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EXECUTIVE SUMMARY

This Exascale Computing Project (ECP) Milestone Report summarizes the status of all 30 ECP Applications
Development (AD) sub-projects at the end of FY19. In August and September of 2019, a comprehensive
assessment of AD projects was conducted jointly by the ECP leadership and a team of external subject matter
experts. Reviews took place in person over five days—two at the National Renewable Energy Laboratory
and three at Argonne National Laboratory and the University of Chicago. The review committees were
tasked with evaluating each sub-project’s progress in porting their code(s) to current multi-GPU architectures
considered precursors to planned exascale machines. This includes characterizing which modules have been
ported to multi-accelerator nodes, initial performance analyses, the status of software integration, and a
current vision of successes, obstacles, and next steps. As such this report contains not only an accurate
snapshot of each sub-project’s current status, but also represents an unprecedentedly broad account of
experiences porting large scientific applications to next-generation HPC architectures.
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1. OVERVIEW OF APPLICATION DEVELOPMENT

Exascale systems enable game-changing advances in scientific, engineering, and national security applications
critical to The Department of Energy (DOE)’s mission. Such progress requires close coordination among
exascale application, algorithm, and software development to address key challenges such as extreme paral-
lelism, reliability and resiliency, complex memory hierarchies, scaling to large systems, and data-intensive
science. For selected critical problems the ECP is creating and enhancing the predictive capability of relevant
applications through targeted development of requirements-based models, algorithms, and methods along
with the development and integration of required software technologies in support of application workflows.

Given the broad DOE and multi-agency demand for mission-critical Modeling and Simulation (M&S)
and Data Analytics Computing (DAC) applications, AD is contributing to the development of the ECP
applications for DOE missions (science, energy, national security) and the missions of other agencies such as
the National Institutes of Health (NIH), the National Science Foundation (NSF), the National Oceanic and
Atmospheric Administration (NOAA), and National Aeronautics and Space Administration (NASA). For
DOE alone, this scope encompasses full development support for application teams within the mission space
of at least 10 DOE program offices. For other agency applications, the scope of AD is smaller and one of
partnership through provision of selected staff to development teams in need of expertise in computer and
computational science, applied mathematics, and HPC.

To achieve these goals, AD includes six L3 Work Breakdown Structure (WBS) elements, each with multiple
subprojects at L4. These are described in the following sections. Two KPP’s, KPP-1 and KPP-2, are used
to measure the success of the AD application projects; KPP-3 is used to measure the success of the AD
co-design projects. The meaning and requirements for each KPP are given in Table 1.

Table 1: Key performance parameters for ECP applications.

KPP ID Description of Scope Threshold KPP Objective KPP Verification
Action/Evidence

KPP-1 Performance
improvement for
mission-critical problems

50% of selected
applications achieve
Figure of Merit
improvement ≥ 50

100% of selected
applications achieve
Figure of Merit stretch
goal

Independent assessment
of measured results that
threshold goal is met

KPP-2 Broaden the reach of
exascale science and
mission capability

50% of selected
applications can execute
their challenge problem

100% of selected
applications can execute
their challenge problem
stretch goal

Independent assessment
of mission application
readiness

KPP-3 Productive and
sustainable software
ecosystem

50% of the weighted
impact goals are met

100% of the weighted
impact stretch goals are
met

Independent assessment
verifying threshold goal
is met

1.1 2019 AD External Review

For the 2019 AD External Review the committee Subject Matter Experts (SMEs) were asked to evaluate
each applications project based on the following Charge Questions:

1. Has the project adequately quantified “base” and “stretch” passing criteria for their challenge problem?
For Key Performance Parameter (KPP)-1 applications, this should include the role of algorithmic vs.
hardware improvements in achieving the Figure of Merit (FOM). For KPP-2 applications, this should
include a discussion of plans to quantitatively demonstrate “efficient” use of an exascale resource.

2. Has the project made progress on pre-exascale hardware, such as Summit, Sierra, or any small accelerator
based test systems? Projects should address the following issues:

(a) What parts of the code specifically were ported to the accelerator, and what fraction of overall
performance do they account for in the challenge problem?
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(b) What programming model(s) was used?

(c) What single node speedup (if any) was achieved relative to the best performance on other classes
of systems?

(d) What are the key bottlenecks, if any, to improving on-node performance, including plans for how to
address them? For example, will there be a need to explore risky, fundamentally new algorithmic
approaches, different mathematical formulations, or more fine tune for specific hardware features?

3. For KPP-1 projects, did the project sufficiently explain/justify their current FOM value in light of the
answers above? For KPP-2 projects, did the project adequately explain/justify their current progress
relative to their project mileposts?

4. Has the project adequately formulated 2020 milestones consistent with the discussion above, including
key risks and plans for how to maintain flexibility to address them?

5. Has the project clearly identified expected critical dependencies on Software Technology (ST) and
Co-Design (CD) developments, including the practices and processes used for collaboration and any
contingency plans?

Alternatively, each co-design project was evaluated on the following:

1. Has the project adequately defined their KPP-3 integration metric “base” and “stretch” passing criteria?

2. Did the project sufficiently explain/justify their self-assessment of their current KPP-3 metric?

3. Has the project made progress on pre-exascale hardware, such as Summit, Sierra, or any small accelerator
based test systems? Do they have a clear and realistic strategy for providing performance portability
across multiple exascale architectures?

4. Is the project appropriately leveraging HPC software from ST and the broader community, and have
they clearly identified any expected critical dependencies, including the practices and processes used for
collaboration and any contingency plans?

5. Evaluate the software architecture relative to usability across multiple applications, both the targeted
ECP applications and the broader set of potential applications for which this motif appears prominently.
Does the software implement an appropriate set of APIs and workflows that facilitate integration
into such applications? Do they have an appropriate process for engaging their ECP applications
stakeholders?

6. Has the project adequately formulated 2020 milestones consistent with the discussion above, including
key risks and plans for how to maintain flexibility to address them?

2. KEY PERFORMANCE PARAMETERS FOR AD

The AD focus area supports the development and evolved design of mission-critical science and engineering
codes for efficient execution on exascale platforms. The ECP distinguishes between the code, which is
typically a general capability, and an application, which is the use of the code to address a specific scientific or
engineering question. A key concept is the definition of an exascale challenge problem. Each AD application
code team must define an application challenge problem that is both scientifically impactful and requires
exascale-level resources to execute. Each exascale challenge problem targets a key DOE science or mission
need and is the basis for quantitative measurements of success for each of the AD projects.

There are two measures of success used for AD application projects, referred to generically as the first
and second of the ECP KPPs (KPP-1 and KPP-2). Projects are assigned exclusively to one of these two
KPP groups, and each project is responsible for meeting the corresponding specific requirements. The KPP-1
applications (Table 2) and applications targeting KPP-2 (Table 3) are required to provide a detailed milestone
plan that outlines all needed work to enable successful execution of their exascale challenge problem. These
milestone plans and the teams’ progress in executing them are reviewed annually by AD leadership and
external SMEs as part of the AD annual assessment. Progress toward KPP-2 is tracked between reviews with
a dashboard to monitor timely milestone delivery. The KPP assignments were determined by the nature of
the exascale challenge problem and the maturity of the individual code projects.
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Table 2: ECP applications targeting KPP-1.

Project name Short description Lead lab Stakeholder
program

LatticeQCD Exascale Lattice Gauge Theory Opportunities and
Requirements for Nuclear and High Energy Physics

FNAL DOE NP, HEP

NWChemEx Stress-resistant Crops and Efficient Biomass
Catalysts

PNNL DOE BER,
BES

EXAALT Molecular Dynamics at the Exascale LANL DOE BES,
FES, NE

QMCPACK Find, Predict, and Control Material Properties ORNL DOE BES

ExaSMR Coupled Monte Carlo Neutronics and Fluid Flow
Simulation of Small Modular Reactors

ORNL DOE NE

WDMApp High Fidelity Whole Device Modeling of
Magnetically Confined Plasmas

PPPL DOE FES

WarpX Plasma Wakefield Accelerator Design LBNL DOE HEP

ExaSky Cosmological Probe of the Standard Model ANL DOE HEP

EQSIM Seismic Hazard Risk Assessment LBNL DOE NNSA,
NE, EERE

E3SM-MMF Regional Assessments in Earth Systems Models SNL DOE BER

CANDLE Accelerate and Translate Cancer Research ANL NIH
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Table 3: ECP applications targeting KPP-2.

Project name Short description Lead lab Stakeholder
program

GAMESS Biofuel Catalyst Design Ames DOE BES

ExaAM Additive Manufacturing of Qualifiable Metal Parts ORNL DOE NNSA,
EERE

ExaWind Predictive Wind Plant Flow Modeling NREL DOE EERE

Combustion-
Pele

Combustion Engine and Gas Turbine Design SNL DOE BES,
EERE

MFIX-Exa Multiphase Flow Reactor Design NETL DOE EERE

ExaStar Demystify the Origin of Chemical Elements LBNL DOE NP

Subsurface Carbon Capture, Fossil Fuel Extraction, Waste
Disposal

LBNL DOE BES,
EERE, NE, FE

ExaSGD Reliable and Efficient Planning of the Power Grid ORNL DOE EDER,
CESER, EERE

ExaBiome Metagenomics LBNL DOE BER

ExaFEL Light Source-Enabled Analysis of Molecular
Structure

SLAC DOE BES

LANL ATDM Ristra Application LANL DOE NNSA

LLNL ATDM MARBL Multi-Physics Code LLNL DOE NNSA

SNL ATDM SPARC for Virtual Flight Testing and EMPIRE
for Electromagnetic Plasma Physics

SNL DOE NNSA
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2.1 KPP-1

KPP-1 quantitatively measures the increased capability of applications on exascale platforms compared
with their capability on the leadership-class machines available at the start of the project. Each application
targeting KPP-1 is required to define a quantitative FOM that represents the rate of science work for their
defined exascale challenge problem. FOM definitions are specific to an application area and are reviewed
both internally and externally (to ECP) to confirm that they are appropriate representations of capability
improvements for that domain. Because exascale challenge problems cannot be executed on petascale
resources, the FOM will typically account for differences in problem size, numerical precision, algorithm
complexity, and physical model enhancement to allow for an accurate measurement of the ultimate FOM
improvement used to satisfy KPP-1.

For KPP-1, a key concept is the performance baseline, which is a quantitative measure of an application
FOM using the fastest computers available at the inception of the ECP against which the final FOM
improvement is measured. This includes systems at the ALCF, NERSC, and the OLCF such as Mira, Theta,
Cori, and Titan—systems in the 10–20 PFLOP/s range. The expectation is that applications will run at
full scale on at least one of these systems to establish the performance baseline. In cases where this is not
possible, the largest scale run is scaled to the full system assuming perfect parallel efficiency. A challenging
situation arises when the final exascale challenge problem requires capabilities that did not exist at the
start of the project, e.g., new code coupling, new physics models, or algorithmic approaches. For these
applications, approximate estimates are constructed from individual code components with the expectation
that the baseline can be refined if necessary, once the new capabilities are in place.

Applications targeting KPP-1 are required to demonstrate improvements to their FOM throughout the
project on pre-exascale platforms. The teams’ progress in improving their FOMs and preparing their codes
for exascale architectures are reviewed annually by AD leadership and external subject matter experts (SMEs)
as part of the AD annual assessment. Progress toward KPP-1 is tracked between reviews with a dashboard
to monitor each application’s current FOM increase against their performance baseline.

Because an exascale machine promises approximately 50× the theoretical FLOP/s rate as the fastest
currently deployed machine, the ECP sets the minimum FOM improvement aggressively at a factor of 50.
The ECP supports complex multi-physics codes that put great demand on various aspects of the system:
I/O capacity and bandwidth, memory bandwidth, memory latency, i.e., not just floating-point instruction
capacity and throughput. Many applications are not based on algorithms that can make perfect use of
specialized hardware features. A key focus of ECP is not only improved use of hardware but also the
development of innovative algorithms that can achieve the same accuracy more efficiently. In cases where
new methodologies are developed, e.g., using lower complexity algorithms or reduced iteration counts, AD
projects must demonstrate equivalent or better accuracy relative to the baseline approach. Incentivizing
algorithmic advances is critical to the long-term impact of ECP in the computational science community.
While risky, any projects that are successful in this approach have the possibility of FOM ratios much greater
than 50. However, the final KPP-1 calculation gives no additional credit for measurements beyond the target
value of 50, so one extreme success will not skew the overall project metrics.

FOM formulations were initially developed by the sub-project leads and iterated upon and vetted over a
two-year period. This includes a panel of external subject matter experts, technical ECP leadership across
the entire management team, experts at each of the three computing facilities (ALCF, NERSC, OLCF), as
well as in ECP-wide meetings and previous project reviews. Furthermore, the KPP-1 definition, including
threshold and objective targets, were modified from original plans based on extensive external feedback.

The challenge problems defined by all KPP-1 (and KPP-2) applications represent ambitious but realizable
goals that take into account all of the risks and uncertainty of such a complex project. Given the presence of
accelerated schedules, highly specialized hardware, evolving software and application-level libraries, and open
questions about programming models and compiler technology, some of the applications are likely to fall
behind their initial schedule. On the other hand if many anticipated risks are never triggered, or are readily
mitigated, some or even all of the applications might achieve their individual KPP goals earlier than expected.
This best case scenario is accommodated by defining objective KPP values for each application subproject
which are based on stretch goals. Stretch goals are extended challenge problem definitions—challenge problems
that require additional physics capabilities, code coupling, more complex geometries, or in some cases even
larger problem sizes. Stretch goals represent a best-case scenario that require many key pieces falling into
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place, but they stand as critical definitions of most ambitious realizable goals each project can envision within
the scope of the current project.

Given the specialized nature of the hardware and the breadth and complexity of the application projects,
it is highly unlikely that all KPP-1 applications will meet or exceed the target FOM increase. ECP, therefore,
sets the threshold value for project success at 50% of KPP-1 applications, which is determined by the ECP
to be an ambitious but attainable goal (and concurred with by the ECP’s DOE sponsors). The objective
value for KPP-1 is 100% of the application subprojects meet or exceed their target FOM increase and also
demonstrate their stretch goal. This objective value is considered an extremely ambitious goal that will
further drive the science and engineering goals of ECP applications.

2.2 KPP-2

KPP-2 is intended to assess the successful creation of new exascale science and engineering DOE mission
application capabilities. Applications targeting KPP-2 are required to define an exascale challenge problem
that represents a significant capability advance in its area of interest to the DOE. These challenge problem
targets are reviewed both internally and externally to confirm that they are impactful, challenging, tractable,
and of interest to a key DOE stakeholder. The distinguishing feature of KPP-2 applications relative to those
targeting KPP-1 is the amount of new capability that must be developed to enable execution of the exascale
challenge problem. Many KPP-2 applications lack sufficient code infrastructure from which to calculate
an FOM performance baseline (e.g., they started in the ECP as mere prototypes). Without a well-defined
starting point at the 10–20 PFLOP/s scale, it is unclear what FOM improvement would correspond to a
successful outcome. A more appropriate measure of success for these applications is whether the necessary
capability to execute their exascale challenge problems is in place at the end of the project, not the relative
performance improvement throughout the project.

Applications targeting KPP-2 (Table 3) are required to provide a detailed milestone plan that outlines all
needed work to enable successful execution of their exascale challenge problem. These milestone plans and
the teams’ progress in executing them are reviewed annually by AD leadership and external SMEs as part of
the AD annual assessment. Progress toward KPP-2 is tracked between reviews with a dashboard to monitor
timely milestone delivery.

To quantitatively assess the successful completion of KPP-2, applications must demonstrate the capability
to effectively use exascale hardware to execute their challenge problem. Because access to exascale resources
may be limited and performance optimization may not yet be complete, KPP-2 applications can demonstrate
exascale capability without running their challenge problem at full scale. This requires application teams to
demonstrate: (1) parallel scalability sufficient to run at full exascale; (2) the ability to make use of specialized
exascale hardware features, such as accelerators; and (3) completion of all necessary physics and algorithmic
capabilities to successfully carry out the challenge problem. Internal and external review will confirm whether
a team has satisfactorily met all three requirements. The metric for success is exascale capability—a code
that runs on an exascale machine at the same rate or slower than on a pre-exascale machine will not be
judged to be successful.

The ECP National Nuclear Security Administration (NNSA) applications are primarily focused on
developing new and essential mission capabilities at exascale. All three NNSA ECP application projects
(WBS 2.2.5.01, 2.2.5.02, 2.2.5.03) therefore target the ECP’s KPP-2 metric. Because the national security
nature of the NNSA challenge problems requires a secure NNSA exascale computer (El Capitan), which
will not be available before the ECP’s current schedule to complete, progress and successful development
of exascale capability by these applications cannot be assessed in the same way as the open DOE Office of
Science (SC) applications. Instead, the ECP will leverage the NNSA Advanced Simulation and Computing
(ASC) Program milestone review and certification process by which these NNSA ECP applications will be
assessed annually from FY19–FY23 for the necessary physics and algorithmic capabilities needed to execute
their exascale challenge problems. The rigor of this process ensures that successful completion of these
milestones through the end of the ECP does indeed verify that these applications can execute their exascale
challenge problem once El Capitan enters its secure computing phase in FY24.

The applications targeting KPP-2 are working toward a significant advance in simulation capability
(physics and numerical fidelity) in a relatively short time. As such, it is judged to be unlikely that all
applications will be able to fully complete these ambitious objectives. Thus, the ECP sets the threshold
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value for project success at 50% of KPP-2 applications, which is determined by the ECP to be an ambitious
but attainable goal (and concurred with by the ECP’s DOE sponsors). Because the review and assessment
criteria are slightly different for the NNSA applications, 2 out of the 3 must demonstrate exascale capabilities
to meet the KPP-2 threshold.

Like KPP-1 applications, each KPP-2 application defines a stretch challenge problem that is above and
beyond the baseline exascale challenge problem. The objective value for KPP-2 is 100% of the application
subprojects demonstrate their stretch challenge problem.

2.3 KPP-3 for Co-design

KPP-3 is used to measure the impact of both co-design software products and the projects in the ECP’s ST
scope. ECP KPP-3 impact goals and metrics are the primary high-level means of connecting ECP co-design
efforts to the ECP effort as a whole. Achieving these KPP-3 impact goals defines how the ECP’s co-design
centers are reviewed and how their success is determined.

A KPP-3 integration goal for co-design is defined to be their impact and use on their application customer
codes, primarily the AD teams that are striving to meet KPP-1 and KPP-2 goals. The weights for the
co-design center goals are determined by the number of application teams that are relying on their software
products. Two co-design centers are considered high-impact (AMReX and CEED) and will be assigned a
weight of 2, one is considered medium impact (CoPA) and assigned a weight of 1, and three are considered
lower impact (CODAR, ExaLearn and ExaGraph) and assigned a weight of 1/2. This goal is explicitly
tracked and reported for satisfying KPP-3 requirements.

Verification of the success of this goal will be documented as part of the capability and performance
demonstrations on Aurora and Frontier needed to demonstrate completion of KPP-1 and KPP-2 objectives.
In cases where co-design capabilities are not explicitly required to meet KPP-1 and KPP-2 goals, separate
integration runs will be performed for KPP-3 verification.

For all co-design centers, both a passing score and a stretch goal on the number of applications that
they will be integrated into have been defined. The KPP-3 threshold is defined to be 50% of the products
meet or exceed their weighted impact goals. The weighted impact stretch goal is the maximum reasonably
achievable integration score for a co-design center if capability integrations are successful with all potential
ECP applications. KPP-3 objective is 100% of the products meet or exceed their weighted impact stretch
goals.

3. CHEMISTRY AND MATERIALS APPLICATIONS

End State: Deliver a broad array of science-based chemistry and materials applications that
can provide, through effective exploitation of exascale HPC technology, breakthrough modeling
and simulation capabilities that precisely describe the underlying properties of matter needed to
optimize and control the design of new materials and energy technologies.

The Chemistry and Materials Applications (CM) L3 area (Table 4) focuses on simulation capabilities
that aim to precisely describe the underlying properties of matter needed to optimize and control the design
of new materials and energy technologies. The underlying physics that governs these application areas is
computationally challenging. Capturing quantum effects can introduce significant communication nonlocality
and computational complexity, for example. Because efficiently scaling these methods to exascale is likely to
be difficult, a key assumption of the CM WBS L3 is that the L4 subproject leads already have significant
experience with their methods and algorithms on petascale HPC resources and thus have a good understanding
of where the biggest challenges to scalability are mostly likely to lie. The ECP is providing an essential
catalyst to help propel these efforts forward so that key DOE priorities can be achieved. Given that this is a
broad and very fundamental area of research with applications to many technology areas, it is understood
that the ECP cannot provide exhaustive coverage of this area.

3.1 LatticeQCD

Atomic nuclei and most particles produced by high-energy accelerators are tightly bound composites of quarks
and gluons. The fundamental interaction of these quarks and gluons is known as the nuclear or strong force,
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Table 4: Summary of supported CM L4 projects.

WBS
number

Short name Project short description KPP-X

2.2.1.01 LatticeQCD Exascale Lattice Gauge Theory Opportunities and
Requirements for Nuclear and High Energy Physics

KPP-1

2.2.1.02 NWChemEx Stress-resistant Crops and Efficient Biomass Catalysts KPP-1

2.2.1.03 GAMESS Biofuel Catalyst Design KPP-2

2.2.1.04 EXAALT Molecular Dynamics at the Exascale KPP-1

2.2.1.05 ExaAM Additive Manufacturing of Qualifiable Metal Parts KPP-2

2.2.1.06 QMCPACK Find, Predict, and Control Material Properties KPP-1

which is one of the four fundamental forces of nature (strong, weak, electromagnetic, gravity). These nuclear
interactions are defined with mathematical precision by Quantum Chromodynamics (QCD), and HPC is
required to predict the consequences of this underlying theory. The properties of the resulting bound states
and the nature of their strong, highly nonlinear interactions is the central focus of nuclear physics and the
context in which high-energy physics research must be conducted.

The strong interactions between quarks and gluons represent 99% of the mass in the visible universe.
Understanding these interactions and the phenomena that result is the central goal of nuclear physics. The
couplings between the quarks and the W, Z, and Higgs bosons lie at the heart of the Standard Model (SM) of
particle physics and can be studied, often with exquisite precision, by measuring the properties of the bound
states formed from these quarks and gluons. QCD is the fundamental theory of the interactions between
quarks and gluons and can be solved only through massive computation. Over the past three decades, QCD
computations have been a driver of and benefited from the spectacular advances in HPC. Computing at the
exascale is essential to reach two decadal challenges of central importance to nuclear and high-energy physics,
which are the challenge problems of focus for this project (LatticeQCD).

The advance to exascale capability over the coming decade offers exciting opportunities for groundbreaking
discoveries in high-energy and nuclear physics. Exascale computing has the potential to realistically simulate
the atomic nucleus and to discover the first harbingers of new laws of nature, revealing a deeper theory which
underlies the present “elementary” particles. These possibilities can be achieved only if new and impending
advances in computer science can be harnessed to provide a software framework that allows lattice QCD
code to efficiently exploit exascale architectures and application scientists to create and refine that code as
new challenges and ideas emerge.

3.1.1 LatticeQCD: Science Challenge Problem Description

Six computations representative of three of the common fermion actions that USQCD currently uses: (1) the
highly improved staggered quark (HISQ) action, (2) the domain wall fermion (DWF) action, and (3) the
Wilson-clover fermion action. The FOM for each action is determined from two benchmark components:
the generation of a gauge configuration and a typical suite of measurements carried out with that gauge
configuration.

HISQ : This benchmark (Table 5) carries out calculations needed to measure meson masses and decay
constants. The benchmark problem measures the rate of generating a new gauge configuration using a
molecular dynamics algorithm and the rate of making measurements on the gauge-field configuration.

DWF : As with the HISQ action, two figures of merit for the domain wall fermion component have been
adopted. The first measures the rate at which a current state-of-the-art gauge field ensemble can be
generated and the second calculates a suite of observable using this ensemble. See Table 6 for problem
specifications.

Exascale Computing Project (ECP) 8 PM-AD-1080



Table 5: LatticeQCD HISQ challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Meson decay constants and masses from first principles quantum
chromodynamics.

Numerical approach,
algorithms

Molecular dynamics, sparse matrix solution, deflation.

Simulation details: problem
size, complexity, geometry, etc.

Generate part of a lattice ensemble with lattice spacing of 0.03 fm on a
2403 × 384 grid with four flavors of highly improved staggered-fermion
sea quarks at their physical masses (but with degenerate up and down
quarks). Specifically, run 4 molecular-dynamics time units. Measure a
standard set of meson decay constants and masses on those lattices.

Demonstration calculation
requirements

An equilibrated ensemble is needed, which is estimated to require at
least 1,000 molecular-dynamics time units of evolution. Measurements
could be done on a single lattice.

Resource requirements to run
demonstration calculation

To equilibrate the lattice in preparation for the demonstration
calculation, 1,500,000 socket-hours on the exascale machine are needed,
where a performance of 100 GFLOP/s per socket is assumed. To run the
demonstration calculation of only two molecular-dynamics time units,
approximately 10 socket hours for gauge-field generation are required.
For demonstration of a single measurement, approximately 100 socket
hours are required.

Wilson-clover : The Clover benchmark has two components (Table 7). The first is the rate at which
dynamical Clover fermion lattices can be generated using a molecular dynamics algorithm. Several
solutions of the Dirac equation are computed and contracted to construct observables as part of the
second component of the benchmark.

