com/spack

 Spack knows what type of machine you’re on
— Detects based on /proc/cpuinfo (Linux), sysctl (Mac)
— Allows comparisons for compatibility, e.g.:

 Key features:
— Know which compilers support which chips with

which flags
— Determine compatibility
— Enable creation and reuse of optimized binary

packages
— Easily query available architecture features for

portable build recipes

Spack now understands specific target microarchitectures

$ spack install lbann target=cascadelake

$ spack install petsc target=zen2

Specialized installationsSimple feature query

skylake > broadwell
zen2 > x86_64

LLNL-PRES-811119
17@spackpmgithub.com/spack

Archspec: a library for reasoning about microarchitectures

ReadTheDocs: archspec.rtfd.io

github.com/archspec

arch
spec

License: Apache 2.0 OR MIT

pip3 install archspec

▪ Standalone library, extracted from Spack

▪ Use fine-grained, human-readable labels, e.g.:
— broadwell, haswell, skylake
— instead of x86_64, aarch64, ppc64 etc.

▪ Query capabilities
— “Does haswell support AVX-512?” “no.”

▪ Query compiler flags
— “How do I compile for broadwell with icc?”

▪ Python package for now, but we want more bindings!
— Actual data is in a common JSON file w/schema

LLNL-PRES-811119
18@spackpmgithub.com/spack

 Allows developers to bundle Spack configuration with their repository

 Can also be used to maintain configuration together with Spack
packages.
— E.g., versioning your own local software stack with consistent

compilers/MPI implementations

 Manifest / Lockfile model pioneered by Bundler is becoming standard
— spack.yaml describes project requirements
— spack.lock describes exactly what versions/configurations were

installed, allows them to be reproduced.

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

install build
project

spack.yaml file with
names of required

dependencies

Lockfile describes
exact versions installed

Dependency
packages

Concrete spack.lock file (generated)

LLNL-PRES-811119
19@spackpmgithub.com/spack

 Allow users to easily express a huge cross-product
of specs
— All the packages needed for a facility
— Generate modules tailored to the site
— Generate a directory layout to browse the packages

 Build on the environments workflow
— Manifest + lockfile
— Lockfile enables reproducibility

 Relocatable binaries allow the same binary to be
used in a stack, regular install, or container build.
— Difference is how the user interacts with the stack
— Single-PATH stack vs. modules.

We have developed Spack stacks:
combinatorial environments for entire facility deployments

LLNL-PRES-811119
20@spackpmgithub.com/spack

 Completely reworked GitLab pipeline generation
— spack ci command

 Generate container recipes from environments
— spack containerize command

 Distributed/parallel builds
— srun –N 8 spack install
— Spack instances coordinate effectively via locks

Spack 0.14.0 was released at the end of February

LLNL-PRES-811119
21@spackpmgithub.com/spack

▪ Spack instances can coordinate with each other using only filesystem locks (no MPI required)
▪ Independently run instances on login nodes, or
▪ srun –N 8 –n 32 spack install -j 16 <package>

New distributed locking algorithm enables parallel builds (0.14)

LLNL-PRES-811119
22@spackpmgithub.com/spack

Generate container images from environments (0.14)

spack containerize

▪ Any Spack environment can be
bundled into a container image

— Optional container section allows
finer-grained customization

▪ Generated Dockerfile uses multi-
stage builds to minimize size of final
image

— Strips binaries
— Removes unneeded build deps

with spack gc

▪ Can also generate Singularity recipes

LLNL-PRES-811119
23@spackpmgithub.com/spack

 User adds a gitlab-ci section to environment
— Spack maps builds to GitLab runners
— Generate gitlab-ci.yml with spack ci command

 Can run in a Kube cluster or on bare metal at an HPC site
— Sends progress to CDash

Spack can now generate CI Pipelines
from environments

spack ci

LLNL-PRES-811119
24@spackpmgithub.com/spack

Making use of the new workflow

Create PR,
or push PR
branch

Merge ready

Merge PR

Automated build creates
container with contents
of mirror

Environment repo “CI/CD” only repo

LLNL-PRES-811119
25@spackpmgithub.com/spack

Public and private
package repositories

Automated builds using GitLab CI will enable a robust, widely
available HPC software ecosystem.

Spack users

Automated
package
builds

With pipeline efforts at E6 labs, users will no longer need to build their own software for high performance.

LLNL-PRES-811119
26@spackpmgithub.com/spack

 Better Cray support

 Packages can specify how they should be found
on the system
— spack external find command

 Better compiler optimization support on macOS
— apple-clang now its own compiler

 Enhancements and simplification to configuration
— spack config add / spack config remove

Spack 0.15 was released 2 weeks ago

LLNL-PRES-811119
27@spackpmgithub.com/spack

 Spack has has compiler detection
for a while
— Finds compilers in your PATH
— Registers them for use

 We can find any package now
— Package defines:

• possible command names
• how to query the command

— Spack searches for known
commands and adds them to
configuration

 Community can easily enable
tools to be set up rapidly

spack external find

Logic for finding external
installations in package.py

packages.yamlconfiguration

LLNL-PRES-811119
28@spackpmgithub.com/spack

 Current support for external finding is really for build dependencies

 Can work for dependencies like MPI that have well-defined commands
— mpicc –showme can be used to query information about libraries
— Provides well defined versions, link path

 Without this, we’d need to inspect libraries, which hard:
— Are they built for the right architecture?
— Are they ABI compatible?
— What variants are enabled?
— What version is the library?

 Future work: figure out how to detect more libraries safely
— Could look at tools like pkg-config for this

Getting external libraries right is tricky

LLNL-PRES-811119
29@spackpmgithub.com/spack

The concretizer has gotten pretty complicated

 Current implementation is ad-hoc:
— Traverse the DAG
— Evaluate conditions, add dependencies
— Fill in defaults from many sources
— Repeat until DAG doesn’t change

 Issues:
— Limited support for backtracking causes

some graphs to resolve incorrectly
— Some constraints are strictly ordered
— Lots of conditional complexity

 Design doesn’t scale to all the criteria
— Hard to add new features/logic
— Can be slow

Concretizer

Command Line

Environments

Local config

Defaults

Package
repositories

Sources for constraints

LLNL-PRES-811119
30@spackpmgithub.com/spack

1. What packages does this project depend on?
— This is a property of the project.
— Developers determine this

2. What version of each package should I install?
— Specified by developers of project and dependencies
— Version pinning may be too specific
— Leaving version ranges open leaves room for error

Concerns:
— Correct/compatible versions? Developers manage
— Latest vs. most tested version? Developers manage
— Most secure version? Developers manage

What is managed by dependency managers?

Simple package model

It’s hard for developers just to manage packages and versions

LLNL-PRES-811119
31@spackpmgithub.com/spack

 Build configuration options
— Optional features/interfaces
— Choice of parallelism model

• OpenMP, CUDA, HIP, etc.

 Interfaces: which library implementation
— MPI: MPICH, OpenMPI, MVAPICH
— BLAS: OpenBLAS, Intel MKL, ARM math libs, etc.
— CUDA versions

 Which compiler
— Intel, gcc, PGI, clang, XL, AMD, Cray, NAG, others…
— Compiler version?
— Which optimization flags?
— Which runtime libraries (libstdc++, fortran ABIs)
— Potentially mixed compilers

 Microarchitecture
— Mostly SIMD instruction features

• AVX-512, AVX-256, SSE, ARM SVE, etc.

With a more diverse ecosystem, there’s more
that needs to be managed

Complex
package model

Simple package model

LLNL-PRES-811119
32@spackpmgithub.com/spack

Some options:

 picosat (used by Conda): basic Boolean SAT solver
— A basic SAT solver finds any valid solution
— We need to optimize for a lot of different criteria
— We’d like to be able to use numbers, some math in the solve

 libsolv: very targeted towards traditional package model
• Packages, versions, standard formats, picking latest version

Doing optimization in a SAT solver is hard!
— Conda implements its own math routines in pure SAT
— This is kind of like implementing your own binary adders and multipliers 
— Apparently a lot slower than libsolv (cf. Mamba project using libsolv in Conda)