3.1.2 LatticeQCD: Figure of Merit

The base FOM will be the geometric mean of the three component FOMs, with the components corresponding
to the three fermion types (HISQ, DWF, Clover-Wilson) described above. Each component FOM is calculated
as the geometric mean of the gauge-generation FOM and the analysis FOM for that fermion type. Each of
those FOMs is defined to be

FOM(Ba → Fb) =
ta(B)fa(B)nb
tb(F )fb(F )na

, (1)

where B, F represent the baseline and final system; a, b represent baseline and target problems; and t, f , and
n represent the wall time, fraction of the system used (assuming benchmark run is part of a large ensemble),
and complexity of the problem (FLOPs). After computing the FOM for each fermion type (HISQ, DWF,
Clover) on Aurora and Frontier, the team will choose the better result for each fermion type and take the
geometric mean of those three numbers to obtain the base KPP goal.

The baseline FOM is 9.56 per hour measured on up to 32k nodes on Mira. The current FOM measurement
is 71.22 per hour on up to 128 nodes on Summit. These measurements yield an FOM of 7.45. The full set of
node measurements are listed in Table 8.

3.1.3 LatticeQCD: KPP Stretch Goal

The stretch goal is simply stated: instead of choosing the better system F for each fermion type, the
team will compute the full FOM for both Aurora and Frontier on their own. The stretch goal is then that
both the LatticeQCD base is optimized for both Aurora and Frontier to the point that FOM(Aurora) and
FOM(Frontier) each exceed 50×.
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Table 6: LatticeQCD DWF challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Study the decays of K, D and B mesons. Examine both simple
single-hadron final states and more complex processes involving
multi-hadron final states, decay-induced mixing, long-distance effects
and E&M processes.

Numerical approach,
algorithms

Use the methods of lattice QCD and a chiral fermion formulation. E&M
effects are treated with infinite-volume methods. Linear and bi-linear
combinations of composite operators are renormalized
non-perturbatively. Requires Lanzcos eigenvectors, deflation, all-2-all
propagators, all-mode-averaging, open boundary conditions and Fourier
acceleration.

Simulation details: problem
size, complexity, geometry, etc.

The target lattice volume is 963 × 384 with a lattice spacing of
a = 0.055 fm. The Wilson gauge action and Mobius DWF would be
used.

Demonstration calculation
requirements

• Monte Carlo evolution for 5 time units of the physical mass,
963 × 384, a = 0.55 fm ensemble. Start with a replicated
equilibrated configuration constructed from 162 periodic copies
of a 323 × 64 configuration.

• Standard suite of measurements on a single configuration.

Resource requirements to run
demonstration calculation

25% of the full exascale machine for 6 hours for evolution and for 10
hours for measurements.

Table 7: LatticeQCD Wilson-clover challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Hadronic correlation functions and energies from QCD. On an ensemble
of gauge fields, construct Euclidean correlation functions within
many-body systems.

Numerical approach,
algorithms

Lattice QCD with minimum grid size of 643 × 128 and lattice spacing of
0.091 fm. Use the hybrid Monte Carlo molecular dynamics algorithm
and sparse matrix solutions. Analysis methods will use multiple
right-hand side solvers.

Simulation details: problem
size, complexity, geometry, etc.

Generate part of an isotropic Clover ensemble with 2 light physical
quark masses and 1 strange quark on a lattice size of 963 × 256, and a
lattice spacing of 0.06 fm. Specifically, will run 10 trajectories (Monte
Carlo time units) to observe behavior and stability of the algorithm.

Demonstration calculation
requirements

A fully equilibrated lattice is needed. This will require about 1,000
Monte Carlo time units. Measurement tests can be done on a single
lattice.

Resource requirements to run
demonstration calculation

Need to fully equilibrate an ensemble before measurements. Using
Summit as a baseline, this equilibration is estimated to require about
10,000 Summit node hours. For the FOM, 10 Monte Carlo time units
are required, needing ∼3,000 Summit node hours. Will test on a range
of machine sizes, but minimum is 256 Summit nodes. For the
measurement tests, a range of partitions will be tested on and can scale
to 2,500 Summit nodes. This test will require approximately 1,000
Summit node hours.
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Table 8: Node counts per component for baseline and current FOM measure-
ments.

Baseline Current

Component Machine Node count Machine Node count

DWF gauge generation Mira 8192 Summit 128
DWF analysis Mira 32768 Mira 32768
HISQ gauge generation Mira 12288 Summit 96
HISQ analysis Mira 12288 Summit 108
Clover gauge generation Titan 1024 Summit 32
Clover analysis Titan 128 Summit 16

3.1.4 LatticeQCD: Progress Toward Advanced Architectures

GPU Strategy

Our challenge problems and our FOM represent the three Lattice QCD code bases in wide spread use,
namely Chroma (Jefferson Laboratory), CPS (Columbia and Brookhaven), and MILC (MILC collaboration).
The codes specialize in three of the most common treatments of quarks, namely the Wilson-clover formulation
(Chroma), the domain-wall formulation (CPS), and the staggered formulation (MILC). We also support two
minor Lattice QCD code bases, namely HotQCD (HotQCD collaboration) and QEX (Argonne). The HotQCD
code is optimized for QCD thermodynamics and the QEX code is intended for exploration of a variety of
lattice field theories besides QCD. The three major code bases support the QUDA library (NVIDIA) and
some elements of the Grid code (Edinburgh University). The principal authors of QUDA are our NVIDIA
colleagues.

Currently, QUDA runs only on NVIDIA GPUs. For a few years, now, QUDA has provided the performance-
critical modules needed for our three major code bases to run efficiently on NVIDIA GPUs. The most critical
modules are the sparse matrix solvers. Others include the calculation of forces needed in the hybrid molecular
dynamics algorithm for generating gauge-field configurations. Particularly important recent developments are
mulitgrid solvers for both Wilson-clover-quark and staggered-quark formulations.

Grid, on the other hand, was originally developed with the KNL-type multicore architecture in mind.
However, it has been extensively reworked so that it now supports both NVIDIA GPUs and multicore
architectures. For efficient running on Aurora and Frontier, we intend to port QUDA and Grid to their
planned accelerators.

Progress to Date

Prior to the availability of Summit, We were already running efficiently on GPUs . When Summit first
became available, we measured the performance of the QUDA multimass solvers for both domain-wall (CPS)
and staggered (MILC) quark formulations. Results are plotted in Figs. 1 and 2. They compare CPU-only
running with CPU-plus-GPU running.

When these performance measurements were made, the GPU-direct feature was unavailable, and several
subsequent code optimizations had not been introduced. Thus, we were quite pleased with the GPU-plus-CPU
speedup of a factor of 10, node-for-node, over the CPU-only calculation. The GPU speedup is approximately
10×.

The Chroma code gauge-configuration generation benchmark improved dramatically in going from Titan
to Summit, thanks partly to the improved hardware, but mostly to algorithmic improvements, namely, the
introduction of the multigrid solver and related tuning.

Our FOM gives an indication of progress on Summit. The FOM has two components for each of the
three code bases, or six altogether. For each code the components benchmark the generation of a gauge-field
configuration and a set of measurements performed on a gauge-field configuration. Our first FOM compares
the Summit benchmark with the same benchmarks on Mira or Titan. The composite Summit FOM represents
a factor of 7.45 greater rate of scientific output than the Mira/Titan FOM. Our goal for Aurora and Frontier
is an improvement factor of more than 50.
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Figure 1: Weak scaling performance of the MILC/QUDA multimass HISQ
solver showing (left scale, blue) time to solution divided by node count and (right
scale, red) total teraflops/s vs. the node count with local volume 324 per GPU.
Circles show GPU + CPU performance (6 MPI ranks per node, 7 CPU threads
per rank) and plusses, CPU only (same ranks and threading). The GPU speedup
is approximately 10×.
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Figure 2: Weak scaling performance of the CPS/QUDA DWF solver for local
volume 16×123×12 per GPU, following the same plot layout as for MILC/QUDA
above. Solid lines show GPU + CPU performance (6 MPI ranks per node, 28
threads per rank) and dashed lines, CPU only (same ranks and threading).
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Since we ran this FOM in Spring 2019, there have been further improvements to QUDA and our code
support for QUDA, including out ability to support mixed-precision solutions, which reduces communication
loads. Further improvements include support for shared memory (NVSHMEM) and kernel fusion, which
eliminates some of the MPI overhead and kernel latencies.

Next Steps

Our software P6 Activity this year is primarily devoted to porting QUDA and Grid to the planned Intel
and AMD accelerators. If these efforts are successful, we expect both the CPS and MILC codes will then
run reasonably efficiently. The developers of the Chroma code are following a different path, exploiting the
existing Just-in-Time (JIT) capability of the Chroma code. The JIT kernels can either be converted to
Kokkos, which will have SyCL and HIP back ends or they can be compiled to LLVM, which appears to be a
common denominator code for NVIDIA, Intel Gen, and AMD accelerators.

We are experimenting with a variety of offloading methods, including SyCL, OpenMP-5.0, and Heterogeneous-
compute Interface for Portability (HIP). For both QUDA and Grid, as with NVIDIA GPUs, we depend
crucially on unified shared memory to ensure that C++ objects are offloaded properly without the need
for dissecting them and naming by hand all the class members. Thus we hope the necessary compiler and
hardware support is provided at the outset.

QUDA is currently being restructured to make it more amenable to porting. The QUDA port to AMD
is expected to be reasonably straightforward. The port to the Intel Gen architecture via SyCL and data-
parallel C++ is expected to be more involved. It will benefit from an effort to convert CUDA constructs to
data-parallel C++, which will reduce the needed number of CUDA replacements.

The recent Grid port to NVIDIA GPUs uses code constructs that are intended to make it easy to adapt
it to the Intel Gen and AMD accelerators. However, compiler deficiencies at present are preventing us from
making progress with the full code, so we are carrying out offloading tests on simplified examples of the same
coding strategy.

3.2 NWChemEx

The strategic goals of the NWChemEx project are as follows:

• To provide the molecular modeling capabilities needed to address two science challenges involved in the
development of advanced biofuels: the design of feedstock for the efficient production of biomass and
the design of new catalysts for the efficient conversion of biomass-derived intermediates into biofuels.

• To provide a framework for a community-wide effort to develop a next-generation molecular modeling
package that supports a broad range of chemistry research on computing systems ranging from terascale
workstations and petascale servers to exascale computers.

NWChemEx is based on NWChem, an application supported by the DOE SC Biological and Environmental
Research (BER) program office, which is an open-source computational chemistry program that is being
actively developed by an international consortium of scientists. NWChem is a high-performance parallel
code that provides a broad range of capabilities for modeling molecular systems. The NWChemEx project
is re-designing and re-implementing NWChem for pre-exascale and exascale computers. NWChemEx will
develop high-performance, scalable implementations of three major physical models:

• Hartree-Fock and Density Functional Theory Methods. Hartree-Fock and Density Functional Theory
(DFT) methods are the foundations for the physical models to be incorporated in the NWChemEx
framework. The implementation of these methods must be significantly revised to simulate the large
molecular systems in the targeted science challenges on exascale computers.

• Coupled Cluster Methods. A robust suite of canonical, domain local, and explicitly correlated (F12/R12)
Coupled Cluster (CC) methods will be implemented in NWChemEx. These methods are the “gold”
standard in electronic structure theory and provide the level of fidelity required to address the above
targeted science challenges. Although the canonical CC implementation is far more computationally
intensive than domain local and explicitly correlated implementations, canonical CC methods are
required to validate the approximate localized and reduced scaling CC methods.
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In addition to the above, the NWChemEx project is developing Density Functional Embedding Theory
(DFET) in order to describe an active site and its environment. Embedding techniques provide a natural
and mathematically sound basis for seamlessly integrating subsystems with different electronic structure
representations, enabling the active site of interest to be described with high accuracy CC methods, while
using a lower fidelity method such as DFT to describe the impact of the environment on the molecular
processes in the active site. Finally, a number of auxiliary computational methods are being implemented
that will be needed to address the science challenges.

Although the NWChemEx project is driven by the two targeted science challenges, there are many other
science challenges within the mission of the DOE that can be addressed using this and future versions of
NWChemEx, including the development of new materials for solar energy conversion and next generation
batteries, simulation of chemical processes in combustion, predicting the transport and sequestration of energy
by-products in the environment, development of a science of synthesis, and the design of new functional
materials.

3.2.1 NWChemEx: Science Challenge Problem Description

To guide the development of NWChemEx, the NWChemEx project is focusing on two interrelated target
science problems that are critical for the development of advanced biofuels: (1) the optimization of feedstocks
for the efficient production of biomass for biofuels and other bioproducts on marginal lands and (2) the
development of new catalysts for the efficient conversion of biomass-derived intermediates into biofuels and
other bioproducts. The development of advanced biofuels is driven by both energy security and climate
change considerations. A major goal of DOE’s advanced biofuels program is to develop fuels that can use the
existing infrastructure and replace existing fuels on a gallon-for-gallon basis. However, producing high-quality
biofuels in a sustainable and economically competitive way is technically challenging, especially in a changing
global climate. The NWChemEx project directly addresses one of the Priority Goals in DOE’s 2014-2018
Strategic Plan, namely, developing high-performance computational “models demonstrating that biomass can
be a viable, sustainable feedstock” for the production of biofuels and other bioproducts.

Accurate quantum chemical simulation of the molecules and molecular processes that arise in the
development of advanced biofuels is not feasible using current computational chemistry packages and existing
computer systems. The molecular systems are complex and involve hundreds to tens of thousands of atoms
in an active site that is embedded in an environment that may contain hundreds of thousands of atoms.
In addition, the active sites themselves have a large and non-trivial configuration space—variations in the
spatial arrangement of the atoms that affect the reaction pathways, activation energies, and rates. The
relationships between the structure and composition of the active sites on the one hand and reaction pathways
and energetics on the other are poorly understood and lack predictive power. The two science challenges are
briefly described below, and problem details are listed in Table 9.

Proton Controlled Membrane Transport in Biomass Cellular Materials (Base).

The first focal point for the NWChemEx project is transport across cellular membranes in response
to biotic and abiotic stresses of importance to BER. Membrane transporters form gates between cells and
the environment for the flow of metal ions as well as carbon, nitrogen, nutrients, and metabolic products
and are key modulators of stress. An example is the Bax inhibitor that controls the transport of Ca2+

in transgenic sugarcanes. The process driving trans-membrane transport in the Bax inhibitor is poorly
understood, although from experimental studies the mechanism appears to be proton controlled and involves
two active sites, with one of those sites undergoing large conformational changes on protonation. It is critical
to have a detailed molecular understanding of transport processes involved in stress responses to develop
genetic modifications that lead to better stress-resistant crops.

Describing proton-controlled ion (Ca2+) transfer in the Bax inhibitor in its local cellular environment
requires modeling of hundreds of thousands of atoms to describe a suitable portion of the cellular membrane,
the 3,500 atom Bax inhibitor-1 protein, as well as a sufficient region of the immediate cytoplasmic environment.
Currently proton-controlled transport simulations can only be performed using standard force fields that lack
a description of the proton transfer process. Truly predictive modeling of this molecular system requires use
of high-level quantum mechanical methods, describing ∼103–104 atoms with CC methods embedded in an
environment of ∼105 atoms described by DFT to parameterize the proton hopping processes with chemical
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Table 9: NWChemEx challenge problem details.

Functional requirement Minimum criteria

Structure and energetics of
molecules

Solution of the electronic Schrödinger equation to predict the structures
and energetics of the reactants, products, and transition states involved
in the conversion of propanol to propene.

Numerical approach,
algorithms

Hartree-Fock, Density Functional Theory, and Coupled Cluster theory
(both canonical and reduced scaling versions). Coupled Cluster theory is
required to achieve an accuracy of 1 kcal/mol or better in the prediction
of the energetics of molecular interactions, including barriers to chemical
reactions.

Simulation details: problem
size, complexity, geometry, etc.

There are two targeted science challenges:
• In FY20, run calculations on fragments of the ubiquitin molecule,

which is typical of proteins like the Bax inhibitor. The fragments
begin with DGLRT, the 79-atom system used to benchmark
NWChem, and end in ubiquitin. These calculations are
representative of Science Challenge #1 and will define an interim
KPP-1 and FOM.

• In FY23, run calculations on the molecular system involved in
the dehydration of propanol by H-ZSM-5 zeolite. The unit cell of
the H-ZSM-5 zeolite is Si96O192, and the team will run
calculations to predict the binding energy of water and propanol
in the zeolite cavity. These calculations are representative of
Science Challenge #2 and will define the final KPP-1 and FOM.

Demonstration calculation
requirements

Iterative solution of the coupled cluster single and doubles (CCSD)
equations followed by the calculation of the perturbative triples (T)
correction. The latter is the most numerically intensive, time-consuming
part of the CCSD(T) calculation and has a well-defined dependence on
the computational details (number of electrons, number of occupied
orbitals, number of virtual orbitals, etc.). Both the CCSD and (T)
correction will be used to define the FOM.

Resource requirements to run
demonstration calculation

The computing resources needed to run the demonstration base FOM
calculation amount to the whole exascale machine for 2 hours. The
calculation requires an aggregate memory amount of about 10 TB of
data for the reduced scaling coupled cluster perturbative triples (T)
calculation.
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accuracy for subsequent use in, for example, simulation of proton dynamics using adaptive force fields and
molecular dynamics and long-time conformational sampling at timescales of milliseconds of protonated and
de-protonated states.

Catalytic Conversion of Biomass to Biofuels and Other Bioproducts (Stretch).

The second focal point for this project is the prediction of specific, selective, and low-temperature catalytic
conversion of biomass to fuels and other products within complex interfaces of importance to DOE SC Basic
Energy Sciences (BES) program office. Zeolites, such as H-ZSM-5, offer great promise for the catalytic
conversion of renewable biomass-derived alcohols into fuels and chemicals. Compared to metal oxides with
diverse surface and acid properties, zeolites have relatively well-defined and uniform Brønsted acid site
structures, which makes them amenable to rigorous kinetic and theoretical investigations of the effect of acid
strength and solvation environment and confinement on the reaction free energies. Although there have been
a number of prior atomic-scale computational studies of these systems, unraveling the true complexity of the
conversion process and identifying means of achieving conversions at lower temperatures and pressures is an
unsolved problem. Nonetheless, there exists a body of experimental data for multiple chemical transformations
of systems like propanol dehydration on which to benchmark new theoretical approaches and computational
models.

The NWChemEx project will develop the capabilities needed to accurately model propanol dehydration.
This requires (1) modeling the unit cell of the H-ZSM-5 zeolite along with propanol, water, and other species
involved in the dehydration process, which will involve ∼102–103 atoms, with CC theory, (2) embedding the
unit cell in the larger zeolite environment using embedding techniques based on the DFT method, which will
involve 104–105 atoms, (3) computing barrier heights and reaction energies to chemical accuracy (1 kcal/mol)
with well-defined error bars for both the enthalpic and entropic terms, which can only be achieved with
accurate CC methods and embedding methodologies, (4) inclusion of thermal effects on the reactants, products
and transition state, and (5) predicting reliable chemical rate data for the reactions involved in the reaction
network.

3.2.2 NWChemEx: Figure of Merit

For the FOM of the NWChemEx project, a minimum size of the ubiquitin molecule using an aug-cc-pVTZ
basis was selected as the benchmark molecular system for assessing the performance of NWChemEx on
ORNL’s pre-exascale Summit computer system. Ubiquitin is a protein molecule similar to molecules like
the Bax inhibitor involved in the first science challenge, and there is an abundance of experimental data on
ubiquitin and its fragments. Although it will be possible to run localized, explicitly correlated calculations on
ubiquitin, a 1,231-atom molecule, it will not be feasible to run canonical CC calculations on this molecule.
Since one of the goals in the first phase of the NWChemEx project is to validate the localized (DLPNO),
explicitly correlated (R12/F12) implementations of the CC method to show accuracy within 1 kcal/mol, a
sequence of ubiquitin fragments was generated starting with DGRTL, which has 79 atoms and is the largest
molecule that can be modeled by NWChem on Titan, and ending with ubiquitin. This sequence of molecules
is described in the report for Milestone 9.1 “Establishment of the Performance Baseline for NWChem” in
Jira (ADSE11-166). This sequence will be used to assess the performance and scalability (with respect to
molecular size) of the Hartree-Fock (HF), DFT, CCSD, and (T) methods being implemented in NWChemEx.

In the latter stages of the NWChemEx project, the physical models implemented in the first phase will be
optimized for the exascale computers expected to become available in FY22–FY23 and new physical models
will be implemented to describe chemical reactions and molecular excited states.

The protocol for calculating the FOM is as follows:

• Perform an NWChemEx canonical coupled cluster calculation, CCSD(T), on the largest molecule that is
feasible using 100% (or as much of the system as is available) of the exascale computer in approximately
two hours. Combined with previous canonical coupled cluster calculations with NWChem, these results
will be used to define the Base FOM for NWChemEx. The Base FOM will largely represent the advances
made in redesigning NWChemEx for exascale computers.

• After computing the Base FOM, a DLPNO-based, NWChemEx R12/F12 coupled cluster calculation
will be run on the target molecule—currently, a minimum size of ubiquitin. Comparing the timing for
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Table 10: Computational costs of the steps in targeted science challenge calcu-
lations.

Computational method Computational costs

DFT aDFTnitN
4
mo

Integral transformation aint(Nocc +Nvirt)
5

CCSD aCCSDn
′
itN

2
occN

4
virt

(T) of CCSD(T) a(T )N
3
occN

4
virt

this calculation with that from the canonical CCSD(T) calculation will define an enhancement factor
that quantifies the impact of the algorithmic improvements made in NWChemEx. Combining the two
results yields an Enhanced FOM.

The ECP will be provided with both sets of numbers—the first as the Base FOM and the second as the
Enhanced FOM.

There are two different series of benchmark molecules that the team proposes to use in the verification
stages of the FOM. These molecules have different characteristics—protein molecules like ubiquitin are
relatively compact molecules, while many catalytic molecules, like zeolites, are lattices with open pores. A
comparison of these two types of molecules will lead to a better understanding of (1) the approximations
made in the DLPNO coupled cluster calculations and (2) the dependence of the calculations on the size of
the molecules in the two series.

BER Benchmark (Base) : As noted above, ubiquitin with 1,231 atoms is too big for a canonical coupled
cluster calculation on even an exascale computer. To address this issue, a series of ubiquitin fragments
have been identified that start with the molecule used to assess the performance of NWChem (DGRTL,
79 atoms) and end with ubiquitin.

BES Benchmark (Stretch) : A series of zeolite fragments that increase in size, finally terminating in the
Si96O192 unit cell of H-ZSM-5 has also been identified. These fragments range from Si10O30H20 to the
unit cell (with or without terminating hydrogen atoms).

Details on the benchmark calculations and scaling : The CCSD(T) calculations on the targeted sci-
ence challenges require multiple steps, each with different characteristics. The impact of these variations
on the KPPs is reviewed in more detail below. A consequence of this variation is that the KPPs depend
on a few parameters that relate to the specific details of the target calculations. These details will not
be known until the final year of the project. Hence, there are some uncertainties associated with the
calculation of the KPPs and therefore of the FOM. The estimated computational costs of the various
components are summarized below.

In these expressions the factors a are prefactors that encapsulate cost factors that result from the specific
implementations of the particular components as shown in Table 10. The factors nit and n′it refer to the
number of iterations needed to converge the DFT and CCSD calculations, respectively. The variables Nmo,
Nocc, and Nvirt refer to the total number of orbitals, the number of occupied orbitals, and the number of
virtual orbitals, respectively. These orbitals are those included in the CC calculations.

In practice all the variables depend on the particulars of the calculation. However, for a given molecular
system and a given partitioning, the variables Nmo, Nocc, and Nvirt are well defined. The other variables
depend on the methods used to solve the equations. This causes some variability in the cost of a calculation
even when the molecular system is fixed. This variability may be exacerbated by differences in the scalability
of the different steps in the computation. Hence, if the KPP is defined as

KPP =
aDFTnitN

4
mo + aint (Nocc +Nvirt)

5
+ aCCSDn

′
itN

2
occN

4
virt + a(T )N

3
occN

4
virt

t
, (2)

where t is the time to solution, the overall result may be non-trivially affected by the variations in the different
factors. The headline cost is determined by that of the (T) correction of the CCSD(T) method, although the
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Table 11: Comparison of the computational parameters and estimates of the
volume of computation for the molecular systems of interest for benchmarking
NWChem (DGRTL) and NWChemEx (ubiquitin).

Molecular parameters DGRTL ubiquitin Ratio (= ubiquitin
DGRTL )

Natom 79 1231 15.58
Hatom/ (Catom+Natom+Oatom) 1.05 1.03 0.98
Nelectrom 292 4592 15.73
Nmo 424 6680 15.75
Nocc 146 2296 15.73
Nvirt 278 4384 15.77
KPP× t×

(
N3

occN
4
virt

)
1.9× 1016 4.5× 1024 2.4× 108

Table 12: Titan timings for DGRTL for the CCSD part of the calculation.