SAT solvers look appealing, but they’re very low-level

LLNL-PRES-811119
33@spackpmgithub.com/spack

 SMT: Satisfiability modulo theories
— Z3 seems to be the industry standard: very powerful, very active community
— Support for integer math, implications, higher level logic operations
— Support for multi-criteria optimization
— Traction in the formal verification community
— Nice high level Python interface
— Can generate unsatisfiable cores and proofs for error cases (but proofs are complex)

 ASP: Answer Set Programming (not the other ASP)
— Potassco project seems to be the most actively developed/active (and very fast)
— Nice prolog-like first-order logic syntax; boils down to SAT
— Support for multi-criteria optimization
— Python interface
— No support for generating unsat cores or proofs

Some higher-level solver options

LLNL-PRES-811119
34@spackpmgithub.com/spack

 Used Clingo, the Potassco grounder/solver package

 ASP program has 2 parts:
1. Large list of facts generated from our package repositories

• 6,000 – 9,000 facts is typical – includes dependencies, options, etc.
2. Small logic program (~130 lines)

 New algorithm (at least our part) is conceptually simpler:
— Generate facts for all possible dependencies
— Send facts and our logic program to the solver
— Build a DAG from the results

 Solve time is much faster than existing concretizer
— Typically a fraction of a second (so far), plus parsing
— Can fall off a cliff – it’s NP-complete after all

We ended up implementing a prototype concretizer in ASP

Some facts for HDF5 package

LLNL-PRES-811119
35@spackpmgithub.com/spack

ASP makes it easy to put the logic in one place

Define the space:
each package must be assigned
exactly one version.

Disallow conflicted versions

Minimize the total of all version
Weights (more on this later)

LLNL-PRES-811119
36@spackpmgithub.com/spack

 Every node in the DAG has a compiler and a target architecture
— Some compilers don’t support generating code for some targets
— But we want to pick the best target possible for each compiler

 Previously this required some complicated logic mixed in with the rest of the solve

Previously complicated logic became very simple

Each node has 1 target assigned

Disallow cases where the compiler
doesn’t support the target.

Minimize the total weight of
all targets

LLNL-PRES-811119
37@spackpmgithub.com/spack

 It was easy to express what were
previously pretty complicated constraints:
— There can be at most one provider of any

virtual dependency in the DAG
— Depending on a virtual means you depend

on one of its providers
— Preferences for virtuals can come from

multiple sources
— Pick the most preferred virtual packages

 Each of these sections stands alone and is
easy to compose with others

Dependency logic is pretty concise, too (even with virtuals)

LLNL-PRES-811119
38@spackpmgithub.com/spack

 The learning curve for ASP is fairly high.
— If you haven’t been exposed to this before, it can take a while to get in the right mindset

 The shorter the program, the more thought per line
— The examples before are simple to talk about and they’re easy to maintain
— Writing all of this from scratch took a lot of thought (at least for me)

 Structuring optimization criteria can be a challenge
— Took a little while to really think through the implications
— Maximizing criteria tend to expand the DAG unnecessarily, so had to learn to prefer

minimization to maximization for most things.
— Deciding the order in which to optimize different criteria involves some tradeoffs

 The solver is very aggressive, which can lead to some surprising cases
— hdf5~mpi ^mpich

Not everything was simple

LLNL-PRES-811119
39@spackpmgithub.com/spack

 Previous solver couldn’t figure out how to toggle build options, e.g.:

spack install hdf5 ^mpich

 This would fail because mpich is optional; it’s only in the DAG if the mpi variant
is enabled:

spack install hdf5 +mpi ^mpich

 But the new solver can be too smart for its own good . Consider:

spack install hdf5 -mpi ^mpich

 This quickly finds a really obscure way to depend on MPI:

hdf5  libaec cmake libarchive lz4  valgrindmpi

 Need to disable searches through build dependencies (cmake) to avoid this
kind of weirdness

Sometimes the solver can be overly
aggressive

LLNL-PRES-811119
40@spackpmgithub.com/spack

 Good error messages are important for unsatisfiable cases
— Need to be able to tell the user something useful about the problem
— PubGrub is very good at this

 PubGrub essentially generates a proof of why the DAG isn’t satisfiable
— Tells you the salient constraints, points you to what to change

 Potassco currently doesn’t have great ways to get this information
— No unsatisfiable cores or proofs

 Z3 has support for proof generation, so we’re looking at trying it
— Z3 proofs are complicated; challenge to translate them to good messages
— This is a work in progress