Nodes Cores Time to solution (s)

128 2 048 6 653.7
256 4 096 4 528.6
512 8 192 3 919.9

CCSD must be performant due to the iterative nature of the computation. The team proposes to compute
the FOM based on the CCSD(T) calculation:

KPP ≈
aint (Nocc +Nvirt)

5
+ aCCSDn

′
itN

2
occN

4
virt + a(T )N

3
occN

4
virt

t
, (3)

and

FOM =
KPPNWChemEx

KPPNWChem
. (4)

As noted above, one of the molecular benchmark series involves the protein ubiquitin. Since ubiquitin is
far too large for canonical CCSD(T) calculations with NWChem on Titan (and even canonical NWChemEx
on Summit), the use of smaller fragments of this protein was investigated. The smallest of these fragments,
DGRTL, is sufficiently small to run with current technology but large enough to provide timings that offer
meaningful insights about the performance of NWChem. This protein has 79 atoms and is near the limit of
what is computationally tractable at the present time. Further, this molecule has a H/(C+N+O) atom ratio,
1.05, which is close to that of ubiquitin, 1.03. The similarity of this ratio is critical for defining comparable
calculations on the small (DGRTL) and large (ubiquitin) molecules. Based on the relationships detailed in
the previous subsection, assessments can be made about NWChem’s behavior on a molecular system like
ubiquitin using the data from calculations on DGRTL as shown below. As shown in Table 11, the DGRTL
molecule is a successful mimic of ubiquitin—the ratios for the various parameters involved in CCSD(T)
calculations on the two molecules are confined to the range of 15.58–15.77—meaning that the ratios are
consistent enough to provide predictive power.

Timings on DGRTL for the CCSD part of the CCSD(T) calculation on different fractions of Titan,
ranging from 1/146 to 1/37 of the whole machine are show in Table 12. Extrapolating to the full machine
(18,688 nodes) will require additional scaling information on the CCSD since the scaling is not simple for this
computation.

CPU timings on DGRTL for the (T) part of the CCSD(T) calculation on different fractions of Titan,
ranging from 1/16 to 1/4 of the whole machine, as well as the estimated timing for the full machine (18,688
nodes) are shown in Table 13. GPU Timings on DGRTL for the (T) part of the CCSD(T) calculation on
different fractions of Titan are shown in Table 14.

The timings of the (T) correction for the CCSD(T) calculations on DGRTL as run on Titan are listed
above. As the code achieves a super linear speed up from 37,376 to 74,752 cores for the CPU computations,
there is no indication that the code is experiencing limitations in its scalability. Therefore, it seems reasonable
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Table 13: Titan timings for DGRTL for the (T) part of the calculation.

Nodes Cores Time to solution (s)

1 168 18 688 9 171.2
2 336 37 376 5 210.5
4 672 74 752 2 270.8
18 688 299 008 567.7 (estimated)

Table 14: Titan timings using GPUs for DGRTL for the (T) part of the
calculation.

Nodes Cores/GPUs Time to solution (s)

1 004 16 064/1 004 4 062
18 688 299 008/18 688 218 (estimated)

to extrapolate to the full machine, resulting in an estimated time to solution of 567.7 seconds. Combined
with the volume of work of 1.9× 1016, this gives KPPNWChem = 3.3× 1013/s. Assuming that (1) the same
code was used to calculate the (T) correction for ubiquitin on an exascale computer and (2) an FOM of
50 was achieved, 2.7× 109 s or more than 86 years would be required to calculate this correction. The
GPU extrapolation of the (T) correction for DGRTL on the full Titan machine only decreases the time
by a factor of 2.6. This clearly shows that the targeted science challenge is of a complexity that requires
exascale computing, and it also underscores the need for reduced order implementations of the CCSD(T)
method to bring solutions within reach even on an exascale machine. This is the reason that reduced order
implementations are one of the development targets of the NWChemEx project.

3.2.3 NWChemEx: KPP Stretch Goal

By the end of the Exascale Computing Project two exascale computing systems are expected to be available
(Frontier at ORNL, Aurora at ANL) as well as a more complete set of computational chemistry capabilities.
This will enable us to address far more complex molecular systems. Specifically, the team plans to model the
conversion of 1-propanol to propene in the zeolite H-ZSM-5 as the exascale scientific stretch goal. Zeolites
offer great promise for the catalytic conversion of renewable biomass-derived alcohols into fuels and other
chemicals. Zeolites have relatively well-defined and uniform Brønsted acid site structures, the sites responsible
for the conversion of alcohols to hydrocarbons, which makes them amenable to rigorous kinetic and theoretical
investigations. In spite of a number of prior atomic-scale computational studies of these systems, unraveling
the steps in the conversion process as well as the enthalpies, entropies and rates of each of these steps is still
an unsolved problem.

The capabilities in NWChemEx will be used to rigorously characterize the steps proposed by Zhi et
al. [1] for the conversion of propanol to propene as the stretch exascale target science problem. One or more
unit cells of the zeolite will be modeled along with propanol and other species involved in the dehydration
process, e.g., water. This will involve calculations on an active site with O(102–103) atoms using the high
accuracy coupled cluster CCSD(T) method embedded in a DFT description of the larger zeolite environment
of O(104–105) atoms. In addition, this will involve the potential energy surface sampling methods to obtain
enthalpies, entropies and rates. To be specific:

• Calculate the structures and energetics of the reactants, products, and intermediates involved in the
conversion of 1-propanol to propene.

• Calculate the structures and barrier heights of the transition states involved in the dehydration of
propanol.

• Calculate the rates of the reactions involved in the reaction network for the conversion of 1-propanol to
propene.
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Table 15: Timing for the (T) calculation of the DGRTL fragment using the
6-31G basis set using NWChem on Titan (with GPUs).

Nodes Cores Time to solution (s)

1 004 16 064 4 062
18 688 299 008 218 (estimated)

3.2.4 NWChemEx: Progress Towards Advanced Architectures

GPU Strategy

The Tensor Algebra for Many-body Methods (TAMM) computational infrastructure is NWChemEx’s
primary approach to obtaining high scientific productivity with portable performance. We anticipate that the
implementation of many of the physical models will eventually be based on TAMM. TAMM takes high-level
expressions describing computations on block-sparse tensors, decomposes these into a graph of dependent
tasks that is then passed to a backend for scheduling and execution. High performance is obtained in the
backend by focusing upon a small number (several tens) of kernels that are extensively optimized by the
vendor or other providers (such as cuBLAS or TAL-SH), or by code generation plus auto-tuning, or by hand
tuning. Currently these codes are written in CUDA, but future work will focus on models such as SYCL and
HIP to enable the code on Aurora and Frontier. The TAMM API includes high-level expressions, including
those for distributed, block-sparse tensors that will be used by the chemistry algorithms, thus ensuring that
changes in TAMM will propagate throughout the NWChemEx code.

One class of algorithms that do not map as well to TAMM is the DFT module. There are two components
to the DFT method: (1) the density fitting approximation for Coulomb operator and local density fitting
approximation for the exact exchange operator; and (2) the numerical integration of the density functional.
The numerical integration includes grid generation, weight computation, basis function evaluation, density
(and its gradients) calculation, density functional evaluation through LibXC, and the XC potential assembly.
All parts of the integration have been ported to GPU code using CUDA with the exception of the LibXC
functional evaluations which are still in progress. However, the LibXC evaluation has the potential to
make the biggest impact on the chemistry community since the LibXC project has agreed to work with the
NWChemEx project to ensure that the GPU changes from the NWChemEx project will be incorporated into
the public version of LibXC. OpenMP offloading of kernels is currently limited to a single target region and
is too restrictive for our application needs.

While NWChemEx will use appropriate ST project software as delineated in the dependency maps for
the project, the critical software technology for NWChemEx are BLAS, MPI, LAPACK, ScaLAPACK and
SLATE (when it is available).

Progress to Date

The canonical CCSD and (T) computations have been implemented using TAMM and have been ported
to the Summit GPUs using CUDA as the underlying GPU model. Multiple tests have been run using this
code to examine correctness, performance and scalability. The cases below are representative of the testing to
date.

Tables 15 and 16 and Fig. 3 show initial data to produce an FOM value of 27 using the DGRTL fragment
that is representative of the proton transfer in membrane science challenge for the canonical (T) calculation.
Table 15 shows data from the use of NWChem on Titan using the GPUs with an estimate of the time to
solution for the full Titan machine. Table 16 shows the same calculation using NWChemEx on Summit using
GPUs—again with a projection of the calculation to the full machine. Figure 3 plots shows additional data
for the (T) using NWChemEx on Summit in a graphical form. We currently observe non-linear scaling partly
due to the relatively small system size and also due to the fact that the new fused TensorGen kernels reduce
the compute time significantly and the communication costs starts to affect the linear scaling property of the
(T) calculation. With good communication overlap strategy, we expect to see closer to linear scaling with a
large enough system size.
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Table 16: Timing for the (T) calculation of the DGRTL fragment using the
6-31G basis set using NWChemEx on Summit (with GPUs).

Nodes Cores Time to solution (s)

220 9 680 112
4 600 202 400 8 (projected)

Figure 3: Time to solution versus number of nodes for the (T) calculation of
the DGRTL fragment using the 6-31G basis set using NWChemEx on Summit
(with GPUs).

Figure 4 shows the improvement of the canonical CCSD code on one node using improved kernel-level and
communication optimizations for the DGRTL molecule using an STO-3G basis set on one node of Summit.
The CPU code is using all CPUs on the node, while the GPU code is using the 6 GPUs. There is a 50 %
speedup of the calculation using the GPUs. While this is fairly modest, the initial profiling has shown multiple
pathways to improved performance.

Next Steps

Much of the next year will be devoted to developing the reduced scaling algorithms for the science
challenge. In particular, we will be implementing the domain local, pair natural orbital (DLPNO) versions
of the second order Moller-Plesset method, the coupled cluster cd single and double (CCSD) method and
the approximate triples (T). However, the team will also be developing these algorithms on the systems
available to us (Summit and JLSE) while planning for the future Frontier and Aurora architectures. Since
these methods will rely on the TAMM infrastructure, porting and tuning activities associated with TAMM
will benefit significant portions of the code.

The NWChemEx project has been integrating staff at the Oak Ridge Leadership Computing Facility
(OLCF), Argonne Leadership Computing Facility (ALCF) and National Energy Research Scientific Computing
Center (NERSC) into the project team to ensure that the software is portable and performant across multiple
architectures. In addition, we work closely with the vendors to make sure our planning efforts are as informed
as possible. The NWChemEx project recently held a meeting at Intel to help prepare for the Aurora software
stack using the JSLE system. As part of this meeting, strategies for porting CUDA to SYCL were discussed
and initial testing was undertaken. In addition, two members of the NWChemEx team attended the Frontier
kick-off workshop to ensure that the development path of the project is consistent with the directions for the
new architecture and associated software path forward.

3.3 GAMESS

Heterogeneous catalysis and the design of new catalysts is a grand challenge problem that will require the
availability of exascale computers. In order to take full advantage of exascale architectures, it is critical
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Figure 4: Single node performance using all CPUs versus 6 GPUs on Summit
for a CCSD calculation of DGRTL with the STO-3G basis.

that application software be developed that is capable of exploiting multiple layers of parallelism and takes
advantage of emerging low-power architectures that dramatically lower the energy/power cost without
significant deterioration of time to solution. This work will develop ab initio methods in the electronic
structure program GAMESS, based on fragmentation methods that have been shown to scale beyond the
petascale combined with quantum Monte Carlo. In order to attain exascale performance, GAMESS will be
refactored to take advantage of modern computer hardware and software, and the capabilities of the C++

libcchem code that is co-developed with GAMESS will be greatly expanded. Concurrently, performance
analyses will be done for the broad array of electronic structure methods in GAMESS on current and emerging
architectures to assess their ability to decrease time to solution while decreasing energy demands. The new
codes and algorithms that are developed will be brought to bear on the heterogeneous catalysis problem,
specifically using Mesoporous Silica Nanoparticles (MSN), requiring thousands of atoms, as a template.

MSN are highly effective and selective heterogeneous catalysts for a wide variety of important reactions
(including carbinoalamine which is a starter material for other structures). MSN selectivity is provided by
“gatekeeper” groups that allow only desired reactants A to enter the pore, keeping undesirable species B from
entering the pore. The presence of a solvent further complicates the problem. Accurate electronic structure
calculations are needed to deduce the reaction mechanism(s), including the effects of various solvents, and to
subsequently design even more effective catalysts. The narrow pores (2–4 nm) can create a diffusion problem
that can prevent product molecules from exiting the pore. Hence, in addition to elucidating the reaction
mechanism, it is important to study the dynamics of the reaction process, in which a sufficiently realistic
cross section of the pore is included. It has been common to approximate a system like this with a small
model, in the hope that the small model might provide insight into the actual system. However, a recent
computational study of MSN catalysis of carbinolamine formation demonstrated that small “toy” models are
inadequate both qualitatively and quantitatively.

3.3.1 GAMESS: Science Challenge Problem Description

The team will compute both energetics and dynamics on a model reaction with a representative MSN. An
adequate representation of the MSN pore requires thousands of atoms with an appropriate basis set. For
example, 5,000 heavy atoms with the aug-cc-pVTZ basis set requires more than 500,000 basis functions, not
including the hydrogen atoms, the reacting molecules, and (especially) the solvent molecules. The challenge
problem specifications are listed in Table 17.

The energy surface will be mapped via GAMESS calculations using the EFMO + RI-MP2 methodology,
with refined calculations using the EFMO+CR-CC (2,3) coupled cluster approach or GAMESS EFMO +
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Table 17: GAMESS challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

MSN Fragment energetics (reaction rates) and dynamics (diffusion rates)
computations with at least 10,000 atoms for the pore + solvent. The
go-to level of theory will be EFMO/RI-MP2 with an adequate basis set
(e.g., 6-31G(d,p)) for the pore + catalyst + gatekeeper. The solvent will
be treated either with the same level of theory or with EFP. Final
energies will be captured using multi-level EFMO calculations, with
either coupled cluster or QMC calculations for the reaction region and
RI-MP2 elsewhere.

Numerical approach,
algorithms

Configurations can be computed concurrently; each configuration will
utilize the EFMO fragmentation approach to spatially parallelize the
calculation of underlying quantum-chemistry methods which are
typically characterized by dense linear algebra like operations:
Hartree-Fock → RI-MP2 → Coupled Cluster / Quantum Monte Carlo
(QMC).

Simulation details: problem
size, complexity, geometry, etc.

At least 10,000 atoms, comprising the MSN pore, reactants, and
solvents. An estimated one million basis functions.

Demonstration calculation
requirements

Demonstrate the ability to complete the science challenge problem by
concurrently running a subset (1–10) of atomic configurations
concurrently with EFMO-RI-MP2 on the full exascale system.

Resource requirements to run
demonstration calculation

Full exascale machine for 2–4 hours for each energy + gradient RI-MP2
calculation.

QMCPACK Quantum Monte Carlo (QMC) approach (stretch goals) for more accurate reaction rates.
The pore selectivity dynamics will be computed with a Molecular Dynamics (MD) approach requiring

approximately 10,000 energetics type calculations utilizing the GAMESS + FMO code.

3.3.2 GAMESS: KPP Stretch Goal

The base goal will be a system comprised of 1,738 atoms plus solvent, giving an estimated total of 25,000
atoms. The stretch goal will be an expanded system with ∼76,000 atoms including solvent. The stretch
goal will allow a more realistic treatment of the diffusion problem. The baseline and stretch goals will both
include 20–40 points (energy + gradient) on the potential energy surface.

In addition, the base goal will treat all chemistry in the system at the RI-MP2 level whereas the stretch
goal will apply CC and QMC to activation areas and nearby dimer fragments.

3.3.3 GAMESS: Progress Towards Advanced Architectures

GPU Strategy

GAMESS is a multi-functional electronic structure code. The main components for the ECP Challenge
Problem are HF, second order perturbation theory (MP2), the resolution of the identity (RI) version of MP2,
and CC theory. The workhorse is expected to be RI-MP2, with the possibility of using CC for very high
accuracy in the “reaction region”. Both RI-MP2 and CC require HF as a starting point. We are pursuing
two GPU strategies: (a) the continuing development of the libcchem C++ library which already has HF and
RI-MP2 capability for both CPU and GPU and (b) direct offloading of GAMESS HF and RI-MP2 onto
GPUs. Both are being actively pursued and both so far are promising. Since a central component of our
overall ECP strategy is to use HF, RI-MP2 and CC within fragmentation methods (e.g., FMO and EFMO),
path (a) will be enhanced by the new libfrag generalized fragmentation library, while path (b) will make
direct use of the existing GAMESS FMO and EFMO codes.
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Figure 5: Speedup for LibAccInt on Summit.

Progress to Date

Currently implemented in Libcchem for GPUs are:

• One algorithm for computing the two-electron integrals (2-EI) that are a central bottleneck for HF
calculations;

• Hartree-Fock and MP2 for closed shell molecules; and

• RI-MP2 energy + gradients.

Now we consider actual results. Shown in Fig. 5 is the single node speedup curve for LibAccInt run
on Summit for a system of 150 water molecules. Each calculation used from 1–9 GPUs, each GPU being
associated with a unique MPI rank. Speedup for a single GPU is 10× relative to a single CPU calculation
using the LibAccInt CPU implementation. Single node speedup is ∼60×. The scaling with respect to the
number of GPUs achieves ∼97 % efficiency.

For the generalized Fock build, a similar graph is shown in Fig. 6, based on the same system on Summit.
Speedup for a single GPU is ∼2.5× relative to a single core calculation made with a previous version in
Libcchem. Single node speedup is ∼14.5×. The overall 9 GPU speedup is ∼21.5×. The scaling with respect
to the number of GPUs is ∼98 % of parallel efficiency.

For RI-MP2, an analogous graph is shown in Fig. 7, again on the water system on Summit. The overall
speedup for the 66 GPU calculation, relative to a single CPU socket, is ∼798×. The single node speedup is
∼89×.

Next Steps

Work currently planned for GPUs are:

• Improved scaling of the algorithms mentioned above. This includes profiling all codes and developing
proxy apps for the most important components.

• Implementation of alternative algorithms for 2-EI in order to optimize the efficiency of 2-EI. This is
part of a broader development of a general integral library called LibAccInt and the development of the
generalized Fock build (GFB). Improvements in both LibAccInt and GFB are planned.
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Figure 6: Speedup for a generalized Fock build.

Figure 7: Speedup for RI-MPI2.
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The implementation of CC methods and the RI-CC methods. The development of RI-CC methods is
particularly important. Because CC methods (especially CR-CC(2,3)), are the highest level of theory that will
be used in the challenge problem, and because CC methods are very computationally demanding (in terms of
both computer time usage and memory usage) relative to methods like RI-MP2, deriving and implementing
RI-CR-CC(2,) is essential since, like RI-MP2, applying the RI approach is expected to lose very little in
accuracy while greatly reducing computational time and memory cost.

3.4 EXAALT

MD is a cornerstone of computational sciences. However, over and over again, MD is prevented from achieving
complete scientific success by the inability to simultaneously reach the necessary length and time scales while
maintaining sufficient accuracy. While the raw computing power available at the exascale should allow for a
dramatic extension of the range of applicability of MD, conventional massively parallel codes suffer from poor
strong scalability. This implies that a simple scale-up of current practices would only enable the simulation
of much larger systems (billions or trillions of atoms) but would do little to improve current timescales (ns)
and accuracy (empirical potentials). As most challenging problems instead require accessing different regions
in the accuracy (A), length (L), and time (T) simulation space (ALT), one of the team’s key tools, MD, is in
danger of missing out on the exascale revolution.

The EXAALT project combines three state-of-the-art codes—LAMMPS, LATTE, and ParSplice—into
a unified tool that will leverage exascale platforms efficiently across all three dimensions of the ALT space.
The new integrated capability will be composed of three software layers. First, a task management layer
will enable the creation of MD tasks, their management through task queues, and the storage of results in
distributed databases. It will be used to implement various replica-based Accelerated Molecular Dynamics
(AMD) techniques, as well as to enable other complex MD workflows. The second layer is a powerful MD
engine based on the LAMMPS code. It will offer a uniform interface through which the different physical
models can be accessed. The third layer provides a wide range of physical models. In addition to the large
number of empirical potentials implemented in LAMMPS, it will provide high-performance implementations
of electronic-structure-driven MD at the Density Functional Tight Binding (DFTB) level, as well as to SNAP,
a high-accuracy machine-learned potentials.

The project involves two science challenge problems. The first challenge problem is related to nuclear
fission. Nuclear energy based on fission provides about 16% of the world’s electricity. However, only 4–6 % of
the uranium atoms in the primary fuel, UO2, are burned, leaving behind a vast energy resource and creating
a greater-than-necessary nuclear waste problem. One of the primary reasons is material integrity: as the fuel
burns, radiation damage and fission gases accumulate, causing swelling of the fuel, pellet-clad interactions,
and increased pressure on the clad. Because current burnup levels are predicated on understanding how the
fuel evolves, improved models of fission gas evolution offer the potential for extracting more energy from the
fuels. Density Functional Theory (particularly DFT+U) has provided significant insight into the kinetics and
thermodynamics of the defects that dictate fission gas evolution. These methods allow the electrons and
holes that accompany defects to naturally distribute themselves. For instance, when an oxygen interstitial is
inserted into UO2, it creates two holes that reside on U ions, changing their oxidation state from U4+ to
U5+. Critically, DFT+U calculations have identified larger defect clusters, containing up to four U vacancies,
as important for mass transport. However, DFT+U approaches are too computationally expensive to fully
characterize these defects. In contrast, empirical potentials are affordable but cannot account for the charge
redistribution, which is critical for correctly describing defect properties. For example, if holes are inserted
by hand (with explicit U5+ species whose pairwise interactions are different than for U4+), the agreement
with DFT + U calculations for static quantities is significantly improved. Unfortunately, this approach is
incompatible with studying dynamics, as holes need to be able to redistribute as the geometry evolves. Further,
different defects dominate behavior, depending on experimental conditions (e.g., temperature and burn-up).
Success involves knowing how these defects diffuse as a function of size, gas content, and temperature, as this
behavior forms the input to higher-level fuel evolution models.

Solving this grand challenge will require a significant advance in the ability to carry out high-accuracy,
electronic structure–driven MD simulations on the timescales that are necessary to observe diffusion of defects
while accounting for the changing polaron distribution. Given the size of these defects, relatively small
systems (<1,000 atoms) are sufficient. However, given the high barriers for U-defect evolution (∼2.5 eV), ms
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timescales will be required for the defects to move at the temperatures of interest (800–1300 K). This regime is
inaccessible on present platforms. Indeed, simulation rates of only 1 µs/d for electronic-structure-based DFTB
MD at the petascale are estimated. Therefore, the solution to this problem requires the development of a new
simulation capability for the exascale that can increase the timescales by 1000×. Developing a computational
capability to carry out this challenge problem at exascale is one of the stretch goals of EXAALT.

The second challenge problem relates to nuclear fusion. Realizing the promise of fusion as a commercially
attractive 21st century energy source requires advanced structural materials capable of sustained operation in
an extreme environment with high temperatures and high fluxes of helium, hydrogen isotopes, and neutrons.
The performance demands on Plasma-Facing Components (PFCs) of future fusion power plants are beyond the
capability of current materials. Tungsten will be the divertor material in ITER and is the leading candidate
material for DEMO and future fusion reactors. However, experiments indicate the possibility of substantial
surface modification in tungsten exposed to low-energy plasma containing helium. Experiments show that
nanostructured fuzz, a nanoporous phase with tendrils on the order of tens of nm in diameter, forms on the
surface when the surface temperature is between 1000 and 2000 K and the incident ion energies are between
20 and about 100 eV. Such surface features will impact heat transfer and fuel retention, increase the rates of
erosion through both sputtering and dust formation, and embrittle the divertor. These modifications to the
microstructure can lead to premature failure of the materials or quench the fusion reaction by cooling and
destabilizing the plasma. Given the critical importance of understanding and controlling these microstructural
changes, many possible formation mechanisms have been proposed. However, given the current lack of direct
evidence on the nature of the microscopic mechanisms postulated to be responsible for fuzz growth, none of
these models are widely accepted. However, some key facts are known. Transmission electron microscopy
suggests that the nanometer-scale tendrils of fuzz, and sub-surface regions of tungsten, contain gas bubbles
and/or cavities, which suggests that bubble evolution is an important process in fuzz formation in tungsten.
Fuzz growth is observed to proceed with no apparent saturation in thickness. This raises the question of
how low energy He finds its way deep below tendril surfaces. Additional questions arise beyond the obvious
question of the fuzz formation mechanism: (i) what factors control the temperature dependence of the He
accumulation and transition to fuzz formation? (ii) how does low-energy helium penetrate through a thick
tungsten fuzz layer to reach the bulk? and (iii) what mechanisms control the continued growth of fuzz?

While sophisticated efforts leveraging current leadership-class computing have enabled advances in
understanding, a direct and unambiguous solution to this problem remains out of the reach of current
capabilities. In order to identify the true origin of fuzz, simultaneous increases in time and length scales will
be required, a feat only possible at the exascale. Answering these questions is anticipated to require accessing
two regions of the ALT space: (1) 107 atoms over ms with (relatively inexpensive) conventional potentials, in
order to identify the nature of the mechanisms of roughening and early-stage fuzz growth and (2) 105 atoms
over ms at higher accuracy (and ∼100–1,000× the computational cost per atom), in order to investigate the
mechanisms that allow for transport of He along tendrils, while accurately accounting for competing kinetics
(trapping, desorption, agglomeration, and bubble nucleation). The fact that current simulation capabilities
fall short of this target by a factor of 1000× explains in great part why this crucial technological problem is
still so poorly understood. This second challenge problem is used to define the threshold goal of EXAALT,
and progress toward achieving the 50× threshold will be monitored through the KPP defined below.

3.4.1 EXAALT: Science Challenge Problem Description

Two exascale challenge problems are defined:

Fusion problem (Base) : The second target problem requires a dramatic extension of the reach of large-
size long-time MD simulations. The team aims at simulating the evolution of a tungsten first-wall in
conditions typical of fusion reactor operation. The primary target is to simulate a 105-atom system
with a quantum-trained SNAP potential. This second challenge problem is used to define the threshold
goal, and hence a KPP that will quantify the team’s progress.

Fission problem (Stretch) : The first target problem requires a dramatic extension of the reach of long-
time, high-accuracy MD simulations in order to simulate the dynamics of defects in UO2 on long
timescales with quantum-accurate fidelity. The target is to simulate the evolution of fission gas clusters
in 102-atom systems while accounting for the changing polaron distribution during the migration
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processes. Building a computational capability to carry out this problem at scale is a stretch goal of
EXAALT. Therefore, no KPP is directly associated with this challenge problem.

Details are listed in Table 18.

3.4.2 EXAALT: Figure of Merit

The FOM definition for EXAALT fusion problems is

FOM =
NtNatoms

t
, (5)

where Nt is the number of timesteps and t is the wall clock time. The current baseline FOM measurement
is 8,918,000 extrapolated to 49,000 nodes of Mira. The current FOM measurement is 169,831,000 from a
simulation on 1,000 nodes of Summit. These yield a FOM of 781,222,600 extrapolated to 4,600 nodes on
Summit.

3.4.3 EXAALT: KPP Stretch Goal

As discussed above, a key stretch goal of EXAALT is to develop a computational capability to carry out
the fission science challenge problem efficiently at the exascale. The proposed stretch goal is to deploy a
computational framework that can make efficient use of the exascale machines on this problem. The team
will strive to achieve a 50× speedup relative to its baseline (which is 5.7× 1010 atom3 timesteps/s), but the
measure of success will be the deployment of a high quality computational framework. This will involve:

1. Ensuring that the task management infrastructure is scalable: this challenge is shared with the base
KPP problem.

2. Making efficient use of the hardware by having all of the critical kernels offloaded to accelerators
and running efficiently: this is significantly harder for LATTE than for an empirical model, as many
functions contribute to the run-time in the former case. Further, the relative cost of these different
functions varies with the system size. This means that a large number of functions potentially have to
be ported to the accelerators in order to insure good performance over a range of system sizes.

3. Ensuring that the time-integration scheme is robust and stable enough to reach very long timescales.
This is significantly harder for problems that require solving a self-consistent problem at each iteration
than for conventional classical simulations. Indeed, at each timestep, LATTE has to equilibrate charges
before computing the forces acting on each atom. This process is usually robust but can occasionally
fail to converge, at which point it is not always clear how to further proceed. The failure rate in serial is
very low, but in a ParSplice setting where the number of replicas can be very large (e.g., 10,000), which
dramatically amplifies the overall failure rate. The team therefore has to develop extremely robust
approaches that can keep the failure rates to extremely low levels.

The second stretch goal encompasses both of the challenge problems. It consists of developing an
infrastructure to generate accurate physical models at scale. Indeed, if EXAALT achieves the aforementioned
goals, simulations themselves will be able to efficiently and routinely leverage exascale resources. In this
case, parameterizing the physical model that will be used to carry out the simulations will become the
main bottleneck. Obtaining these models is currently extremely time-consuming and labor-intensive, at it
requires generating and curating large sets of training and testing configurations, carrying out expensive DFT
calculations on these configurations, carrying out the fitting procedure to obtain a model that achieves a
sufficiently small discrepancy between predicted and measured values, and validating the model. Most often,
this process has to be repeated many times before a satisfactory result is obtained. This often involves human
intervention and manual data assimilation. In light of this challenge, the second stretch goal is to develop a
scalable infrastructure on which the whole model parameterization workflow discussed above can be executed
at scale, dramatically cutting down the time required to obtain high-fidelity physical models that can be used
in simulations. Finally, the team also aims to build an active learning framework where the model will be
improved on-the-fly as the simulation proceeds. Again, this would rely on the team’s ability to execute a
model parameterization workflow on-the-fly concurrently with a conventional ParSplice simulation workflow.
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Table 18: EXAALT challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Fusion problem: The first problem consists of investigating the
evolution of a tungsten surface, under conditions relevant to exposure to
a fusion plasma, using atomistic simulations. The main physics of
interest are the annealing mechanisms and characteristic timescales.
This problem will be modeled using a SNAP representation of tungsten.
This will access the intermediate-accuracy/long-time/intermediate-size
regime.
Fission problem: The second problem pertains to the evolution of
defects in nuclear fuels. The simulation will be carried using a
tight-binding description of UO2 containing an individual
oxygen/uranium vacancy complex. This will access the
high-accuracy/long-time/small-size regime.

Numerical approach,
algorithms

Parallel Trajectory Splicing—Parallel MD

Simulation details: problem
size, complexity, geometry, etc.

Describe size/scale/properties of physical system
Fusion problem: The reference simulation consists of a Sublattice
ParSplice simulation of a 105-atom system a damaged tungsten surface
typical of plasma-exposed conditions. The simulation will be carried out
at T = 800 K, which is a fusion-relevant temperature, using a SNAP
representation of tungsten. The baseline FOM corresponds to a SNAP
parameterization that uses 205 bispectrum components, or 205
descriptors of local atomic environments. A greater number of
bispectrum components gives higher accuracy, and this number of
components is consistent with the high accuracy desired for the final
science challenge problem calculations. Improvements in the SNAP form
developed under this ECP program, such as the new quadratic form or
neural network extensions, may allow the team to ultimately achieve
this same accuracy with fewer bispectrum components, and hence with
reduced cost. Accuracy is quantified as the average error in predicted
forces relative to a large database of DFT calculations. In the final
benchmark calculation used for the Fusion FOM, either the baseline
SNAP form or an improved SNAP form with accuracy equivalent to the
one used for the baseline calculation will be used.
Fission problem: The target simulation consists of a ParSplice
simulation of a 96-atom UO2 system containing an individual
oxygen/uranium vacancy complex at the DFTB + U level of theory,
using the LATTE backend. The stretch goal is to develop the
computational capability to carry out such a simulation at the exascale
using a combination of ParSplice, LAMMPS, and LATTE.

Demonstration calculation
requirements

The team anticipates requiring only a few runs at scale to demonstrate
this capability. In order to obtain an accurate performance benchmark,
on the order of fifty thousand timesteps on each replica (∼50 ps of
simulation time) are needed.

Resource requirements to run
demonstration calculation

The team anticipates requiring on the order of ∼10 hours on the full
exascale machine to demonstrate both challenge problems.

Exascale Computing Project (ECP) 29 PM-AD-1080



3.4.4 EXAALT: Progress Towards Advanced Architectures

GPU Strategy

EXAALT’s KPP is defined for our fusion challenge problem which is to simulate a surface of tungsten
in conditions typical of plasma-facing materials in fusion reactors. These simulations will use the Parallel
Trajectory Splicing technique, as well as a hierarchy of parallelization levels (over coarse domain elements,
over replicas, and over fine domain elements). The task management components of the calculations are very
light, so will not have to be ported to the GPUs. The overwhelming majority of the flops in the calculations
will be consumed carrying out molecular dynamics simulations on each worker process using the LAMMPS
MD code and the SNAP model of interatomic interactions. SNAP is a new generation of machine-learned
potential that promises high accuracy in exchange for a rather high computational cost. It is therefore
critical to efficiently port the SNAP MD kernels to GPUs in order to achieve optimal performance. Our main
approach is to rely on the Kokkos programming model, whose development is also supported by ECP. Kokkos
promises portable performance over a wide range of architectures, including Aurora and Frontier. The MD
code will be fully ported to Kokkos and will therefore be able to efficiently run on GPUs. In addition, in
collaboration with the CoPA (§ 8.2) co-design center and the NERSC Exascale Science Applications Program
(NESAP) program at the NERSC, we are developing a suite of SNAP proxy apps (TestSNAP) implemented
using different programming models, including OpenMP, CUDA, and OpenACC. This will allow us the
flexibility to assess the relative merits of the different approaches and insure we have a fall-back solution
in place if the deployment of a production-quality Kokkos backend on Aurora and Frontier is delayed. For
example, OpenMP will be supported by all upcoming machines and the CUDA version should be convertible
to the HIP runtime API relatively easily.

Progress to Date

Rapid progress on the development of a high performance implementation of the SNAP kernels has been
made over the last year, in preparation for early access to NERSC/Perlmutter and for upcoming exascale
machines Aurora and Frontier. This work resulted from a close collaboration between EXAALT, NERSC
(through the NESAP program), and CoPA.

The development of this new version proceeded by the extraction of a CPU SNAP proxy-app (TestSNAP)
from the LAMMPS codebase, its rewrite following the discovery of an algorithmic trick that can reduce
the number of executed flops, and the restructuring of its memory layout. These improvements yielded an
increase in simulation throughput of roughly 2.4× in CPU performance on the P9s of Summit. This version of
TestSNAP formed the basis on the new GPU implementation of the SNAP kernels. This new implementation
proceeded from scratch, completely independently of the previous Kokkos implementation. Multiple versions
were developed by the team, first using OpenACC, then CUDA, and finally OpenMP offload. TestSNAP was
re-engineered throughout the year, resulting in a spectacular increase in performance during the summer of
2019, from about 1 katoms-steps/wall-clock second in April to 40 katoms-steps/s in July, as shown in Fig 8.
At this point in time, the TestSNAP implementation was ported back to a production version of LAMMPS
using Kokkos. This effort yielded an increase of 5.5× in simulation throughput on the V100 of Summit, as
compared to the original Kokkos implementation that was used in production at the beginning of the year.

Since then, the Kokkos implementation has fully caught up with the latest CUDA version of TestSNAP,
which has provided further performance increases of about 50 %, putting the production version roughly on
par with the CUDA version of TestSNAP. As of the end of October 2019, the performance of the production
Kokkos SNAP kernel now stands at 43.6 katoms-steps/s per V100 on Summit, and at 4.8 katoms-steps/s per
P9 socket of Summit. Extrapolated to the whole machine, the production version of SNAP now delivers a
roughly 134× increase in FOM with respect to the baseline on ALCF/Mira obtained at the beginning of the
project. Runs at scale on Summit are projected to occur during Q1-Q2 of FY20.

Next Steps

Our strategy to prepare for runs on Aurora and Frontier relies on TestSNAP, our SNAP proxy app. Tests
on currently available architectures have shown that the Kokkos implementation of TestSNAP performs at a
similar level of performance as the other implementations, taking into account the subset of improvements
that are implemented in each. Our strategy is to rely on OpenMP (on Aurora and Frontier) and/or HIP
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Figure 8: CUDA performance of TestSNAP.

(on Frontier) versions in order to assess the performance of the kernels on the latest hardware and software
releases before full Kokkos support is available on these platforms. This will enable us to tweak and tune
the kernels and to preemptively implement improvements into the Kokkos version, in anticipation of its full
availability on the final hardware. This strategy will enable us to make steady progress towards developing
efficient implementations of the main kernels for Aurora and Frontier without having to wait for Kokkos
support first. We are working closely with NERSC through the NESAP program to make sure the kernels
show high performance on the upcoming pre-exascale machine Perlmutter and are in initial contact with staff
at ALCF in order to provide them with an OpenMP version of TestSNAP that can be used to monitor the
performance on Aurora testbeds and preliminary software stacks. We will initiate similar contacts at OLCF
in order to gradually adapt to Frontier’s hardware and software stack.

3.5 ExaAM

ExaAM, the Exascale Additive Manufacturing (AM) project, is developing the Integrated Platform for Additive
Manufacturing Simulation (IPAMS), a collection of capabilities to simulate metal AM processes at the fidelity
of the microstructure. By directly incorporating microstructure evolution and the effects of microstructure
within AM process simulation, ExaAM is enabling design of AM components with location-specific properties
and acceleration of performance certification.

AM is revolutionizing manufacturing, allowing construction of complex parts not readily fabricated by
traditional techniques. In addition, AM offers the possibility of constructing ”designer materials” by adjusting
process control variables to achieve spatially varying physical properties. Additive Manufacturing is a unique
application area due to its strategic importance to both US industry and federal agencies (DOE—including
NNSA, DOD, NASA). Although there has been significant interest and investment in AM, the fraction of
this investment devoted to modeling and simulation is relatively small and not focused on development of
high-fidelity predictive models but instead on reduced-order models for industry use. ExaAM represents a
unique opportunity to leverage DOE investments to address challenges that require exascale resources and,
to the team’s knowledge, are not being addressed by other AM modeling and simulation efforts.

In AM, a geometric description of the part is processed into 2D slices. A feedstock material is melted,
and the part is built layer-by-layer. In metal AM, the feedstock is often in wire or powder form, and the
energy source is a laser or electron beam. ExaAM is focusing on powder bed processes, where each layer
is approximately 50 µm. Hence, a part 1 cm tall would require 200 layers, each consisting of spreading new
feedstock powder and one or more passes of the laser or electron beam to sinter and/or melt the powder in
appropriate locations.

A complex interplay between multiple physical phenomena at spatial and temporal scales spanning
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Table 19: Computational simulation stages in an ExaAM simulation.

Stage Exascale Simulation Required computational capability ExaAM component(s)

0 Approximate full-part
build simulation

Macroscale thermomechanics Diablo

1 Prediction of “as-built”
microstructure

Coupled thermomechanics, fluid flow,
and microstructure evolution

Diablo + TruchasPBF +
ExaCA

2 Prediction of “late-time”
microstructure

Solid-solid phase transformations and
other mesoscale phenomena during
cooling

MEUMAPPS-SS

3 Prediction of
micromechanical
properties

Response of the predicted
microstructure to representative forces
at a sufficient number of locations and
synthesis of macroscale constitutive
models from microscale properties

ExaConstit

4 Full-part build simulation Macroscale thermomechanics using
derived constitutive properties

Diablo

orders of magnitude determines the performance of the final manufactured part. These include heat transfer
(conductive, convective, radiative, and evaporative), fluid flow, melting and solidification, and solid-solid
phase transformation. These phenomena are directly influenced by controllable process parameters, such as
the pattern by which each layer is melted, the diameter, magnitude, speed of the energy source, etc. In turn,
these influence the microstructure throughout the part, which determines local properties, residual stress, and
ultimately performance (e.g., strength, modal properties, service life). This sequence is often referred to as
the process-structure-property-performance (PSPP) relationship. There are significant gaps in understanding
the fully integrated sequence for AM processes; filling these gaps where possible, and quantifying uncertainties
where it is not, is key to unlocking the potential of AM.

The physical processes involved in AM are similar to those of welding—a field with a wealth of experimental,
modeling, simulation, and characterization research over the past decades. Unfortunately, the simulation tools
developed for welding and other similar processes, while calibrated and approaching predictive capability, are
inadequate for AM processes as demonstrated by the inability to predict the failure rate for new AM parts
which can be as high as 80%. The team believes that this is largely due to the fact that the process-structure-
property-performance relationship is traditionally analyzed in an uncoupled manner, relying on tabular
databases unable to adequately capture the implicit, dynamic, non-equilibrium nature of AM processes.
During AM processing, the part and the material are built at the same time.

One of the goals of ExaAM is to remove those limitations by coupling high-fidelity mesoscale simulations
within continuum process simulations to determine microstructure and properties using local conditions.
Typically, thermo-mechanical finite element models are employed at the macroscopic part scale; finite
volume or finite element models for fluid dynamics and heat transfer to capture the melt pool dynamics and
solidification at millimeter scales; mesoscale approaches (e.g., discrete elements, cellular automata, kinetic
Monte Carlo, or phase field models) to simulate melting, solidification, and microstructure formation at the
micron scale; and polycrystal plasticity models to develop the microscale mechanical property relationships.

A critical observation is that there is no single code able to capture all of the relevant physics required.
However, several codes have been developed to simulate phenomena similar to those required for AM, both
within the DOE complex and the broader computational science community. ExaAM is leveraging several
of those existing capabilities—enhancing and extending as needed and developing new capabilities when
necessary. These codes are components in a new software environment referred to as the Integrated Platform
for Additive Manufacturing (IPAMS).

A full ExaAM simulation consists of five stages, as listed in Table 19. For the purposes of estimating
computational resources, the focus is on only stages 1–3, since the cost of the stages 0 and 4 is relatively small
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Figure 9: NIST AM-Bench AMB2018-01 bridge structure used for the ExaAM
challenge problem. L1, L2, and L3 are thick, thin, and medium legs, respectively.
A section is a set of three legs along with the upper bridge structure.

and can be performed on capacity HPC computational platforms. Additional capabilities required as either
risk mitigation or to provide parameters for models above (e.g., sub-grain scale solidification microstructure
evolution via phase field and OpenFOAM for melt pool simulation) are also omitted from the remaining
discussion.

3.5.1 ExaAM: Science Challenge Problem Description

ExaAM will develop and deploy a collection of simulation capabilities for performing process-aware performance
modeling of additively manufactured parts using locally accurate properties predicted from microstructures
that develop based on local processing conditions. This capability will be demonstrated by simulating the
Inconel 625 (IN625) build of the complex bridge structure developed for the 2018 National Institute of
Standards and Technology (NIST) AM-Bench Conference known as AMB2018-01 (Fig. 9). A full description
can be found on the AM-Bench web site [2].

The threshold (base) simulation will be performed at the location at which measurements were performed,
2.5 mm above the base plate, for one of the thick legs. Since the alloy selected is IN625, which does not
exhibit significant microstructure changes due to solid-solid phase transformation and precipitate formation
during the build process stage 2 can be neglected from the threshold problem. Note that stage 2 would be
required for other materials such as IN718 or Haynes282, so stage 2 appears as a stretch science goal.

Tables 20 and 21 describe stages one and three in detail for the threshold challenge problem.

Notes:

• This estimate is for the threshold challenge problem only. The actual goal would be to predict
microstructure and properties throughout AMB2018-01, which would require significantly
more computational resources.

• This estimate includes a significant amount of flexibility (number of layers in Stage 1, number
of RVEs in Stage 3, etc.), allowing adjustment based on accuracy needs, better than expected
performance, or lower than expected performance.

• Memory is not anticipated to be a limiting factor.

3.5.2 ExaAM: KPP Stretch Goal

The planned stretch science goals for ExaAM are defined in Table 22.
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Table 20: ExaAM challenge problem details, Stage 1: As-built microstructure
prediction.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Thermomechanics, fluid flow, heat transfer with phase change (melting
and solidification), microstructure evolution

Numerical approach,
algorithms

Time-dependent Lagrangian FEM with nonlinear material models,
time-dependent Eulerian FVM, cellular automata

Simulation details: problem
size, complexity, geometry, etc.

For the purposes of this estimate, neglect the computational cost of the
far-field thermomechanical component To obtain thermal history profile,
each layer requires 250 domains of 1.0× 0.3× 0.2 mm with 5 µm zones
for 12.5M timesteps (0.5 µs timestep size) Microstructure evolution
occurs on the same set of domains, but at 1 µm resolution and a similar
timestep requirement

Threshold simulation
requirements

A representative volume of AM microstructure requires coupled
thermomechanical / fluid flow and microstructure development
simulation of five layers

Resource requirements to run
threshold calculation

Based on scoping simulations on Summit, the team estimates requiring
approximately 50 Summit nodes for 4 hours. Execution on Frontier
should require < 1 hour for a similar number of nodes.

Table 21: ExaAM challenge problem details, Stage 3: Micromechanical property
prediction.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Elastic-plastic response using polycrystal plasticity

Numerical approach,
algorithms

Time-dependent Lagrangian FEM with nonlinear crystal plasticity
material models using grain conforming mesh

Simulation details: problem
size, complexity, geometry, etc.

Each representative volume element (RVE) is a 100× 100× 100 µm
domain containing approximately 1000 grains, at 1 µm resolution (1M
zones)

Threshold simulation
requirements

For each RVE, up to 1% strain along 20 loading conditions at 10
temperatures, or 200 simulations for each RVE

Resource requirements to run
demonstration calculation

Approximately 10 locations (RVEs) will be required, resulting in a total
of 2000 independent ExaConstit simulations. Based on scoping
simulations on Summit, each simulation will require approximately 1
hour on 2 Summit nodes (4000 nodes for 1 hour for all 2000 ExaConstit
simulations). Execution on Frontier should require 10–15 minutes on a
similar number of nodes.
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Table 22: ExaAM science stretch goals.

Description Motivation Component(s)

Predict microstructure
and local properties
throughout AMB2018-01

Process optimization requires knowledge of local
microstructure and properties throughout

TruchasPBF,
ExaCA,
ExaConstit,
Diablo

Inform development of
reduced-order models for
AM process simulation

Topology and shape optimization require faster-running
models for process simulation

TBD

Detailed solidification
simulation (IN625, IN718,
and/or Haynes282)

Sub-grain microstructure and nucleation model to inform
grain-scale microstructure (ExaCA)

AMPE and/or
Tusas

In-situ annealing (IN718
and/or Haynes282)

Capture microstructure changes in materials the exhibit
significant solid-solid phase transformations and
precipitation during a build (Stage 2 in the workflow
above)

MEUMAPPS-
SS

Heat treatment (IN625) Capture microstructure changes during post-build heat
treatment (hours) of AMB2018-01

MEUMAPPS-
SS

Determine local crystal
model from annealed state
(IN625, IN718)

Capture changes in the local crystal model from
solid-sold phase transformations and precipitation during
cool-down and annealing

ExaConstit

Powder-resolved process
simulation

Capture details of melt pool behavior in order to
optimize process parameters to minimize porosity due to
keyholing, etc.

ExaMPM
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3.5.3 ExaAM: Progress Towards Advanced Architectures

As noted earlier, a full ExaAM simulation consists of five stages, as listed in Table 19, with stages 1 and 3
required for the threshold challenge problem.

In the discussion that follows, we group the components into the following three categories:

• Components required for the threshold challenge problem

• Components required for stretch science goals

• Prototype and proxy app components

GPU Strategy

The GPU strategy for each of the ExaAM components is as follows.

Threshold Challenge Problem Components

• Diablo: Given that Diablo uses implicit time integration, with the linear solve typically being 60 %
or more of the wall clock runtime, the primary strategy is to use GPU-enabled linear solvers. It is
currently anticipated that this will be Hypre.

• TruchasPBF: Use GPU-enabled Hypre solvers for the implicit time integration preconditioners and
linear systems (currently 80–90 % of execution time). Use OpenMP offloading with AMReX-managed
GPU memory to form the systems in order to minimize host-GPU memory transfers.

• ExaCA: Use of Kokkos for offloading of calculations to GPU.

• ExaConstit: The material models within ExaCMech are using RAJA to offload calculations to the
GPU. ExaConstit is being ported to the GPU through MFEM’s v4.0 support of running the assembly
operation using the GPU by formulating the assembly operation as a matrix-free operation using partial
assembly. Within MFEM, other matrix multiplication and iterative solver operations are supported
through Hypre’s GPU capabilities.

Stretch Science Components

• MEUMAPPS-SS:

1. Explore speedup using OpenACC in the current Fortran MPI version of MEUMAPPS-SS. Since this
step is already completed and significant speed up has been achieved, we are currently extending
this strategy to other MEUMAPPS-SS routines

2. Explore GPU based Fast Fourier Transforms (FFTs) in the Fortran test problem and investigate
potential for additional speed up (or not)

3. Explore speedup using C++ version of the test problem and using all available GPU options and
compare against the speed up achieved in 1 and 2 above, and make a decision whether or not to
implement this option on the MEUMAPPS-SS routines.

• AMPE: Use CUDA-based Hypre (Struct PFMG) for preconditioning linear solvers (∼60 % of wall
clock time). Follow SAMRAI strategy for the rest: RAJA + UMPIRE.

Prototype and proxy app components

• ExaMPM: ExaMPM uses the CoPA Cabana toolset to deploy the MPM algorithm. Cabana builds
on Kokkos and MPI and has been demonstrated to run a variety of accelerator-based HPC systems
including Summit. The entire application is developed in this manner such that all code (if appropriate)
is executed on the GPU. In addition, GPU-aware MPI is used for communication of data between
GPUs. Linear solves are currently provided through Hypre.
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• Tusas: In addition to utilizing GPU enabled solvers and preconditioners (Trilinos; Nox, Belos, MueLu)
Tusas utilizes a combination Kokkos data structures and parallel dispatch in combination with CUDA
for the Jacobian-Free, Newton-Krylov (JFNK) residual and preconditioner fills. The JFNK residual fill
is the most compute intensive component in Tusas.

Progress to Date

Acceleration progress to date for ExaAM components is described below.

Threshold Challenge Problem Components

• Diablo: Work toward GPU usage within Hypre is ongoing; its current state is that it exists, but does
not currently provide much performance improvement.

• TruchasPBF: The GPU-enabled Hypre Struct solver has been successfully integrated into the flow
model and used for the pressure projection solve and implicit viscous velocity update. However,
performance is poor relative to the CPU-based solver. This is most likely due to the relatively small
size of the flow problem (melt pool sized), making the GPU a poor match for these tasks.

Integration of GPU-enabled Hypre BoomerAMG for preconditioning the nonlinear heat transfer time step
system has been attempted but is not currently working. The issue appears to be incomplete/missing
GPU support for the Hypre semi-structured interface (SStruct) that is being used.

• ExaCA: The two most computationally-intensive subroutines- the updating of cell states and the
capture of new cells have been ported to GPU. ExaCA with GPU offloading has been run on single
nodes of Lassen (LLNL).