Getting information about errors is still tough

LLNL-PRES-811119
41@spackpmgithub.com/spack

 Sharing a Spack instance
— Many users want to be able to install Spack on a cluster and `module load spack`
— Installations in the Spack prefix are shared among users
— Users would spack install to their home directory by default.
— This requires us to move most state out of the Spack prefix

• Installations would go into ~/.spack/…

 Getting rid of configuration in ~/.spack
— While installations may move to the home directory, configuration there is causing issues
— User configuration is like an unwanted global (e.g., LD_LIBRARY_PATH 😬😬)

• Interferes with CI builds (many users will rm -rf ~/.spack to avoid it)
• Goes against a lot of our efforts for reproducibility
• Hard to manage this configuration between multiple machines

— Environments are a much better fit
• Make users keep configuration like this in an environment instead of a single config

Spack 0.16 Roadmap: permissions and directory structure

LLNL-PRES-811119
42@spackpmgithub.com/spack

 We need deeper modeling of compilers to handle
complex ABI issues
— libstdc++, libc++ compatibility
— Compilers that depend on compilers

 Future GPU, OpenMP target, etc. libraries have
similar issues
— Entire stack for a large code needs to be consistent
— We currently do not have visibility into what’s under

the compiler

 Packages that depend on languages
— Depend on cxx@2011, cxx@2017, fortran@1995, etc.
— Model langauges, openmp, cuda, etc. as virtuals

Spack 0.16 roadmap: compilers as dependencies

1

intel@17

gcc@xxx

B

R

2

intel@16

B

gcc@4.9.3

R

L

Already-installed dep

Compiler-imposed dep

libstdc++

L
L

Compilers and runtime libs fully modeled
as dependencies

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

LLNL-PRES-811119
44@spackpmgithub.com/spack

 Natalie Weizenbaum implemented awesome error reporting in
Pub, the package manager for Dart

 Builds on a basic CDCL SAT solver with a data structure to keep
track of conflicts and to generate great error messages
— Model of PubGrub so far seems to be package/version
— Has some custom callbacks to evaluate version constraints

 Optimization is done by exploring versions in order
— We need multi-criteria optimization – more complex tactics
— lots of peoples’ life work has gone into faster solvers than we think

we could implement ourselves.

 Worried about implementing a custom solver in Python
— We’re solving more complex problems than most tools
— Poetry, other Python-native solvers can already be quite slow, and

they only deal with packages and versions

PubGrub

	What’s new in Spack?
	Spack provides a spec syntax to describe customized DAG configurations
	Spack packages are templates�They use a simple Python DSL to define how to build
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Spack is being used on many of the top HPC systems
	One month of Spack development is pretty busy!
	Contributions to Spack continue to grow!
	Spack has a release workflow
	Spack has stable release branches
	Spack 0.13 was released in November, at SC19
	Ever tried to figure out what �your processor is?
	Spack now understands specific target microarchitectures
	Archspec: a library for reasoning about microarchitectures
	Spack environments enable users to build customized stacks from an abstract description
	We have developed Spack stacks:�combinatorial environments for entire facility deployments
	Spack 0.14.0 was released at the end of February
	New distributed locking algorithm enables parallel builds (0.14)
	Generate container images from environments (0.14)�
	Spack can now generate CI Pipelines�from environments
	Slide Number 24
	Automated builds using GitLab CI will enable a robust, widely �available HPC software ecosystem.
	Spack 0.15 was released 2 weeks ago
	spack external find
	Getting external libraries right is tricky
	The concretizer has gotten pretty complicated
	What is managed by dependency managers?
	With a more diverse ecosystem, there’s more that needs to be managed
	SAT solvers look appealing, but they’re very low-level
	Some higher-level solver options
	We ended up implementing a prototype concretizer in ASP
	ASP makes it easy to put the logic in one place
	Previously complicated logic became very simple
	Dependency logic is pretty concise, too (even with virtuals)
	Not everything was simple
	Sometimes the solver can be overly aggressive
	Getting information about errors is still tough
	Spack 0.16 Roadmap: permissions and directory structure
	Spack 0.16 roadmap: compilers as dependencies
	Slide Number 43
	PubGrub