• ExaConstit: The material models within ExaCMech have been ported over to the GPU with a 16.7×
speed-up when comparing 1 Nvidia Volta against 7 IBM Power9 processors given a realistic workload of
350,000 quadrature points. The 7 IBM Power9s to 1 Volta GPU is the recommended division of work
for Summit. ExaConstit is still being ported over to the GPU.

Stretch Science Components

• MUEMAPPS-SS: Strong and weak scaling of MEUMAPPS-SS has been demonstrated previously.
The current goal is to achieve additional in-node scaling using GPUs and OpenACC. A MEUMAPPS-SS
test problem that involves the calculation of the elastic energy of a hard inclusion in a matrix was
run in Summit with either 42 cores using MPI or 42 cores and 6 GPU using OpenACC with jsrun

options of n = 6, a = 7, c = 7, and s = 1. For portions of the code where parallel loops were accelerated
using OpenACC, a maximum speed up of 7.2× was achieved. This includes the routines eldis.f and
elener.f. In Fig. 10, this corresponds to the black curve. Portions of the code requiring FFT calls
using P3dFFT where still run using MPI. The overall speed up for the test code including the time
taken for P3DFFT calls was 4.73× that corresponds to the blue curve in Fig. 10. The scaling for the
eldis.f routine continues to scale nicely up to 4203. This is the routine where converged displacement
field is calculated and uses GPUs to the maximum extent. This is the green curve shown in Fig. 10. The
speedup comes down significantly when the P3DFFT times are included because the total time spent
in the P3DFFT calls in the test problem is roughly twice the time spent in the GPUs. Therefore, the
speedup could be significantly reduced by decreasing the time spent in the FFT calls. Two strategies
are being explored: (1) Moving all the data to the GPUs and performing FFT calls using GPU based
FFT packages (CuFFT, ECP-FFT), and (2) explore efficiencies by introducing OpenMP threads in the
P3dFFT calls and assigning 1 MPI task per GPU with multiple threads per MPI task.

• AMPE: CUDA-based Hypre for preconditioning linear solvers coupled to AMPE proxy app (PFiSM)
and running on Summit (OLCF). RAJA + Umpire is still in development branch within SAMRAI.

Prototype and proxy app components
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Figure 10: Speedup obtained using OpenACC in MEUMAPPS-SS test problem
compared to all-MPI version using 1 code of Summit.

• ExaMPM: ExaMPM scaling studies on Summit are ongoing. We are exploring efficient domain
decomposition strategy using Cabana when the V100 GPUs are used entirely for the computation.
Current results indicate good strong scaling down to at least 300k particles per GPU. Based on this,
we expect the strong scaling behavior of the grid-based linear solvers to be more prohibitive than the
particle algorithms in the code. We expect this as current results from the solvers community indicate
at least 1M grid cells per GPU are needed for performance.

• Tusas: Tusas has been ported to Summit and has demonstrated a runtime speedup of 4× per node
(6 V100 GPUs versus 42 OpenMP threads or MPI ranks) as shown in Fig. 11. In addition, Fig. 12
shows strong scaling of Tusas on up to 6,144 Summit GPUs (1,024 nodes). We are currently testing
CUDA-aware MPI and utilization of the burst buffer.

Next Steps

Next steps for each ExaAM component are shown below.

Threshold Challenge Problem Components

• Diablo: Continue monitoring Hypre GPU improvements.

• TruchasPBF: Monitor Hypre GPU advances for the SStruct interface. Alternatively, move to the
GPU-supported IJ interface (costly).

Implement OpenMP offloading for computational kernels (system matrix/right-hand-side formation).
Shift to AMReX GPU-based multifab data structures.

• ExaCA: To achieve the desired speedup, it is likely that the “deep copy” operations performed each
CA time step between the GPU and CPU will need to be avoided. The offloading of all calculations
outside of initialization, file reading, and output, to GPU using CUDA-aware MPI should be the next
step.

• ExaConstit: The reformulation of ExaConstit’s assembly operation over to a partial assembly formu-
lation is being worked on with help from the MFEM team. Once this work is complete, strong scaling
studies will be conducted in order to compare the CPU only implementation against the CPU/GPU
implementation of ExaConstit. Additionally, a miniapp created for ExaCMech will be shared with
AMD and Nvidia engineering teams to begin engagements with them on ways that ExaCMech can be
improved to run faster on their platforms.
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Figure 11: Single node strong and weak scaling for MPI + Kokkos MPI, threads
and GPUs on Summit; one MPI rank per GPU for 16M unknowns. Color
represents Kokkos (OpenMP) only, MPI only, Kokkos (OpenMP) + MPI and
Kokkos (Cuda) on GPUs. The horizontal axis represents the number of processor
elements, ie. number of threads, number of MPI tasks or number of V100 GPUs.

Figure 12: Strong scaling for MPI + Kokkos GPUs on Summit; one MPI rank
per GPU. Color represents fixed problem size 67M unknowns on up to 6,144
GPUs (1,024 nodes). The figure confirms that ∼2M unknowns per V100 GPU
are required to maintain efficiency.
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Stretch Science Components

• MEUMAPPS-SS: Extend OpenACC to all parallel loops in the MEUMAPPS-SS routines and evaluate
speed up compared to all-MPI code using multiple Summit nodes.

Run OpenACC with other GPU based FFT packages, especially the ECP-FFT package with brick
domain decomposition.

Re-write MEUMAPPS test problem in C++ and explore GPU acceleration using all available options.
If the speedup is better than what has been achieved with OpenACC, a decision will be made to extend
this option to other routines in MEUMAPPS-SS.

• AMPE: Adapt AMPE to latest SAMRAI and Sundials releases to benefits from their recent/ongoing
support for GPUs.

Prototype and proxy app components

• ExaMPM: Continue Summit scaling studies to further assess the behavior of the domain decomposition
algorithm for particles. Assess scaling/performance on Summit in the implicit case using linear solvers
for the grid portion of the algorithm.

• Tusas: Some further optimizations of Kokkos use within Tusas are needed in terms of memory layout
and memory management between the host and device. Tusas currently utilizes a graph coloring
approach which avoids shared memory race conditions and the use of atomic operations on threads
and GPUs; examination of the use of atomic operations will be initiated in FY20. Tusas will rely on
Kokkos for leveraging the AMD GPUs on Frontier; we will examine HIP and ROCm alternatives to our
specific CUDA implementations in FY20.

3.6 QMCPACK

The ability to computationally design, optimize, or understand the properties of energy-relevant materials
is fundamentally contingent on the existence of methods to accurately, efficiently, and reliably simulate
them. Quantum-mechanics-based approaches must necessarily serve as a foundational role, since only these
approaches can describe matter in a truly first-principles (parameter free) and therefore robust manner.
Materials design has progressed from the study of simple bulk properties to targeting collective effects in
strongly correlated materials such as magnetic ordering, phase transitions, and quantum coherence. This
requires a fundamentally different set of computational tools than have been used in the past. Quantum
Monte Carlo methods are ideal candidates for this since they robustly deliver highly accurate calculations of
complex materials that do not artificially bias solutions of a given character. Significantly, with increased
computer power, the few approximations in these methods can be tested and systematically reduced, which
is not possible with other first-principles methods. See Ref [3] for a recent study of defects in phosphors.

The trade-off is that the computational demands of the QMC method are quite large. As an example, the
use of petascale computers has allowed calculations of the magnetic exchange in a copper oxide important for
understanding the mechanism of high-temperature superconductivity. However, this calculation involved
a highly symmetric supercell containing only 56 atoms, when a realistic model considering the defects and
dopants of actual superconductors would require at least several hundreds of atoms. The 10-year challenge
problem is to simulate transition metal oxide systems of approximately 1000 atoms to 10 meV statistical
accuracy, such as complex oxide heterostructures that host novel quantum phases, using the full concurrency
of exascale systems. The additional power and parallelism of exascale QMC will provide the essential
predictive and quantitative capability for these and related materials that lie well beyond the capabilities of
existing methods. Exascale provides the opportunity for highly impactful and enabling benchmark accuracy
calculations on these materials, providing the reference calibration data that is missing from essentially
all quantum-mechanics-based materials calculations today. This capability will be highly useful across the
materials sciences, nanoscience, and physics communities, particularly where experimental data is costly or
difficult to obtain.
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Table 23: QMCPACK challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Predict cohesive energy of a large supercell of nickel oxide (NiO) using
QMCPACK and diffusion Quantum Monte Carlo to an accuracy of
0.010 eV per NiO formula unit.
The FOM formula allows calculation of arbitrary supercell size but a
1,024 atom supercell calculation on exascale systems is anticipated.
To ensure the chosen target problems are both realistic and
representative, trial wavefunctions and pseudopotentials are specified
that are the same as in the team’s recent publications [4]; i.e., they have
passed scientific peer review and obtained sufficiently accurate results.

Numerical approach,
algorithms

QMC, basis-set, many-body WF approach

Simulation details: problem
size, complexity, geometry, etc.

The problem is defined by an NiO primitive bulk cell multiplied to the
chosen supercell size. This sets the number of valence electrons in the
computational problem, which scales in cost with the cube of the
number of electrons.

Demonstration calculation
requirements

Calculations should execute to completion and the resultant statistical
analysis of the equilibrated QMC data should yield of 0.01 eV/formula
unit error bar.

Resource requirements to run
demonstration calculation

Depending on the simulated problem size, a complete FOM run is
expected to use the full exascale machine for 1–4 hours. The FOM can
also be accurately estimated by measuring throughput at full scale of
the machine.

3.6.1 QMCPACK: Science Challenge Problem Description

The challenge problem is to calculate the cohesive energy of a large supercell of nickel oxide (NiO) using
QMCPACK and diffusion QMC to an accuracy of 0.010 eV per NiO formula unit at capability scale in a
reasonable and scientifically productive amount of wall clock time, e.g., < 1 day. The team anticipates a
minimum 256 atom supercell up to 1,024 atom supercell, as specified in the team’s original proposal, but the
current FOM (next section) is more flexibly defined and includes the formal power law scaling of the method
with system size. Details on the challenge problem can be found in Table 23.

NiO was selected as emblematic of the science challenges involving the complex physics of transition
metal oxides. This classic Mott insulator (more accurately a charge transfer insulator) defies non-empirical
predictions by other methods. NiO is also part of the class of materials that is being studied by a US DOE
BES’s funded Computational Materials Sciences Center. Success for the NiO problem will indicate that a
high and productive rate of computational work could be achieved for other challenging materials, including
those with strong electronic correlations, novel magnetic states, and a host of novel quantum phases.

While reaching the FOM indicates an ability to measure the total energy to a good accuracy with
reasonable time to solution, a highly productive science tool requires significantly more functionality including
a wider range of wavefunctions, a large range of observables (e.g., electron density, forces, density matrices), a
sophisticated trial wavefunction optimization scheme, support for multiple QMC methods, and viable sources
of input trial wavefunctions. The design templates established by reaching the FOM should be transferable
since these additional capabilities add computational cost and are therefore thought to increase ease of
mapping to different architectures. A key stretch goal is to ensure that low symmetry materials can be studied.
While these do not change the electron count and therefore formal computational cost, memory requirements
are greatly increased. This therefore requires support for localized orbitals to reduce memory usage and/or
successful development of latency hiding techniques to enable the use of slower or remote memory.
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3.6.2 QMCPACK: Figure of Merit

The FOM for QMCPACK is defined

FOM =
NsamplesNelec

wall time
. (6)

The baseline FOM is 1.004× 1014 on 18,000 Titan nodes. QMCPACK v3.5.0 obtains a FOM of 1.91× 1014

on 18,000 Titan nodes through the use of the “Fahy” determinant update variant.
A prototype port of mainline QMCPACK developed in March 2019 to use OpenMP target/offload

functionality results in a projected FOM of 37.4× 1014 on the entirety of Summit, assuming a 95% weak
scaling from single node results. This increased FOM results from improved algorithms for the costliest part
of the calculation and the capability to run much larger problems (512 atoms) than is feasible on Titan
due to the enhanced GPU memory size. However, due to the lack of efficient multiple Monte Carlo walker
vectorization/parallelization in this new port, efficiency and performance for smaller problems are poor. A
redesign of QMCPACK internals is being performed to support this in a maintainable and portable fashion.

3.6.3 QMCPACK: KPP Stretch Goal

Complete QMC workflow for a QMC calculation of a general low symmetry non-bulk system (e.g. defect or
interface) using localized orbitals.

Exact achievable size/complexity will depend on memory of A21 & Frontier, and memory reductions
achievable with using the localized RMG orbitals compared to delocalized schemes ∼ 7× for 512 atom NiO,
6.5 Bohr localization)

RMG localized orbital implementation and support in QMCPACK will need to be sufficiently capable,
portable.

3.6.4 QMCPACK: Progress Towards Advanced Architectures

GPU Strategy

This project is focused on the open source QMCPACK code, and targets both Aurora and Frontier.
To complete the Exascale challenge problem (KPP-1 or stretch), this probAs part of several milestones in
previous years, the application and key Quantum Monte Carlo algorithms in it have been extensively profiled.
Mini-apps have also been constructed and verified to represent the essential operations of the main algorithms
with good fidelity. By study these results as a function of simulated system size for candidate FOM problems,
the development team have firmly established which kernels are essential to execute on accelerator platforms.
There are around a half dozen flavors of kernel that are relevant. For the largest Exascale challenge problems
only the orbital evaluation and matrix updates are essential to accelerate, since they dominate execution time.
However, more kernels become relevant for smaller problems due to the accelerator equivalent of Amdahl’s
law.

QMCPACK has a several years old CUDA implementation, which we term the “legacy CUDA” implemen-
tation. This uses explicitly coded CUDA kernels, cuBLAS and cuSOLVER, and explicit memory management.
This runs relatively efficiently on current hardware, is part of the CORAL2 procurement, and is used for the
project FOM reference from Titan. It is also used for current INCITE science production. However, the
project is planning to move away from this implementation since it has a sparse feature matrix and the code
hard aborts when unsupported features are used—no fallbacks to CPU were implemented due to (at the
time) different data layouts between CPU and GPU, as well as other

The GPU strategy adopted by the project for QMCPACK is therefore to accelerate all the essential kernels
needed for a high FOM and to do so using an improved design that enables more flexibility in execution,
naturally provides CPU fallbacks, and allows multiple architectures to be more easily supported than present
by pushing architectural specific features out to the “leaf nodes” of the application.

Progress to Date

In FY19 and MS3.2, a major effort was spent assessing strategies for obtaining high GPU performance
in a portable and maintainable manner. Besides meeting the FOM, a key project goal is to minimize the
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amount of architecture specific code necessary to obtain high performance. Maintaining multiple architectural
implementations is not feasible long term and also adds significantly to the testing and development burden.

Kokkos and OpenMP v4.5 target/offload approaches were investigated via the mini-apps. In brief, both
were found to be generally capable but both had issues relating to current maturity and usability. The
Kokkos miniapp was demonstrated on a broad variety of platforms including ARM, x86, Power, and with
NVIDIA accelerators. While good performance was achieved with OpenMP offload, a key weakness of
OpenMP offload relates to the available compilers: only the IBM XL had sufficiently capability on Power and
was able to offload sufficiently efficiently to NVIDIA accelerators. It was also possible to retrofit OpenMP
offload to mainline QMCPACK and run a large FOM-sized calculation. In this regime, only the splined
orbital evaluation and matrix updates need to offload efficiency. An estimated 37× increase in FOM
on Summit was projected as part of MS3.2, using a 512 atom NiO supercell. This implementation is
included in QMCPACK v3.8.0 released 23 July 2019.

Performance studies performed as part of MS3.2 demonstrated that for the largest problems considered
(around 10000 electrons), even on today’s NVIDIA V100 GPUs, the application was barely in a regime where
all the kernels would have sufficient work to saturate the GPU. Smaller calculations using the “one walker at
a time” dispatch followed by the existing CPU algorithms would clearly not saturate the GPU and would
run inefficiently. Therefore, multiple walker simultaneous algorithms will be required on current and future
GPUs in order to sufficiently occupy the GPUs and run efficiently. We invented a generalization of the
algorithms used in the legacy CUDA implementation where individual CPU threads will propagate “crowds”
of walkers of variable size, and dispatch work to GPUs. (This is also referred to as “batching”.) This adds
the flexibility to vary continuously between a “one walker at a time” up to “all walkers simultaneous” style of
propagation, varying the work in the dispatched kernels and also increasingly the possibility to propagate
walkers asynchronously with different threads. We showed that even on CPU systems, crowds are a useful
concept that can result in faster overall execution due to better cache and memory bandwidth utilization.
Adding this additional flexibility requires a significant update to the application and is more significant to
the achievable performance envelope than picking any particular implementation route.

Besides identifying and GPU accelerating the major kernels in the application, the fundamental algorithms
used have also been reconsidered and new algorithms adopted in some cases. While most of the changes made
to date are small optimizations, a significant new algorithm was introduced for the Slater matrix updates
in real space QMC that yield substantial speedups for large problems. This is the most expensive kernel
for large problems and results in the formal numerical cubic scaling of QMC with problem size. Instead
of using the traditional Sherman-Morrison rank-1 updating, the new “delayed update” algorithm permits
changes to these matrices to be deferred for several Monte Carlo moves and then applied en-bloc. Crucially
this does not change the sampled path in the Monte Carlo and the quantities that need to be evaluated
based on the “updated” matrices can be calculated at low cost. This new algorithm enables much better use
of memory bandwidth by allowing uses of BLAS3 operations instead of BLAS1 and BLAS2 for the most
expensive part of the calculation. For systems with thousands-tens of thousands of electrons, such as the
FOM, speedups are dramatic on CPU like systems (e.g. 10×) and more modest on GPU system (e.g. 2×)
due to the different memory bandwidths and relative overall execution efficiencies of CPU code vs GPU
kernels and kernel launches. Performance comparisons using Kokkos to provide cross-platform portability
between CPU and GPU architectures are shown in Fig. 13.

Next Steps

We are currently finishing the implementation of new QMC drivers able to run crowds/batches of walkers
and dispatch their execution flexibly to CPUs or GPUs. Our initial implementation will use OpenMP offload,
but we retain the flexibility to write non-universal and potentially vendor specific code (e.g. HIP, CUDA) if
needed, or even abandon OpenMP and adopt a different technology such as Kokkos. Our goal is to transition
current production science to use this new implementation on Summit at the start of the INCITE year
2020. Significant additional work will be required over the remainder of the year to update the rest of the
application and to obtain fair performance. This new version will execute from a single code path and enable
the legacy CUDA and legacy array-of-structures CPU codes to be excised.

Development and verification of this new implementation is only possible due to the now sizable set of
tests that have been built up in the previous years of ECP. New bugs are now usually caught quickly, either
by unit or nightly integration tests. We have also begun adding fully deterministic tests to enable rapid
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Figure 13: Normalized time to propagate various size populations per walker
on a variety of (a) CPU and (b) GPU architectures for the 512 atom NiO cell
using the Kokkos implementation of miniqmc.

testing of the stochastic code. While these tests potentially require frequent updating, they have the benefit
of being totally reliable and repeatable unlike the existing stochastic tests which have occasional failures.
The deterministic tests will be expanded and we seek an automated maintenance strategy for them.

Once the new QMCPACK v4.0.0 version is running on Summit, we will assess and improve performance
e.g. by porting additional kernels. We will run this version on additional platforms and with additional
compilers as these become available via early access platforms such as the Cray Center of Excellence machines.
A key issue of concern is the lack of sufficiently mature OpenMP compilers targeting GPUs. On Summit
the capable IBM compiler currently only supports C++14, stopping us from moving to C++17. On AMD,
we have found and reported multiple issues with the AOMP OpenMP compiler using our miniapp and will
investigate the situation with the main application and latest compilers. The Intel compilers will similarly be
critically and urgently assessed.

4. ENERGY APPLICATIONS

End State: Deliver a broad array of science-based computational applications able to provide,
through effective exploitation of exascale HPC technologies, breakthrough modeling and simulation
solutions that yield high-confidence insights into a set of critical problems and challenges that
positively impact the nation’s energy security.

The Energy Applications (EA) L3 area (Table 24) focuses on modeling and simulation of existing and
future technologies for the efficient and responsible production of energy to meet the growing needs of the
United States. The applications in this WBS L3 generally require detailed modeling of complex facilities and
multiple coupled physical processes. Their goal is to help overcome obstacles to the efficient and safe delivery
of energy.

These applications are highly complex and involve the modeling of intricate geometric detail and the
inclusion of a broad range of physical phenomena. A key additional requirement for EA is broader community
adoption of the computational models and methods developed in the project, or in some cases the virtual
data sets or physical insights that result from simulations carried out in the ECP. Additionally, applications
are expected to influence, either directly or indirectly, design choices for both exascale hardware and software.

4.1 ExaWind

The scientific goal of the ExaWind project is to advance fundamental understanding of the flow physics
governing whole wind plant performance, including wake formation, complex terrain impacts, and turbine-
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Table 24: Summary of supported EA L4 projects.

WBS
number

Short name Project short description KPP-X

2.2.2.01 ExaWind Predictive Wind Plant Flow Modeling KPP-2

2.2.2.02 Combustion-
Pele

Combustion Engine and Gas Turbine Design KPP-2

2.2.2.03 ExaSMR Coupled Monte Carlo Neutronics and Fluid Flow
Simulation of Small Modular Reactors

KPP-1

2.2.2.04 MFIX-Exa Multiphase Flow Reactor Design KPP-2

2.2.2.05 WDMApp High-Fidelity Whole Device Modeling of Magnetically
Confined Plasmas

KPP-1

2.2.2.06 WarpX Plasma Wakefield Accelerator Design KPP-1

turbine-interaction effects. Greater use of the nation’s abundant wind resources for electric power generation,
reaching 30% of US electrical supply, will have a profound societal and economic impact: strengthening US
energy security through greater diversity in its energy supply, providing cost-competitive electricity to key
regions across the country, reducing greenhouse-gas emissions, and reducing water used in thermo-electric
power generation.

A key challenge to wide-scale deployment of wind energy in the utility grid without subsidies is predicting
and minimizing plant-level energy losses, which are currently estimated to be 20% in relatively flat areas
and much higher in regions of complex terrain. Current methods for modeling wind plant performance fall
far short due to insufficient model fidelity and inadequate treatment of key phenomena, combined with a
lack of computational power necessary to address the wide range of relevant length scales associated with
wind plants. Thus, the exascale challenge is the predictive simulation of a wind plant composed of O(100)
multi-MW wind turbines sited within a 10 km× 10 km area with complex terrain, involving simulations with
O(100) billion grid points. These predictive, physics-based, high-fidelity computational models, validated
with targeted experiments, will drive innovation in the blade, turbine, and wind plant design processes by
providing a validated “ground truth” foundation for new turbine design models, wind plant siting, operational
controls, and reliably integrating wind energy into the grid.

This multidisciplinary project embodies a systematic development of the modeling capability and com-
putational performance and scalability required for effective exascale simulations. The project plan builds
progressively from predictive petascale simulations of a single turbine, where the detailed blade geometry is
resolved, meshes rotate and deform with blade motions, and atmospheric turbulence is realistically modeled,
to a multi-turbine array in complex terrain.

This new M&S capability will establish a virtual wind plant test bed that will revolutionize the design
and control of wind farms and result in a significant advance in the ability to predict the response of wind
farms to a wide range of atmospheric conditions.

The primary application codes in the ExaWind environment are Nalu-Wind and OpenFAST. Nalu-Wind
is an acoustically incompressible Computational Fluid Dynamics (CFD) code written in C++, and it is a
wind-specific version of the Nalu code, a Large Eddy Simulation (LES) research code developed at Sandia
National Laboratories. OpenFAST is a whole-turbine simulation code written in Fortran 2003 that grew
out of FAST version 8. Nalu-Wind contains the infrastructure for discretization of the underlying models,
and it heavily utilizes the Trilinos Sierra Toolkit, which provides an unstructured mesh in-memory, parallel-
distributed database. The linear systems can be solved with hypre, Trilinos, or some combination of the
two. Moving meshes are handled with the overset approach, for which mesh connectivity and constraints
are created with the Topology Independent Overset Grid Assembler (TIOGA). In collaboration with the
DOE Wind Energy Technologies Office (WETO) High-Fidelity-Modeling (HFM) project, Nalu-Wind is being
continually appended and improved with wind-specific capabilities, including a new time-step algorithm,
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Table 25: ExaWind challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Low-Mach-number (acoustically incompressible) fluid flow with
fluid-structure interaction. A hybrid-RANS/LES model with
unsteady-RANS model will be used near turbine surfaces, and an LES
model will be used in the wake region.

Numerical approach,
algorithms

Unstructured-grid and/or structured-grid finite volume solver with
overset meshes and implicit pressure projection. Linear and nonlinear
structural finite element models.

Simulation details: problem
size, complexity, geometry, etc.

Four MW-scale turbines in a 2× 2 array residing in a volume of fluid
with dimensions 3 km× 3 km× 1 km. Minimum grid size of 20B points
with 100B DOF; the mesh will be refined to resolve the viscous sublayer
on blade surfaces.

Demonstration calculation
requirements

Simulation will be run with a time-step size that is representative of
statistically steady flow and corresponds to C = O(1) in most of the
LES regions, and C � 1 in the RANS regions, where C is the Courant
number.

Resource requirements to run
demonstration calculation

1 hour at full system utilization.

fluid-structure-interaction capabilities, overset-mesh capabilities, and hybrid Unsteady Reynolds-averaged
Navier-Stokes (URANS)—LES models.

4.1.1 ExaWind: Science Challenge Problem Description

The ExaWind challenge problem is a predictive simulation of a wind farm with tens of megawatt-scale wind
turbines dispersed over an area of 50 square kilometers. The goal is to capture crucial phenomena that
are under-resolved in today’s models, including wake formation, complex-terrain impacts, wake-atmosphere
interaction, turbine-turbine interaction, and blade boundary-layer dynamics. This target requires a ModSim
capability that resolves turbine geometry and utilizes adequate grid resolution (down to micron scales within
the blade boundary layers). The resolution must capture the upstream chord-scale atmospheric turbulent
eddies, generation of near-blade vorticity, and propagation and breakdown of this vorticity within the turbine
wake to a distance of many rotor-diameters downstream. This application uses the Nalu-Wind CFD code and
the OpenFAST turbine-simulation code that have been specifically designed for wind turbine and wind farm
simulations. The simulation will require a hybrid Reynolds-averaged Navier-Stokes (RANS)—LES turbulence
model, fluid-structure interaction, and atmospheric turbulent flow.

The simulation will contain at least four megawatt-scale turbines (e.g., NREL 5-MW reference turbines)
organized in a 2 × 2 array, and residing in a 3 km× 3 km domain with height of at least 1 km. A hybrid-
RANS/LES model will be employed for which an URANS model will be used near turbine surfaces and an
LES model will be used in the wake region. The simulation will have a mean wind speed at the turbines’
rated speed (e.g., 11.4 m/s for the NREL 5 MW reference turbine). The model will require at least 20 billion
grid points (and 100 billion degrees of freedom) to resolve the system, and near-blade grid spacing will be
such that the viscous sub-layer (within the RANS region) is resolved. A successful simulation will require an
optimized solver stack that minimizes time-per-timestep. A scientifically meaningful simulation duration
will be for at least one domain transit time (about 370 s for the 3 km× 3 km domain at 11.4 m/s). The team
will demonstrate that such a simulation is feasible within 4 weeks of system time. Details on the challenge
problem are given in Table 25.
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4.1.2 ExaWind: KPP Stretch Goal

The stretch-goal simulation will contain at least nine megawatt-scale turbines (e.g., NREL 5 MW reference
turbines) organized in a 3× 3 array, and residing in a 4 km× 4 km fluid domain with complex terrain and
with a height of at least 1 km. A hybrid-RANS/LES model will be employed for which an unsteady-RANS
model will be used near turbine surfaces and an LES model will be used in the wake region. The simulation
will have a mean wind speed at the turbines’ rated speed (e.g., 11.4 m/s for the NREL 5 MW reference
turbine). The model will require at least 30 billion grid points (and 150 billion degrees of freedom) to resolve
the system, and near-blade grid spacing will be such that the viscous sub-layer (within the RANS region) is
resolved. A successful simulation will require an optimized solver stack that minimizes time-per-timestep. A
scientifically meaningful simulation duration will be for at least one domain transit time (about 500 s for
the 4 km× 4 km domain at 11.4 m/s). The team will demonstrate that such a simulation is feasible within 4
weeks of system time.

4.1.3 ExaWind: Progress Towards Advanced Architectures

GPU Strategy

The primary application codes of ExaWind are Nalu-Wind and OpenFAST, which embody the numerical
models for the fluid and wind turbines, respectively. Nalu-Wind handles creation of the linear systems
associated with discrete operators under a semi-implicit, pressure projection time-update algorithm. The
primary simulation costs are the creation and solution of the linear systems for the momentum and pressure
equation systems. Due to mesh motions, those linear systems and preconditioners must be recreated at every
time step. Nalu-Wind is dependent on several libraries, most notably the Trilinos Sierra Toolkit (STK), which
provides an unstructured mesh in-memory, parallel-distributed database. Linear systems and preconditioners
can be created and solved with Trilinos, Hypre, or some combination of the two. Moving meshes are handled
with the overset approach, for which mesh connectivity and constraints are created with TIOGA (Toplogy
Independent Overset Grid Assembly), which is an open-source, third-party library created and maintained by
an ExaWind collaborator under subcontract.

In regard to the GPU strategy, the Exawind team has been preparing Nalu-Wind for GPUs through
the Kokkos abstraction layer, as are the key ExaWind components of Trilinos, including STK and the
solver/preconditioner stack. For solvers and preconditioners, a key strategy is to assemble matrices and create
preconditioners on the GPU rather than on the host to minimize the data movement. Efforts to prepare the
Hypre solver stack are happening within the ExaWind project and through collaboration with the Hypre
team. The Hypre strategy is around hardware-vendor-specific APIs, e.g., CUDA and HIP. TIOGA is also
being prepared for GPUs directly using CUDA. For both Hypre and TIOGA, the long-term plan is to use
HIP for Frontier.

OpenFAST is written almost entirely in Fortran. While it handles complex turbine multi-physics and
controls, it has dramatically less computational cost than Nalu-Wind. For the ExaWind challenge problem
OpenFAST is expected to run on the host rather than device.

Progress to Date

In this section we describe progress to date in preparing the Nalu-Wind software stack for GPU machines,
focusing on advances with the primary software components. GPU-performance testing has been performed on
NREL’s Eagle system (2 Intel Skylake CPUs and 2 NVIDIA Volta V100 GPUs per node), OLCF SummitDev
(2 IBM Power8 CPUs and 4 NVIDIA Tesla P100 GPUs per node), and OLCF Summit (2 IBM Power9 CPUs
and 6 NVIDIA Volta V100 GPUs per node).

Nalu-Wind

The Exawind team has produced initial simulations of the atmospheric boundary layer on hybrid CPU-
GPU architectures using the Nalu-Wind computational-fluid-dynamics code. The simulation was the result of
a focused effort of redesigning the numerical-discretization operators and linear-system assembly operations
using the Kokkos abstraction library within Nalu-Wind. In addition to linear-system assembly, the field-
update operations, Krylov solvers, and multi-threaded symmetric Gauss-Seidel (MTGS) preconditioning for
the momentum and scalar-variable solves were also performed on the GPU using the Trilinos solver stack.
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Figure 14: Nalu-Wind simulation times for an atmospheric boundary layer on
the NREL Eagle system.

Several other operations were partially offloaded to the GPUs through Trilinos solver and linear algebra
libraries (MueLu, Kokkos Kernels, etc.).

Simulations were performed for a 5 km× 5 km× 1 km domain at a coarse resolution (40 m cells) yielding
412,776 grid points. Figure 14 shows initial performance comparisons have been performed on the Summit
platform, and on NREL’s Eagle supercomputer. The Eagle hybrid CPU-GPU simulation took 30.2 seconds
to perform 10 timesteps (with 4 Picard iterations per timestep). In comparison, CPU-only (Skylake) flat-MPI
simulations took 157.3 s, 25.1 s, and 14.6 s for 1, 8, and 16 MPI ranks respectively (i.e., approximately 400k,
50k, and 25k grid points per MPI rank, respectively). Preliminary performance analysis indicates Eagle
there is a 5× speedup using a single GPU compared to a single CPU core. The ABL precursor simulations
were also performed on ORNL Summit system. On both NREL Eagle and ORNL Summit systems, it was
observed that a single V100 simulation is comparable to an 8-rank MPI CPU simulation.

Trilinos solver and preconditioners

The Trilinos solvers team has re-written the aggregation kernel coarsening phase kernel to use Kokkos and
leverage distance-2 coloring algorithm from Kokkos-Kernels. This removes a major impediment to the team
running a full simulation on GPUs. An initial end-to-end Nalu-Wind simulation was completed using the
Trilinos solver stack on two Summit nodes using 8 GPUs (1 MPI rank per device). Strong scaling results are
given in Fig. 15. The plots therein show the time per iteration for the momentum (15a) and continuity (15b)
solvers, respectively. Novel GMRES solvers based on s-step and pipelined methods have been developed in
the Trilinos Krylov library Belos1. Performance of the methods on a 3D model problem is shown in Fig. 16.

Hypre solver and preconditioners

The Exawind team in collaboration with the Hypre team at LLNL has performed initial runs of the
McAlister blade wind turbine problem using a multi-MPI multi-GPU implementation of the Nalu-Wind
computational fluid dynamics model coupled to the new low-synch GMRES solver. One MPI rank is assigned
to a processor coupled to a GPU. The mesh size for this problem is relatively large with over 3 million degrees
of freedom.

To prepare for GPU acceleration of the most time-consuming Nalu-Wind model and Hypre solver stack
components, a new momentum preconditioner and pressure AMG smoother were introduced into Hypre.
These are based on a Jacobi-Richardson type polynomial algorithm. Because the smoother depends upon

1Full descriptions are given in the submitted paper, Yamazaki et al. Low-synchronization orthogonalization schemes for
s-step and pipelined Krylov solvers in Trilinos
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Figure 15: Strong scaling for Nalu-Wind using Trilinos solver stack on Summit.

Figure 16: Scaling of s-step and pipelined GMRES in Trilinos/Belos on model
problem.
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Figure 17: Nalu-Wind + Hypre linear strong scaling for McAlister blade problem
on NREL Eagle NVIDIA V100.

matrix-vector multiplication kernels, the resulting performance both on CPU and GPU is optimal. Nalu-Wind
now exhibits near perfect linear strong-scaling on Eagle for the CPU version (see Fig. 17). In addition, the
multi-MPI multi-GPU code exhibits the same linear scaling pattern. We are able to achieve 3.5 seconds per
time step on 160 CPU MPI ranks at the strong scaling limit of 20,000 DOF per MPI rank. Preliminary
results indicate the CPU-GPU times are lower.

The model execution time breakdown at the strong scaling limit is now momentum solve 7.3 %, pressure
solve: 16.6 %, momentum assemble: 7 %, pressure assemble 5 %, AMG set-up 12.8 %.

TIOGA

The core component of the overset connectivity algorithm in TIOGA is the search for donors cells
amongst multiple overlapping meshes within the computational domain. Currently, the search process uses
an Alternating Digital Tree (ADT) algorithm within TIOGA. This algorithm has been ported to GPU
using native CUDA kernels. In addition, a new algorithm based on inverse-Cartesian map has been also
implemented.

The performance of the original ADT algorithm was compared on the ORNL SummitDev system and is
shown in Fig. 18. The performance of a single GPU execution (on NVIDIA Tesla P100 GPU) is compared to
the a full node CPU run (with 20 MPI ranks and 8 OpenMP thread = 180 processes). The performance
studies indicate a 1.7× speed-up for the largest problem studied.

The GPU performance of the inverse Cartesian map algorithm was compared to flat-MPI only simulations
on ORNL Summit system. For the comparisons, a single GPU (on NVIDIA Volta V100 GPU) is compared
against CPU simulations of the standard TIOGA search algorithm running on 84 MPI ranks (and no
OpenMP threads). Compared to the current production capability, the new inverse map algorithm showed a
performance improvement of 200×, which can be attributed to two factors:

• Inverse map algorithm is known to be 3–4× faster than ADT-based searches. However, ADT-based
searches are more robust owing to the simplicity of the algorithm.

• The ADT algorithm ascertains the containment of a point using an iterative Newton-type algorithm
that determines the computational coordinates of a given point against a curved cell. This step is
completely avoided in the line based-search that determines containment using intersection checks.

Next Steps
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Figure 18: CPU-GPU performance comparison on SummitDev for the original
ADT algorithm.

The ExaWind team is primarily focused on simulating its grand-challenge problem on Frontier, though it
is hoped that our use of Kokkos will enable simulations on Aurora with minimal changes. The Exawind GPU
strategy has relied heavily on the use of the Kokkos performance portability abstraction layer within the
Nalu-Wind application code and the Trilinos based libraries. Within those components, direct CUDA API
calls have been avoided in our runs on NVIDIA GPUs. Communications with the Kokkos authors indicates
that they are working to develop appropriate back-end layers for the AMD GPUs that are in the Frontier
platform. This is expected to result in minimal efforts on the Exawind team to adapt to the AMD hardware
with the HIP programming model. Within the non-Kokkos software components, CUDA API call will be
ported to HIP for Frontier simulations.

In regard to the Nalu-Wind CFD code, the team will perform thorough benchmarking and profiling to
identify bottlenecks and improve the Nalu-Wind design, as well as proceed to Phase 2 of the Nalu-Wind
transition effort to focus on the kernels necessary for blade-resolved overset simulations. For the Hypre
component, the team will perform thorough benchmarking and profiling to identify performance bottlenecks
and improve the Nalu-wind coupled to Hypre design. The strategy to further prepare Hypre for GPUs and
simulation runs on Summit and Frontier involves focusing on three core algorithms. These are

1. Sparse-matrix vector multiplies in a new Jacobi-Richardson AMG smoother and preconditioner.

2. Acceleration of the sparse matrix assembly in hypre within the function HYPRE IJMatrixAddToValues

with appropriate chunk sizes and avoid thread collisions (with LLNL).

3. Continue to accelerate the AMG set-up phase in Hypre with the LLNL Hypre team as this becomes a
tall pole at the strong scaling limit.

For the Trilinos stack, the solvers team will continue to benchmark and optimize performance of the
solvers using end-to-end simulations. In particular, we will focus on

1. Exploiting multiple right-hand side optimizations possibilities for segregated momentum solves.

2. Amortizing sparse graph initializations across linear solves.

3. Test the new s-step and pipelined Krylov methods in Trilinos/Belos within Nalu-Wind simulations.

4. Seek opportunities to reduce the number of kernel launches necessary.
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4.2 Combustion-Pele

Aggressive national goals for significantly reducing petroleum use and greenhouse gas emissions require major
improvements in all aspects of the nation’s energy use. Combustion processes have historically dominated
electrical power production and transportation systems. Despite major advances in improving the efficiency
and reducing the costs of alternative energy sources, combustion-based systems are projected to dominate
the marketplace for decades. Consequently, these systems need to be optimized for energy efficiency and
reduced emissions.

This project is structured around providing a combination of first-principles Direct Numerical Simulation
(DNS) and near first-principles (DNS/LES hybrids) simulations to advance understanding of fundamental
turbulence-chemistry interactions in device-relevant conditions. The exascale motivating problem is to perform
high-fidelity simulations of the relevant processes in a low-temperature reactivity-controlled compression
ignition (RCCI) internal combustion engine. The relevant processes include turbulence, mixing, spray
vaporization, low-temperature ignition, flame propagation, and soot/radiation. RCCI is thermodynamically
favorable relative to existing engines and hence holds the promise of groundbreaking efficiencies while operating
in a regime that limits pollutant formation. The roadmap towards this exascale-era motivating problem
includes simulation of a multi-injection low-temperature diesel jet into an open domain with a large alkane fuel
undergoing two-stage ignition processes, simulations of dilute spray evaporation and mixing, and simulation
of multi-injection with fuels of varying reactivity in a geometry that influences the mixing field. The latter of
these forms the challenge problem to demonstrate new exascale capability.

The motivating problem that anchors the team’s proposed development is a sufficiently realistic simulation
of the in-cylinder processes in an internal combustion engine utilizing low-temperature combustion (LTC),
for which RCCI is the exemplar. The enabled exascale-era simulations will address key scientific questions
regarding mixture formation effects, multi-stage ignition of a diesel surrogate fuel, lifted flame stabilization, jet
re-entrainment affected by cylinder-wall geometry, and emissions. The simulation will account for isentropic
compression, subsequent injection of the high-reactivity fuel, and combustion processes in a compression
ignition engine. Necessary physics include gas compression and models of fuel injection process, spray
vaporization (injection of liquid fuel sprays into high-pressure conditions), mixing, and combustion processes:
autoignition, flame propagation, soot and thermal radiation, all in a non-trivial engine geometry. The scenario
involves kinetically controlled processes in turbulent combustion including ignition, extinction, and emissions.
The application for this project, Pele, implements a hybrid LES/DNS approach in both the compressible and
low-Mach limits where, using the machinery of Adaptive Mesh Refinement (AMR), the team will refine to
the DNS limit where necessary to capture turbulence/chemistry interactions while restricting resolution to
that required for a high-fidelity LES model far from the flame. The physical problem characteristics and the
computational approaches, required to be performant on the exascale architecture. used to address them are
summarized in Table 26.

Progress is necessary on several challenging, but tractable, fronts. Existing simulation tools will need
to evolve to perform well on exascale architectures, maintaining existing physics capability along with
performance portability. Algorithmic and implementation issues involve new memory management and data
layouts that respect memory systems of emerging architectures, new load balancing and communication
strategies, communication avoiding linear solvers that trade communication for computation, strategies for
asynchronous task execution, and in situ analytics approaches. Improved modeling of physical processes is
also needed. The fidelity of physics models that are tractable at the exascale greatly exceeds that of current
petascale codes. High-fidelity physical models for non-ideal fluid behavior, sprays, soot, and radiation, as well
as non-trivial geometry, will enable a significant improvement in the realism of combustion simulations as
typified by the target problem. Thirdly, advances in numerical algorithms will be needed to treat new and
improved physical process models, optimize linear solvers to obtain good convergence rates with realistic
geometry, improve coupling of the various physical processes to expose parallelism while maintaining a high
order of accuracy, and optimize solution algorithms to handle the effects of non-ideal chemistry.

4.2.1 Combustion-Pele: Science Challenge Problem Description

The specific science-based challenge problem is derived from the roadmap toward the motivating exascale
era problem. Specifically, the challenge problem demonstrates the ability to simulate the interaction of two
fuels with varying reactivity under a multi-pulse injection strategy into engine-relevant geometry. It is a

Exascale Computing Project (ECP) 52 PM-AD-1080



Table 26: Physical characteristics and computational approaches.

Characteristic/need Approach

Impulsively started jets with disparate scales
between fronts and turbulence. (Outer scales:
10 cm, ms; Inner timescales: µm, ns)

Dynamic adaptive mesh refinement

High-speed injection followed by subsonic
conditions downstream

Compressible and low-Mach capabilities

Long time horizons to set up turbulence for
studying fundamental TCI

Hybrid DNS/LES (Non-reacting LES, DNS for
flame)

Lean, rich, and low-, intermediate- and high-
temperature chemistry critical in multi-stage
ignition and formation of soot precursors.

Accurate and detailed thermochemistry of
hydrocarbon fuels derived from theory driven
automatic mechanism development and reduction

Liquid fuel injection Lagrangian polydisperse spray model

Coupling between mixture preparation and
emissions

Detailed kinetics including emissions, soot model
with radiation

Mixture preparation dependent on re-entrainment
of combustion products

Realistic piston dish and cylinder wall geometry

baseline for a series of simulations that will enable isolating the impacts of effects such as spray evaporation
on mixture fraction and temperature, alternative fuels, and design of strategies to control combustion phasing
and subsequent combustion rate. The problem will be tractable under a realistic allocation using the
full capabilities of an exascale machine; within the projected 50–100× increase in productive capability of
Frontier beyond the capabilities of Titan, the simulation will execute in approximately 2–4 weeks of wall
time. Challenge problem details are given in Table 27.

4.2.2 Combustion-Pele: KPP Stretch Goal

As a stretch goal, multi-phase fuel injection and soot emissions will be simulated in Pele to provide more
realistic mixture formation (inhomogeneities of fuel and enthalpy distributions) conditions for downstream
combustion processes and mechanistic understanding of particulate generation from fuel wall films in gasoline
direct injection engines. Downstream combustion and emissions processes in engines are exquisitely sensitive to
upstream mixture formation. Spray droplets will be treated with Lagrangian parcels which will be injected at
the inlet adopting the multi-pulse injection strategy of our KPP baseline problem. The droplet size distribution
resulting from upstream spray atomization processes will be obtained off-line from existing volume-of-fluid
DNS of atomization, large-eddy simulation of engine spray combustion and/or engine experiments. DNS
of turbulent flame-wall interactions in the presence of fuel films will also be performed in Pele. Data from
the DNS will augment optical engine experiments to understand and predict the effects of temperature and
fuel/air equivalence ratio stratification on thermal pyrolysis and soot formation/transport from the fuel wall
films

Recent advances in ML/AI software and hardware technologies (such as the deployment of Summit with
TPU’s/GPU’s/CPU’s ) provide the potential to reframe the role of high-fidelity simulations in enabling
progress in combustion research and engineering design. Traditionally the scientific process involves a “human
in the loop” to analyze a device level experiment or challenge and abstract out a set of high-fidelity simulations
to be performed and used to develop reduced order models that, in turn, enable parameter exploration,
optimization, digital twins and control strategies. There are two aspects of this workflow where ML/AI
can be transformative that we will attempt to demonstrate with our stretch goal. First, AI techniques are
currently showing great promise for developing reduced order models (e.g. surrogate DNS, LES models) and
control strategies. Second, the judgement of the scientist, based on experience and heuristics, to determine
the necessary fidelity of the simulations for model development, is of paramount importance to effectively
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Table 27: Combustion-Pele challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Multiscale CFD with reacting flows in both low-Mach and compressible
formulations with DNS+LES turbulence resolution with multispecies
chemistry.

Numerical approach,
algorithms

Time-explicit and deferred correction strategies in a compressible and
projection-based low Mach formulation, respectively. Finite volume
spatial discretizations on block-structured AMR grids with embedded
boundaries. Hybrid DNS/LES to enable fully resolved (DNS) treatment
where turbulence-chemistry interaction occurs and modeled (LES)
treatment to reduce resolution requirements in low heat release portions
of the flow.

Simulation details: problem
size, complexity, geometry, etc.

Gas-phase simulation of multiple jets (4) interacting in a 1
4 scale

geometry (2.5 cm diameter) derived from a production engine piston
bowl with a flat head and centered fuel injector. Multiple pulses
including a low-reactivity and high-reactivity fuel capturing
cross-mixing and reactions between fuels using ∼30–35 species; 1.5 ms
physical simulation time; four levels of hierarchical mesh refinement;
finest grid 1.25 µm; realistic environment: >50 bar.

Demonstration calculation
requirements

Restart from checkpoint that gives us a realistic development of plume
into geometry obtained by running the case with restricted resolution
(two levels of mesh refinement), additional refinement added at restart,
for a total of four levels, and run 10–20 time steps to compute a realistic
grind time that can be used to estimate the cost of the full time horizon.

Resource requirements to run
demonstration calculation

Estimate to run 20-time steps is 1.5 hours using the anticipated full
system.
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(a) (b)

Figure 19: PeleC strong (a) and weak (b) scaling on Summit.

addressing the motivating question of interest. As part of our stretch goal, we will demonstrate the use of
ML/AI techniques to take a description of a question of interest along with a device level simulation to help
formulate the problem to be solved, in terms of characteristics such as accuracy of the chemical mechanism,
turbulence treatment, multi-physics closure models, number of realizations, etc. We will also explore the
ability of surrogate models using ML/AI that replicate the quantity of interest with similar accuracy as the
original high-fidelity simulation, but at considerably lower computational cost.

4.2.3 Combustion-Pele: Progress Towards Advanced Architectures

GPU Strategy

The Pele codes are based on the AMReX (§ 8.3) library for block-structured adaptive mesh refinement.
AMReX currently supports the use of CUDA, OpenACC and OpenMP. Internally, AMReX relies on CUDA
for NVIDIA accelerators, and is in the process of developing core-level support for AMD accelerators based
on HIP. A similar migration strategy will be implemented when appropriate for supporting Intel accelerators.
AMReX is currently expecting to support Intel through DPC++, but is waiting for Intel to release test
hardware and standards before making a final decision. AMReX also provides support for users to utilize
directive-based offloading strategies as an alternative.

Originally, much of the compute-intensive code in the Pele codes, PeleC and PeleLM, was written in
Fortran. PeleC was chosen for an initial port to GPU-based systems (during FY19) due to its simplicity
(with respect to PeleLM), and a dual-path strategy was selected for the port in order to guard against
uncertain hardware specifications. Along one of the code’s main execution branches (the so-called methods-
of-lines integrator), the Fortran code was annotated with OpenMP directives in order to off-load much of
compuatational work to GPUs. Along the second main branch (a spectral deferred corrections integrator),
the AMReX CUDA-based approach was adopted. This latter approach required a complete rewrite of the
associated Fortran code into C++. As shown in Fig. 19, both strategies performed equally well across a range
of Summit nodes in a strong-scaling and weak-scaling performance analysis.

Although much work remains in the optimization of PeleC for Summit-like architectures, lessons learned
from the PeleC work to date will be used in the initial port of PeleLM, scheduled for Quarters 2–4 of FY20.
PeleLM is much more complicated than PeleC due to the much larger numerical time steps that the low
Mach number formulation takes compared to that of the compressible formulation. First, the flow evolves
on a manifold of constant thermodynamic pressure. The underlying algorithms enforce this during the flow
evolution via the solution of a linear elliptic system. Next, the diffusion transport physics must be solved
time-implicitly for numerical stability which involves an array of linear parabolic solves. Finally, the chemistry
must be evolved time-implicitly.
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Table 28: Summary of the performance of the interpolation and deposition
kernels for a million particles employing the 4th-order interpolation and 43-stencil
deposition on a 643 mesh for different architectures (ns/particle).

Machine name Percival Percival Titan Titan Titan Summit Summit Summit

Execution space Serial OMP Serial OMP CUDA Serial OMP CUDA
CPU cores/GPUs 1 64 1 16 1 1 21 1
Interpolation 933 17 345 41 22 130 6.3 1.3
Deposition 14,046 294 4,460 510 77 4,231 269 3.6

Initial ports of the Pele codes have centered on the mesh-based physics (advection, diffusion, reactions)
integrated with time-explicit algorithms. Both codes are also being coupled to particle methods for multiphase
physics processes, including liquid spray dynamics and radiation transport. Similar to Pele’s dual-tracked
strategy for mesh physics, there are two approaches to implementing spray coupling, and both are being
developed in the context of PeleC first, and then will be migrated to PeleLM. The first approach uses a
Kokkos-based library, Grit, for the particle data and interaction models and the second uses the AMReX-
provided particle containers and iterators. PeleC-MP is the component of Pele for handling the particle-based
multiphysics. This component leverages the particle support provided by AMReX and the effort to port
particle physics to GPUs will culminate in a milestone scheduled for Quarter 4 of FY20. The excellent
scalability of the AMReX particle containers is shown in the associated sections on AMReX. However, like
the mesh data strategies, the AMReX approach requires a rewrite of the Pele multiphase interaction physics
modules, from Fortran to C++. Alternatively, the Grit library works directly with the original Fortran source
for the spray particle physics. It employs the Kokkos programming model for GPU acceleration and on-node
shared memory parallelism. In Grit, the governing equations of the Lagrangian phase are solved explicitly
through the Runge–Kutta method. The Eulerian simulations and MPI droplet exchange are conducted by
PeleC through the AMReX particle container. The coupling between the dispersed and gaseous phases is
through interpolation of variables from the Eulerian grid points of the gaseous phase to the particle positions,
and the distribution of the source terms back to the grid points from the Lagrangian particles. The on-node
performance of the interpolation kernel and the deposition kernel are benchmarked with respect to the number
of droplets, mesh sizes and orders of the Lagrange polynomial on a single Volta GPU on Summit. A summary
of the interpolation and deposition kernels benchmarks is shown in Table 28 with performance comparisons
on Titan, the Intel manycore CPU Xeon 7230 on Percival at OLCF and on Summit. Based on the Kokkos
programming model, Grit realized performance portability for different CPU and GPU architectures with
a single implementation. The latest GPU accelerator, NVIDIA Volta, on the pre-exascale supercomputer,
Summit, attains a 20-fold speedup compared with the speed of the NVIDIA Kepler GPU on Titan.

Additional features of the overall AMReX GPU strategy relevant to Pele developments include:

• Raw data (floating point, integer arrays and particles) is placed in managed memory. Application codes
can opt out of the default and manage chosen objects separately by hand or with AMReX Memory
Arenas. This decision simplifies the combined use of CUDA and directive-based offloading strategies.

• AMReX supports a C++ lambda-based launch system that offers inlining and portable GPU code.

• AMReX provides GPU-friendly implementations of common mesh, particle and particle-mesh operations,
including operations such as Saxpy, reductions, PIC methods and particle neighbor list constructions.

• AMReX provides functions for common parallel communication operations for mesh and particle data,
including ghost cell exchange and particle redistribution. These operations run on the GPUs without
triggering host/device copies and have been optimized for performance on Summit.

• AMReX has no external software dependencies other than the standard software stack requirements
such as working C++ compilers and MPI. However, AMReX does currently supply user-facing interfaces
for the CVODE libraries supported by the SUNDIALS project, the external PETSc and Hypre algebraic
multigrid solvers and HDF5. Aside from AMReX and the SUNDIALS library, the Pele codes have no
additional dependencies.
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Progress to Date

In preparation for the PeleLM port, a recent scaling study of the native geometric multigrid solvers in
AMReX shows a roughly 4–5× speedup on a Summit node relative to a Cori Haswell node.

Next Steps

Following the successful strategy used to port PeleC, the Pele project will follow AMReX’s lead to
determine how to best access the API’s and hardware accelerator(s) as they become available on Frontier.
The AMReX team uses a local workstation with a Vega 10 AMD graphics card for active HIP-clang code
development. Basic AMReX programs are successfully compiling and running with HIP-clang. HIP libraries,
including hipRand and HIP’s version of Thrust are going to be tested next. This development is currently in a
separate branch, but will be merged into AMReX proper once fully tested. Code differences, bugs and feature
requests have been identified and are being sent to AMD and ORNL to further improve AMReX and HIP
for Frontier. We believe that the HIP-clang code path chosen for AMReX is well-suited for implementation
within the Pele codes, and in FY20 we will begin to adapt PeleC to incorporate this approach and begin
gathering performance data to assess its abilities.

AMReX has compiled and run with HIP-nvcc on Summit as an intermediate step towards HIP on AMD
machines. AMReX will continue to use HIP-nvcc for a subset of bug and portability testing while HIP-clang
is being developed. The PeleC porting work in FY20 will begin by following the AMReX lead here; we will
get PeleC to build and run using HIP on Summit prior to working toward application on Frontier.

The Pele development team attended the Frontier Kickoff Workshop in September 2019. Pele was chosen
as a Center for Accelerated Application Readiness (CAAR) code team to receive testing and expert assistance
porting to AMD GPUs. That expertise will be utilized to port AMReX to HIP, as the underlying critical
framework, and to ensure that the ports are compatible with the requirements of the Pele codes. CAAR and
NESAP code teams are also provided access to an early test-bed system, which will be used for performance
analysis with HIP.

AMReX established an AMD contact for HIP and ROCm questions at the workshop and has begun
discussing bugs and feature requests needed for AMReX and its applications. The Pele development team
will utilize this indirect connection in order to ensure that the needs of the Pele codes are taken into account.

Like the AMReX team, the Pele team anticipates DPC++ to be the preferred API to run on Intel systems
and are awaiting formal releases of test platforms and standards before starting code development. The
AMReX development team has attended available tutorials and seminars on DPC++, SYCL and other
relevant Intel topics to keep up-to-date on the expected requirements for Aurora. The resulting knowledge
transfer into the AMReX library and API access will be of direct benefit to the Pele development efforts.

The Pele application suite was chosen to participate in Argonne’s Early Science Program (ESP). The
provided expertise and hands-on Intel support will be used to help port AMReX itself to Aurora, much like
the NESAP and CAAR programs have helped at NERSC and OLCF, respectively.

4.3 ExaSMR

Small Modular Reactors (SMRs) offer the prospect of affordable nuclear energy-based electricity production
while avoiding some of the traditional limitations that encumber large nuclear reactor designs, such as high
capital costs and long construction timelines. The current US nuclear fleet was built on a multi-decade history
of experimental and operational data; for licensing, SMRs leverage that experience but are dependent on
M&S for design optimization. However, industry-class computing is based on heavily parameterized, coarse
models of reactor phenomena. This provides a compelling opportunity for high-resolution calculations that
can benchmark and influence these engineering-class simulations.

The Consortium for the Advanced Simulation of Light Water Reactors (CASL) DOE energy innovation
hub has demonstrated the value of high-performance computing to the nuclear industry by deploying highly
accurate Monte Carlo (MC) neutronics on DOE leadership-class platforms. The data sets generated by these
first-of-a-kind simulations were used to validate the startup calculations of the new Westinghouse Electric
Company AP1000 reactor. While this represented a significant advance, petascale computing and application
limitations restrict the calculations to reactor startup conditions. In contrast, the objective in the exascale
SMR project (ExaSMR) is to provide benchmarks for multicycle operational design parameters for SMRs by
2025.
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The ExaSMR approach is to integrate MC neutronics and CFD—the most accurate numerical methods
available for operational reactor modeling—for efficient execution on exascale systems. ExaSMR builds on
a base of applications that have demonstrated high efficiency and excellent scaling on current petascale
leadership-computing levels. The ExaSMR effort will provide value to nuclear fuel vendors and the broader
nuclear community through the generation of highly detailed, benchmark data sets of operational nuclear
reactors. The MC neutronics method presents significant challenges related to random access of unordered data
on hierarchical memory architectures; CFD presents the challenge of achieving high floating-point efficiency on
sparse linear algebra problems. Furthermore, the MC particle transport and CFD implementations developed
will complement other projects in the DOE that are based on similar methods. Requirements for these
numerical motifs will also help to inform choices in hardware, runtime systems, and programming models for
exascale systems.

4.3.1 ExaSMR: Science Challenge Problem Description

The ExaSMR Challenge Problem is the simulation of a representative NuScale SMR core by coupling
continuous-energy MC neutronics with CFD. Features of the problem include the following:

• Representative model of the complete in-vessel coolant loop

• Hybrid LES/RANS turbulence model or RANS plus an LES-informed momentum source for treatment
of mixing vanes

• Pin-resolved spatial fission power and reaction rate tallies

Details on the challenge problem specification are given in Table 29.
The objective of the simulation is calculating reactor startup conditions that demonstrate the initiation

of natural circulation of the coolant flow through the reactor core and primary heat exchanger. The driver
application, ENRICO, performs inline coupling of the Nek5000 CFD module with MC through a common API
that supports two MC modules—Shift, which is targeting the Frontier architecture at ORNL, and OpenMC,
which is targeting the Aurora system at ANL.

Minimum neutronics requirements for the coupled simulation are as follows:

• Full core representative SMR model containing 37 assemblies with 17× 17 pins per assembly and 264
fuel pins per assembly item Depleted fuel compositions containing O(150) nuclides per material

• 1010 particles per eigenvalue iteration

• Pin-resolved reaction rate with a single radial tally region and 20 axial levels

• Six macroscopic (nuclide-independent) reaction rate tallies

Minimum CFD requirements for the coupled simulation are as follows.

• Assembly bundle mesh models with momentum sources from a resolved CFD calculation on a represen-
tative spacer grid

• Full core mesh 200× 106 elements and 70× 109 degrees-of-freedom

4.3.2 ExaSMR: Figure of Merit

The coupled simulation FOM for ExaSMR is a harmonic weighted average of the neutronics and CFD
performance,

FOM =
2

FOM−1MC + FOM−1CFD

, (7)

where each physics FOM is a ratio of a measured work rate to the baseline work rate, i.e.,

FOMMC =
Wmeasured

MC

W baseline
MC

, (8)

FOMCFD =
Wmeasured

CFD

W baseline
CFD

. (9)
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Table 29: ExaSMR challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Eigenvalue form of the linear Boltzmann transport equation with
quasi-static nuclide depletion neutronics coupled to hybrid RANS/LES
(or equivalent accuracy model), incompressible CFD with Boussinesq
approximation or low-Mach incompressible CFD with non-zero thermal
divergence.

Numerical approach,
algorithms

Neutronics solver is Monte Carlo particle transport; CFD solver is
spectral finite element on unstructured grids; physics are coupled using
a quasi-static approximation.

Simulation details: problem
size, complexity, geometry, etc.

The neutronics model has a minimum of 200k tally bins and 10B
particle histories per eigenvalue iteration. The CFD model has a
minimum of 200M elements and 70B degrees-of-freedom.

Demonstration calculation
requirements

Run 30 eigenvalue cycles (10 inactive and 20 active) to estimate Monte
Carlo particle tracking rate and 1,000 time steps toward steady-state
convergence in the CFD solve. Only a single nonlinear (Picard) iteration
is required. In order to facilitate comparison to the baseline
measurement, the neutronics portion of this calculation requires six
macroscopic reaction rates and a single radial region per pin.

Resource requirements to run
demonstration calculation

2 hours at full system

The individual physics work rates are given by

WMC =
particles

wall clock time
, (10)

WCFD =
degrees-of-freedom

wall clock time
. (11)

The MC work rate is computed using only the active cycle particle tracking rate, which is more computationally
intensive and typically occupies the majority of MC run time. If ensemble averaging is used to perform the
CFD calculation, the number of degrees of freedom used in the work rate measurement includes the sum
over all ensembles. The demonstration problem to evaluate the final FOM value will be a coupled MC-CFD
calculation, with the relevant work rates for the physics components extracted from this calculation. This
is done to facilitate comparison to the baseline calculations, which were performed by running each code
independently due to the lack of a coupled physics capability during the baseline measurements.

The current baseline measurements are

• FOMMC = 10.4M particles per second on Titan;

• FOMCFD = 3.0B degrees-of-freedom per second on Titan.

4.3.3 ExaSMR: KPP Stretch Goal

The ExaSMR stretch goal is to improve the fidelity of both the MC and CFD models. For the MC problem,
this will be to increase the number of radial rings per fuel pin tally region from one to three and tallying
nuclide-specific microscopic reaction rates instead of nuclide-independent reaction rates. With over 150
nuclides per fuel material, this will result in a substantially increased memory footprint as well as adding
significant computational cost. Tallying microscopic reaction rates will demonstrate the ability to perform
isotopic depletion calculations. For the CFD problem, the stretch goal is to replace the modeling of mixing
vanes using an LES-informed momentum source with an explicit representation of mixing vanes with a hybrid
LES/RANS turbulence model. This addition dramatically increases the number of spatial degrees of freedom
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necessary to resolve the problem as well as placing more stringent requirements on the time steps needed to
maintain numerical stability.

4.3.4 ExaSMR: Progress Towards Advanced Architectures

GPU Strategy

The use of Picard iteration for nonlinear coupling between physics applications in ExaSMR results in
each code executing separately. This means that the MC neutronics and CFD solvers can adopt independent
strategies for porting to new computing architectures. The Nek5000 CFD solver is being ported to GPU
architectures in collaboration with the CEED codesign project. The GPU-enabled version of Nek5000, now
known as NekRS, is utilizing optimized computational kernels from the libParanumal library, which is built
on the OCCA performance portability library. OCCA defines a kernel language for writing accelerated
code. Using just-in-time compilation, the kernels are compiled into architecture-specific code. Supported
architectures include both NVIDIA and AMD GPUs. Support for Intel GPUs is expected to be available
using an OpenMP back end. The libParanumal library provides optimized OCCA kernels for a variety of
CFD-related tasks, including matrix-vector products, linear solvers, and algebraic multigrid preconditioning.
The design of libParanumal is flexible enough that individual computational kernels can be separately
optimized for a particular architecture if necessary.

Adapting an MC neutronics solver to GPUs is challenging because the amount of code within the primary
parallel region is very large (more than 20,000 lines). This results in substantial effort to convert a given code
to a new programming model. In order to reduce the risk associated with this porting process, ExaSMR has
two different MC transport codes to target the two different exascale machines. The Shift code, developed at
ORNL, will target the OLCF Frontier machine and OpenMC, developed at ANL, will target the ALCF Aurora
machine. Shift currently uses the CUDA programming language to execute on NVIDIA hardware. AMD
has developed the HIP language to provide a smooth transition for existing CUDA applications, allowing
execution on both NVIDIA and AMD GPUs with minimal changes to existing code. HIP is therefore a
natural selection for Shift and is currently the target programming model. OpenMC is currently planning to
use OpenMP 5, which allows the offloading of work from the CPU for execution on the GPU. OpenMP 5 is
one of the programming models favored by Intel for exploiting Intel GPUs.

Progress to Date

Initial work to accelerate the Nek5000 CFD code with GPUs used the OpenACC programming model.
Although this OpenACC port did yield some performance gains on GPUs relative to CPUs, the performance
ultimately fell below the expectations for the code. The amount of restructuring necessary to produce a
performant GPU implementation led to the creation of NekRS, a new version of the Nek5000 code that
has been substantially rewritten to support accelerators such as GPUs. This work has been performed in
partnership with the CEED project. NekRS is heavily leveraging optimized computational kernels from
the libParanumal library, which uses the OCCA performance portability model. Significant effort has been
placed on optimizing a number of the libParanumal kernels used in NekRS. Figure 20 demonstrates one of the
campaigns to improve performance of a particular kernel through a series of optimizations. The performance
is compared to an empirical roofline model and demonstrates that a very high throughput can be achieved
for sufficiently high polynomial order.

For problems of interest to ExaSMR, NekRS has resulted in a 4–5× speedup relative to the original
OpenACC version of Nek5000. For a highly-detailed model of a single nuclear fuel assembly, NekRS achieved
work rate of 20.7 degrees of freedom per second per time step on 660 nodes on Summit. Relative to the baseline
work rate of 3.0 billion degrees of freedom per second per time step, this represents a demonstrated FOM
value of almost 7. Assuming ideal weak scaling, this corresponds to an FOM value of 48 when extrapolated
to the full Summit machine, indicating that NekRS has made significant progress towards the ExaSMR CFD
performance objective. Because the underlying OCCA library is capable of generating code for AMD GPUs
as well as NVIDIA GPUs, NekRS appears to be well positioned to execute effectively on Frontier.

During the initial portion of the ECP project, the Shift code was adapted to run on NVIDIA GPUs by
rewriting its transport solver in the CUDA language. Following the initial port, the team explored a series
of performance optimizations that led to a factor of 5–10 improvement in particle tracking rate in Shift.
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Figure 20: Performance tuning of NekRS OCCA kernels.

These modifications, summarized in Fig. 21, involved breaking large computational kernels into smaller work
units to reduce thread divergence and increase device occupancy. Altogether, the Shift GPU port involved
writing more than 20,000 lines of CUDA code as well as an additional 15,000 lines of testing code. Using
the optimized CUDA code, Shift performed a simulation of a depleted SMR core on 4,096 Summit nodes,
achieving a particle tracking rate of 242 million particles per second. Relative to the baseline rate of 10.4
million particles per second on Titan, this represents an MC FOM value of approximately 23. Extrapolating
to the entire Summit machine of 4,608 nodes, this equates to a projected FOM of slightly more than 26.
With the additional factor of more than 5 gain in theoretical performance moving from Summit to Frontier,
Shift also seems very well positioned to meet the ExaSMR MC FOM target.

In order to prepare for porting to the Aurora architecture, several preliminary investigations have been
performed with the OpenMC code. These efforts have included updating the XSBench mini-app and the
creation of the RSBench mini-app to evaluate the performance of key computational kernels in OpenMC.
After investigating a variety of potential programming models, it was decided that OpenMP offered the most
favorable tradeoff of efficiency versus simplicity. The SYCL language was evaluated but determined to be too
restrictive in the contructs exposed to the programmer to adequately address OpenMC needs. Similarly, the
use of OpenCL was also considered but ultimately determined to be too verbose and complicated to be a
viable option.

Next Steps

The NekRS code has made significant progress to date towards meeting FOM objectives on the Frontier
machine. The next steps include performing performance assessments on both AMD and Intel GPUs once
representative hardware is available. These performance assessments should allow the project to determine
if there are any concerns related to performance on the architectures for either of the initial exascale
machines. If performance issues are identified, it will be necessary to establish focused efforts to develop
new optimized computational kernels or otherwise investigate remedies for performance bottlenecks. One
additional remaining task for NekRS is to add the ability to perform conjugate heat transfer calculations,
allowing the code to evaluate thermal diffusion within regions of a problem containing solid materials. This
capability is needed to perform multiphysics coupling simulations within ExaSMR. It is a capability that
exists in the original Nek5000 code but has not yet been implemented in NekRS. Conjugate heat transfer is
not generally a performance bottleneck, so this effort is not viewed to introduce significant risk or invalidate
existing performance assessments conducted with NekRS.
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Figure 21: Performance gains through Shift algorithmic improvements on
NVIDIA GPUs.

As noted in the previous sections, Shift is targeting the use of AMD GPUs by converting existing CUDA
code to HIP, which is capable of executing on either AMD or NVIDIA GPUs. The next major task is to
perform the porting of Shift’s CUDA routines to HIP. AMD already has HIP libraries to replace many
NVIDIA tools, including drop-in replacements for the NVIDIA Thrust and cuRAND libraries that are used
within Shift. Once Shift has been ported to HIP, it will be necessary to evaluate the performance of the code
on AMD hardware to determine if it is on track to meet FOM targets. It is expected that due to differences
between the NVIDIA and AMD GPU execution models, there may be performance deficits that need to be
addressed through additional algorithmic investigations.

Finally, in order to prepare the OpenMC code to run on Intel GPUs, a significant effort will be required
to port it to OpenMP with an accelerator offloading model. OpenMC currently uses OpenMP for CPU-based
multithreading, but has not yet started the process of porting to GPUs. This conversion, along with associated
performance evaluation and algorithmic optimizations, is expected to require substantial effort over the next
two years.

4.4 MFIX-Exa

Carbon capture and storage (CCS) technologies (e.g., oxy-fuel combustion, chemical looping combustion, and
post-combustion capture systems) offer the most promising approaches for reducing CO2 emissions from fossil
fuel power plants. Large-scale commercial deployment of CO2 capture technologies requires understanding of
how to scale laboratory designs of multiphase flow reactors to industrial sizes. However, the direct scaleup
of such reactors is known to be unreliable and the current approach requires building and testing physical
systems at increasingly larger intermediate scales. The cost in both dollars and development time of having
to build and extensively test systems at multiple intermediate scales is prohibitive. The development of
high-fidelity computational tools capable of simulating such systems to enable the design and optimization of
emerging CCS technologies is critically important to control costs and reduce the risk of designs failing to
meet performance standards. The development of such tools and the simulations required is not possible
without exascale computations. This work specifically targets scaleup of Chemical Looping Reactors (CLRs)
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using NETL’s 50 kW CLR as a basis through the creation of MFIX-Exa, a scalable Computational Fluid
Dynamics—Discrete Element Method model (CFD-DEM) code, which is the next generation of the highly
successful NETL-based MFIX code.

CFD-Discrete Element Method (DEM) is an approach that allows for tracking of individual particles
(DEM portion) within a continuum fluid phase (CFD portion). To date, the focus of existing MFIX CFD-
DEM efforts has been on validation and development of physical models in the context of a relatively basic
computational framework. MFIX-Exa will integrate expertise in high performance computing directly with
expertise in multiphase modeling and will outperform the existing MFIX by orders of magnitude.

4.4.1 MFIX-Exa: Science Challenge Problem Description

The challenge problem is a CFD-DEM simulation of NETL’s 50 kW CLR containing 5B particles for a
sufficiently long physical time so that exit gas compositions reach a pseudo-stationary state, enabling the
evaluation of reactor performance. In chemical looping combustion, multiple reactors are used to separate
combustion into two distinct processes, reduction and oxidation. In the fuel reactor, a solid oxygen-carrier
supplies oxygen for combustion and is reduced by the fuel. The reduced oxygen carrier is sent to the air
reactor where it is regenerated to its oxidized state. The air reactor produces a hot, spent air stream that is
used to create steam to drive a turbine for power generation. Then, the oxygen carrier is returned to the fuel
reactor, restarting the reduction-oxidation cycle. The challenge problem requires representing the full-loop
CLR geometry, covering all five flow regimes, including interphase momentum, mass, and energy transfer.
The MFIX-Exa code is an exascale-enhanced version of the classic MFIX application that improves fidelity by
employing DEM instead of the traditional low-order models. Challenge problem details are given in Table 30.

4.4.2 MFIX-Exa: KPP Stretch Goal

The stretch goal is to run the challenge problem simulation until the gas concentrations at fuel-reactor exit
reach a stationary state, a simulation-time that cannot be determined a priori. The initial conditions for the
simulation will be determined from lower-order simulations (“bootstrapping approach”) to better approximate
the solids inventories in the three major components of the CLR (air reactor, fuel reactor, and loop seal). The
(cross-section averaged) CO2 mass fraction at the exit of the fuel reactor will plotted as a function of time.
The plot is expected to show a rapid change in the CO2 mass fraction during an initial period. Subsequently,
the CO2 mass fraction is expected to fluctuate around a steady mean value. After disregarding the initial
period, CO2 mass fraction will be time-averaged over successive intervals equal to the gas residence time in
the fuel reactor. If a few successive time-averaged values have less than 5% difference between them, the
simulation will be considered to have reached a stationary state and the stretch goal will be considered to
have been achieved.

4.4.3 MFIX-Exa: Progress Towards Advanced Architectures

GPU Strategy

MFIX-Exa is an AMReX-based (§ 8.3) application and as such, has fully adopted AMReX’s GPU strategy.
To achieve the highest degree of portability, MFIX-Exa kernels were converted from FORTRAN to C++

utilizing AMReX mesh and particle iterators. This approach implicitly cycles through GPU streams on
each iteration, keeping work in a given loop ordered but taking advantage of unused GPU resources when
available. The raw mesh and particle data in MFiX-Exa is placed in managed memory. Individual kernels
are launched on GPUs using AMReX’s C++ lambda-based launch system that offers support inlining and
seamless transition between CPU and GPU. Many of the more common operations in MFiX-Exa, such
as global reductions, particle neighbor lists, and others take advantage of the native support in AMReX.
Additionally, MFIX-Exa utilizes GPU aware AMReX-provided functions for common parallel communication
operations for mesh and particle.

Because MFIX-Exa exclusively uses AMReX’s internal GPU capabilities, MFIX-Exa contains no explicit
CUDA, OpenACC or OpenMP GPU bound kernels. This should significantly reduce the work needed to
migrate to AMD and Intel based accelerators once they are supported by AMReX.
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Table 30: MFIX-Exa challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and associated
models

Low-Mach number fluid flow with multi-species, reactive transport coupled to
discrete solid particle transport.

Numerical approach, algorithms The CFD-DEM numerical method is based on MFIX-DEM. The continuity and
momentum balance equations are solved for the gas phase, the equations accounting
for the volume occupied by particles and the momentum transfer with the particles.
All the particles are tracked by solving the kinematic equation and the linear and
angular momentum equations. The particle-particle collisions are modeled using a
soft-sphere approach, and the contact forces are modeled using a
spring-dashpot-slider model.
The numerical accuracy of the code will be periodically established by conducting
verification tests, such as those described in the milestone report
ECP-MFIX-Exa-2017-12, which demonstrate a high degree of numerical accuracy.
The numerical parameters and convergence criterion used in the verification tests will
be used for the challenge problem as well. Model validation is outside the scope of
the current project and will not be conducted.

Simulation details: problem size,
complexity, geometry, etc.

Geometry: The system geometry contains a fuel reactor, air reactor, cyclone, and
loop seal. Components are connected via piping with conditions ranging from a
dense granular flow (fuel reactor to air-reactor) to dilute transport (air-reactor to
cyclone). The approximate dimensions of the fully assembled reactor are
4.2 m× 1.1 m× 0.22 m (height×width×depth).
Grid: A uniform grid size of 1 mm will be used for the entire domain. Because of the
CLR’s torus-like shape, it is anticipated that three-quarters of the domain will not
contain active computational cells and, therefore, will be removed to reduce memory
usage. The domain can be fully covered by roughly 40k individual grids of 323 cells
each; if only 1

4
of the domain is relevant, one should need closer to 10k grids or a

total of roughly 330M cells.
Fluid: The fluid will be modeled as a mixture of methane (CH4), hydrogen (H2),
steam (H2O), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), and
nitrogen (N2). There will be 12 unknowns per grid cell: velocity (3), pressure (1),
temperature (1), and composition (7). Fluid density will be evaluated as function of
temperature, pressure and composition. Fluid volume fraction (void fraction) is
computed from particle location and volume data using a compact support kernel.
Particles: The solids oxygen carrier will be modeled with approximately 5 billion
monodisperse spherical particles with a 200 µm diameter. Particles will be treated as
a mixture of hematite (Fe2O3) and Wüstite (FeO). There will be 12 unknowns per
particle: position (3), translational and rotational velocities (6), temperature, and
composition (3).
The main chemical reactions:
• Air reactor: 2FeO + 1

2
O2 → Fe2O3

• Fuel Reactor: 4Fe2O3 + CH4 → 8FeO + CO2 + 2H2O

Demonstration calculation
requirements

Initial conditions: Minimizing the initial transient time (from guessed initial
condition to fully developed condition) is a considerable challenge in reacting
CFD-DEM. Lower fidelity and/or coarser simulations will be used to establish
reasonable initial conditions for the challenge problem including fluid and particle
flow patterns, temperatures, and chemical compositions. The full science simulation
will be run for a sufficiently long physical time so that exit gas compositions reach a
stationary state, enabling the evaluation of reactor performance.
Boundary conditions: A mixture of CH4 and N2 will be used to fluidize the fuel
reactor, and a mixture of O2 and N2 will be used to fluidize the air reactor. N2 will
be used to fluidize the loop-seal and as move-gas in the standpipe and L-valve to
facilitate solids movement. An operating temperature of 1,100 K is targeted for the
system, and outlets in the cyclone, loop seal, and fuel reactor will vent to
atmospheric pressure. No heat loss through the reactor walls will be considered.

Resource requirements to run
demonstration calculation

Using the approach developed in FY21 to bootstrap physically relevant initial
conditions, the team anticipates only needing to take 10 time-steps to approximate
the time necessary for a full science simulation at realistic operating conditions, in
which the particle distribution throughout the CLR is relatively constant in time.
The time required for such simulations, estimated by extrapolating the time to
solution for existing simulations, will be 2 hours at full system.
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Figure 22: MFIX-Exa particle-advance scaling efficiency on a single Summit
node with one GPU per MPI task. Closed symbols indicate runs with Knapsack
load balancing.

Presently, MFIX-Exa has no external software dependencies other than AMReX and the typical software
stack requirements such as working C++ compilers and MPI. However, this could change in the future as
additional physical models are added.

Progress to Date

The MFIX-Exa fluid and particle solvers were migrated to GPU over the past fiscal year with the primary
focus being on-node performance. The performance of MFIX-Exa on GPUs was assessed using a prototypical
CLR geometry that is representative of MFIX-Exa’s challenge problem. Here, an air reactor, fuel reactor,
loop-seal, and L-value are initially seeded with high solids concentrations whereas the riser, crossover, and
cyclone are initialized with a light solids loading. This disparity in local solids inventories across the device
components gives rise to load imbalances in particle work while the full-loop geometry creates large void
spaces whereby there is neither fluid nor particle work.

The total initial solids inventory is approximately 40 million particles, and the domain is decomposed into
36 grids (32× 32× 32) for a background 384× 32× 96 mesh. The timing study focused on the average time
per particle advance because at the time the timing study was conducted, the AMReX embedded boundary
aware linear solvers were not fully ported to GPU.

A CPU-only run using 36 CPUs on a single Power9 Summit node with one MPI task per core averaged
1,094 seconds per particle advance. A 7× speed up was observed when using one MPI task with one GPU
and a 30× speedup was observed when utilizing 6 MPI tasks with one GPU each.

A single-node parallel efficiency study was also conducted for the particle advance whereby the single-
task-single-GPU run was compared to runs utilizing 2, 4, and 6 MPI tasks, with one GPU each. The first test
did not use load balancing whereas the second test used MFIX-Exa’s dual grid capability with the Knapsack
load balancing strategy. As shown in Fig. 22, the tests without load balancing decrease in efficiency by 50 %
as the number of MPI tasks is increased from 2 to 6. Conversely, a 94 % scaling efficiency is seen when the
Knapsack load balancing is enabled.

Next Steps

MFIX-Exa plans to adopt changes suggested by the AMReX Co-Design Center for maximum portability
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and performance. As AMReX adds support for AMD accelerators, MFIX-Exa will leverage the expertise to
incorporate the necessary changes to utilize those functionalities in preparation for Frontier.

4.5 WDMApp

The Whole Device Model Application project (WDMApp) strives to develop a high-fidelity model of
magnetically confined fusion plasmas, which is urgently needed to plan experiments on ITER [5] and optimize
the design of future next-step fusion facilities. These devices will operate in high-fusion-gain physics regimes
not achieved by any of the current or past experiments, making advanced and predictive numerical simulation
the best tool for the task. WDMApp is focused on building the main driver and coupling framework for the
more complete Whole Device Model (WDM), the ultimate goal being the completion of a comprehensive
computational suite that will include all the important physics components required to simulate a magnetically
confined fusion reactor. The main driver for the WDM will be the coupling of two advanced and highly
scalable gyrokinetic codes, XGC and GENE. The former is a Particle-in-Cell (PIC) code optimized for the
treating the edge plasma, while the latter is a continuum code optimized for the core plasma. WDMApp aims
to take advantage of the complementary nature of these two applications to build the most advanced and
efficient whole device kinetic transport kernel for the WDM. A major thrust of the project is the coupling
framework EFFIS 2.0 (End-to-end Framework for Fusion Integrated Simulation 2.0), which will be further
developed for the exascale and optimized for coupling most of the physics modules that will be incorporated in
the WDM. The current MPI+X implemented in the main GENE and XGC applications is to be enhanced with
communication-avoiding methods, task-based parallelism, in situ analysis with resources for load optimization
workflows, and deep memory hierarchy-aware algorithms.

The resulting exascale application will be unique in its computational capabilities and will have potentially
transformational impact in fusion science, e.g., studying a much larger and more realistic range of dimensionless
plasma parameters than ever before and the rich spectrum of kinetic micro-instabilities that control the
quality of energy confinement in a toroidal plasma (including tokamaks as well as stellarators), with the core
and the edge plasma strongly coupled at a fundamental kinetic level based on the gyrokinetic equations.

4.5.1 WDMApp: Science Challenge Problem Description

The exascale science challenge problem is the high-fidelity simulation of whole-device burning plasmas
applicable to a high-confinement (“H-mode”) advanced tokamak regime, specifically, an ITER steady-state
plasma which aims to attain a tenfold energy gain. The physics objective is to predict one of the most
important indicators for energy confinement in the H-mode: the plasma pressure “pedestal” height and
shape. Realization of the H-mode with high edge plasma pressure and mild pedestal gradient is critical to
the performance and success of ITER. Efficiency of the fusion burn is virtually determined by the height of
the pressure pedestal at edge. The team’s strategy will be to use WDMApp, which is focused on coupling the
continuum code GENE in the core region and the PIC code XGC at the edge. Alternate code-couplings will
also be considered for risk mitigation, i.e., the PIC code GEM in the core region.

The targeted minimum requirement for accuracy is 5% relative error. Due to the intrinsically turbulent
nature of some important fusion plasma observables, higher accuracy is neither cost-effective nor realistic
in most experiments or simulations. The computational hardware size target will be 100% of the exascale
platform(s) on which the FOM will be compared against the baseline FOM established on 50% of Titan. The
minimum physics problem size will be 100 million solver vertices, and the minimal time step will be one-tenth
of the ion sound wave period. More detailed information is provided in Table 31 on the minimum criteria for
the FOM run(s).

4.5.2 WDMApp: Figure of Merit

The science challenge problem for WDMApp pertains to a realistic ITER plasma. The FOM is defined as the
following:

FOM =
NmNtNp

wall clock time
× 10−9 , (12)

where Nm is the number of grid vertices, Nt is the number of simulation steps in specified wall clock time
(e.g. 100 s), and Np is the number of particles per grid vertex in the edge region. The baseline FOM is 1.76
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Table 31: WDMApp challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

5D gyrokinetic plasma model with Coulomb collisional kernel

Numerical approach,
algorithms

Structured grid, continuum solver with spectral and finite-difference
spatial schemes in the plasma core coupled to unstructured grid,
particle-in-cell solver with finite element and finite-difference schemes in
the edge region

Simulation details: problem
size, complexity, geometry

Minimum problem size of 100 million solver vertices covering the whole
core and edge region. Minimum time step of one-tenth the ion sound
wave period. Minimum number of particles is one trillion in XGC

Demonstration calculation
requirements

2,500 time steps

Resource requirements to run
demonstration calculation

3 hours to run 2,500 time steps on 100% of exascale computer

on Titan based on a Probability Distribution Function (PDF) data exchange.

4.5.3 WDMApp: KPP Stretch Goal

The stretch goal for the project is to carry out core-edge coupled electrostatic turbulence simulations, modeling
gyro-kinetic ions and drift-kinetic electrons in ITER geometry on an exascale facility. In addition to the
FOM enhancement produced by the hardware upgrade to the exascale facility, the KPP stretch goal would
realize substantial FOM achievement through the algorithmic improvement of coupling two gyro-kinetic
codes mostly by exchanging fluid moment data, augmented by infrequent exchange of PDF data. Further
improvements are expected from asynchronous electron push in GPU and improvements in code-coupling
efficiency and load-balancing.

4.5.4 WDMApp: Progress Towards Advanced Architectures

GPU Strategy

The goal of WDMApp is to predict ITER’s edge pedestal height and shape by performing core-edge
coupled simulations using high-fidelity gyrokinetic codes. To achieve the large-size ITER simulation aimed
on exascale computers, an efficient weak-scaling is more relevant in the WDMApp project. Edge pedestal
determines the steady-state fusion performance to a large degree in ITER. The edge gyrokinetic code XGC
is used for the edge region and the two core gyrokinetic codes GENE and GEM are used for the core
region. XGC and GEM are particle-in-cell codes and GENE is a continuum code. For risk mitigation, two
different types of core gyrokinetic codes are utilized to couple to the XGC particle-in-cell code that is the
only production gyrokinetic-code available for edge region. Due to the scale-inseparable interaction between
the background plasma dynamics and the turbulence dynamics in complicated edge geometry, the edge code
XGC takes up most of the computing time in the core-edge coupled simulation. On the other hand, the
core codes assume a prescribed Maxwellian background plasma and calculate only the perturbed part of the
particle distribution function, in contrary to calculating the total distribution function in XGC. Naturally,
XGC occupies majority number of the HPC nodes. Hence, a good scalable GPU performance of XGC is a
critical factor in the overall performance of WDMApp on exascale computers. Nonetheless, a good GPU
performance of the core codes can be helpful in raising the FOM number. Thus, the project attempts to port
and improve all three codes on GPU.

The core-edge coupled WDMApp has not been using GPUs yet. Running the coupled WDMApp code
on GPU would require the core-edge coupling of the kinetic electron dynamics through a spatial interface.
This work is presently on-going. Since the Poisson equation, which must be accompanied by global data
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communication, is solved at every ion time step in the WDM solver, only the subcycled kinetic electron
dynamics are ported to GPUs in XGC. So far, the effort has been in the GPU porting of individual codes
to prevent the GPU computing from becoming a hurdle when the core-edge kinetic electron coupling is
established in the future.

XGC has two compute-heavy kernels: Kinetic electron push and nonlinear Fokker-Planck collisions. These
two kernels take up over 95 percent of the compute time in production runs if GPUs are not utilized. The
working strategy has been that these two heavy-weight kernels occupy GPUs while other light-weight kernels
reside on CPUs, with GPUs and CPUs working asynchronously with an approximate work-load balancing.
The electron push kernel is more offload-dependent than the nonlinear collision kernel. In order to mitigate
this offload-dependence, XGC makes use of the Cabana particle library, which has been developed in the
ECP-COPA project where XGC is part of, to allow the electron push kernel being interfaced to Kokkos.
Kokkos utilizes each machine’s native GPU-offload method as backend. For the nonlinear collision model,
XGC uses OpenACC directives at the present time. For a better utilization of the Kokkos C++ library, all
the Kokkos-calling routines in XGC have been converted from Fortran to C++.

GENE uses Fortran 2003/2008 constructs and exposed a number of compiler issues. OpenMP threading
of MPI is not utilized. The GPU support entirely in Fortran has turned out to be not feasible at least in the
short term due to lack of stable compiler support for OpenACC/OpenMP. Similar issues also prevented the
use of CUDA Fortran. The approach chosen now for GPU off-loading is to use CUDA/C++ for the GPU
kernels. We have separated out low-level computational kernels that form an abstracted “operations” class
that can either call regular Fortran code or interfaces with GPU kernels implemented directly in CUDA
C/C++. The idea behind this approach is similar to, say, using BLAS. The main code calls ‘daxpy‘, and
the underlying implementation may be a CPU-optimized BLAS or a GPU optimized BLAS. The switching
between implementations is achieved using type-bound procedures in the operations class. Unfortunately,
most of the computational kernels in GENE are not standard operations, so many custom interface and
implementations needed to be created, though we leverage cuBLAS and cuFFT as well. Fortran 2003
ISO C BINDING is used for interoperability. CUDA managed memory is employed to support an incremental
transition to CUDA kernels while other parts of the code still use Fortran CPU implementations. On the
CUDA C++ side, a library named “gtensor” has been implemented to make writing CUDA kernels easier.
It is modeled after the xtensor library https://github.com/QuantStack/xtensor but provides support
for multi-dimensional arrays living in either host or device memory, similar to the CUDA thrust library or
Kokkos. This makes it possible to naturally access Fortran multi-dimensional arrays on the CUDA side. In
addition, gtensor supports lazily evaluated expressions using C++ template metaprogramming. This enables
us to generate complex expressions that can then be evaluated in a single CUDA kernel all in one go.

GEM is a Fortran particle-in-cell code using OpenACC for GPU-offloading. OpenMP threading is not
used currently. Kinetic electrons are not used in the GPU version of GEM, yet. Most of the effort has been
spent in the communication minimization. Particle array, field array, equilibrium and profile array data are
stored in GPU by default. Ion push and charge kernels are efficiently imported into GPU. Ion move and shift
kernels are offloaded to GPUs but needs improvement: they occupy 60 % of computing time.

Progress to Date

A summary of the single-node, optimized CPU + GPU performance of the three WDMApp codes is
compared to the one MPI rank per core CPU-alone performance in Table 32.

XGC

The baseline, single-node (CPU + GPU)/CPU acceleration factor is established to be 71× for the whole
XGC code, using 1 MPI rank per core without any threading for the CPU-alone case and 1 MPI rank per
GPU (6 MPI ranks per node) with 14 OpenMP threads per MPI (7 physical cores and 2 hyperthreads per
core) for the CPU + GPU case. In order to avoid the possibility of memory overrun on single node, the
problem size is weak-scaled down to 18.9M ions and 18.9M electrons on 3.74k grid vertices.

The whole production version XGC scales almost linearly all the way to the maximal number of Summit
nodes (4,096 nodes tested out of 4,608 nodes), with asynchronous usage of all the CPUs and GPUs (see
Fig. 23). Again, 6 MPI rank per node and 14 OpenMP threads per MPI rank (7 physical cores with 2
hyperthreads per core) have been used. Excellent scalability of the whole XGC code comes from the excellent
weak scalability of the GPU-enabled kernels together with the minimal data-communication engineering.
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Table 32: Single node acceleration of WDMApp component codes based on 1
MPI rank per core for CPU-alone performance.

Code CPU method CPU + GPU method (CPU + GPU) / CPU

XGC 1 MPI/core, 0 threads, 1
node

1 MPI/GPU (6 ranks), 14
threads per MPI, 1 node

15

GENE 1 MPI/core, 0 threads,
averaged over 42 nodes using
6 cores per node

6 CUDA-aware MPI ranks, 0
threads, 1 node

7.03

GEM 1 MPI/core, 0 threads, 1
node

1 MPI/core, 0 threads, 1 node 43

Figure 23: Weak-scaling performance of each XGC kernel for CPU + GPU
computing on Summit.

Figure 23 shows breakdown of each kernel performance on Summit, weak-scaled on CPU and GPU together,
starting from 128 nodes to 4,096 nodes. It can be seen that there is only about 12 % degradation in the
measured compute time for the whole production code from 128 nodes to 4,096 nodes. Total number of
weak-scaled particles (1.24 trillion ions and 1.24 trillion electrons) on the full-scale Summit corresponds to
roughly the actual number of particles being used for high-fidelity ITER simulations at the present time.

GENE

Most of GENE runs to this point have been single-node runs, using the 6 GPUs per node. We use CUDA-
aware MPI for communication. Due to the (relatively) high cost of host-device transfers and relatively low
computational intensity of the code (it is mostly stencil computations, with some linear algebra matrix-vector
products), it was necessary to fully port the timeloop to GPU. At that point, very little work is left for the
CPUs, so we only run 6 MPI processes per node, which allows us to give the GPU kernels large pieces of
work and reduces the amount of communication per ghost cells.

The following timing numbers are obtained from single-node Summit runs. We compare the performance
of the code running on 42 CPU cores to running using the 6 GPUs (and 6 CPU cores to drive them). In
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Figure 24: Break-down of a single Runge-Kutta stage for the GPU GENE run.

order to have a direct comparison, we actually extrapolate the CPU performance on 42 nodes from runs that
were using just 6 CPU cores, by dividing the timing numbers obtained by 7. This allows us to use exactly the
same grid and same domain decomposition. This approach likely overestimates CPU performance a bit, due
to the fact that we don’t have the overhead of a domain decomposition into smaller pieces (and hence more
ghost points, more communication) and that fewer CPU cores compete for shared resources like higher-level
cache and memory bandwidth.

The overall timeloop using 6 GPUs is faster by a factor of 7.03x compared to using 42 CPU cores only.
Figure 24 breaks down a single Runge-Kutta stage, the basic building block for the timeloop into calc aux,

which computes some auxiliary quantities (e.g., gyro-averaged electrostatic potential), and calc rhs, which
computes and adds up the various terms of the right-hand side. Our initial focus had been on calc rhs, so
calc aux has not seen much optimization yet. calc aux involves a number of MPI communications; now that
the computation has been accelerated very substantially the communication starts to show up as significant
operations in the profiles. Break-down of individual terms that go into the right-hand side calculation shows
that many kernels already achieve speed-ups of 15–30×, while some require more investigation and work.
The calculation of the nonlinearity (add nl) is the most expensive part of the right-hand size calculation, as
it itself consists of a number of kernels, as well as FFTs to/from Fourier space.

GEM

Using one MPI rank per core without threading and OpenACC off-loading, GEM shows 43× acceleration
of CPU + GPU performance compared to CPU alone on single node. The weak-performance degradation in
the CPU + GPU computing from 1 node to 32 nodes is about 30 % (see Fig. 25). The cause for nonlinear
increase in the time per step needs to be investigated, but MPI interference from other code runs could be
non-negligible.

Next Steps

For the WDMApp coupled codes on Frontier and Aurora, a mixed offload strategy will be employed using
Kokkos, HIP and OpenACC/OpenMP.

The most urgent task that WDMApp faces is to port the coupled XGC-GENE and XGC-GEM on Summit
GPUs. This requires the coupling of kinetic electron dynamics between core and edge through spatial interface
layer. After this is achieved, the coupling framework EFFIS2.0 will be used to enhance the performance of
the coupled WDMApp codes up to the full Summit nodes. Optimization strategy of the code coupling on
Aurora and Frontier will be established utilizing Summit within the EFFIS2.0 framework.

Individual codes will also be prepared to enable the coupled WDMApp code to run on Aurora and/or
Frontier in the EFFIS2.0 framework. Because of the dominance of XGC in the performance of the WDMApp
coupled codes, a particular attention will be given to its performance on Aurora and Frontier, in collaboration
with the OLCF and ALCF facility liaisons and staff as well as vendors. XGC will be completely converted to
C++, optimizing the Kokkos and OpenMP offloading capabilities.

For GENE and GEM, more time will be spent in optimizing individual non-performant kernels on
Summit. The performance gains so far have come largely from porting operations straightforwardly, and
from consolidating many small kernels into larger ones. Weak-scaling test to at least 1,024 Summit node will
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Figure 25: Weak scaling of GEM for CPU alone (one MPI rank per core) and
CPU + GPU.

also be the next step.
Since GEM is utilizing OpenACC, we do not foresee serious GPU off-load issue on Aurora or Frontier,

but we need to implement OpenMP threading as the next step. From the experience gleaned from XGC,
multiple threading and hyperthreading could give additional performance enhancement.

The profile of GENE is rather flat, with about 30 kernels being where most of the time is being spent, so
focusing on a small number of kernels will not make a big difference in overall performance. For Frontier,
we will have to adapt to AMD’s GPU programming model. Currently, GENE has a few kernels that are
explicitly written in CUDA, so we will probably use the HIP compatibility layer there. Most of the GPU
code is generated by gtensor, which is a performance-portable approach in some sense similar to Kokkos or
Raja. Right now there are backends for generating NVIDIA CUDA kernels as well as regular C++ host code.
Adding support for AMD ROCm/HC should be quite straightforward, and won’t require any changes in the
actual application code.

For the EFFIS2.0 framework, we are investigating the use of CudaMPI as one of the communication
strategies/engines underneath the ADIOS-API. We are also investigating the use of in-line functions in
ADIOS, which can allow one code to call another code, so that both of them can be on GPUs.

4.6 WarpX

Particle accelerators are a vital part of the DOE-supported infrastructure of discovery science and have a
broad and critical range of applications in industry, security, energy, the environment, and medicine. Particle
accelerators are used in many areas of fundamental research: elementary physics, nuclear physics, material
science, chemistry, and biology and even play a role in astrophysics and cosmology. A total of 30% of all
Nobel prizes in physics since 1939, and four of the last 14 Nobel prizes in chemistry, have been enabled by
particle accelerators. Beyond fundamental research, the investments in accelerator technologies for discovery
science have led to the development of tens of thousands of particle accelerators for various applications
impacting lives, from sterilizing food or toxic waste to implanting ions in semiconductors, treating cancer, or
developing new drugs.

For most applications, the size and cost of the accelerators are limiting factors that can significantly
impact the funding of projects or adoption of solutions. Among the candidate new technologies for compact
accelerators, the advent of plasma-based particle accelerators stands apart as a prime game-changing technology.
The development of plasma-based accelerators depends critically on high-performance, high-fidelity modeling
to capture the full complexity of acceleration processes that develop over a large range of space and time
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scales. However, these simulations are extremely computationally intensive, due to the need to resolve
the evolution of a driver (laser or particle beam) and an accelerated beam into a structure that is orders
of magnitude longer and wider than the accelerated beam. Studies of various effects, including injection,
emittance transport, beam loading, tailoring of the plasma channel, and tolerance to nonideal effects (jitter,
asymmetries, etc.) that are needed for the design of high-energy colliders, will necessitate a series of tens or
hundreds of runs. This will require orders-of-magnitude speedup over the present state of the art, which will
be obtained by combining the power of exascale computing with the most advanced computational techniques.
This project will combine the PIC code Warp technology and the AMR framework AMReX (§ 8.3) into a
new code (WarpX) and port the software to exascale platforms. WarpX will incorporate the most advanced
algorithms that have been developed and validated by the lead teams, including, among others, the optimal
Lorentz boosted frame approach, scalable spectral electromagnetic solvers, and mitigation methods for the
numerical Cherenkov Instability. To ensure speed and scalability, WarpX will take advantage of the latest
features that the team has developed in portable vectorization algorithms, hierarchical parallelism and GPU
programming, as well as AMReX’s dynamic gridding capabilities, to load balance the combined computational
work associated with both the particles and the mesh.

The new software will enable, on exascale supercomputers, the exploration of outstanding questions in
the physics of the transport and acceleration of particle beams in long chains of plasma channels, such as
beam quality preservation, hosing, and beam-breakup instabilities. These new breeds of virtual experiments,
which are not possible with present technologies, will bring huge savings in the research leading to the design
of a plasma-based collider and even bigger savings by enabling the characterization of the accelerator before
it is built.

4.6.1 WarpX: Science Challenge Problem Description

The exascale challenge problem is the modeling of a chain of tens of plasma acceleration stages. Realizing such
an ambitious target is essential for the longer-range goal of designing a single- or multi-TeV electron-positron
high-energy collider based on plasma acceleration technology. The WarpX application uses AMReX for AMR
and employs PIC methodology to solve the dynamic Maxwell equations to model the accelerator system.

The minimum completion criteria are designed to demonstrate that the project is on track toward the
modeling of multi-TeV high-energy physics colliders based on tens to hundreds of plasma-based accelerator
stages. The main goal is to enable the modeling of an increasing number of consecutive stages to reach higher
final energy and to increase the precision of the simulations by performing simulations at higher resolutions,
in a reasonable clock time:

• Total energy gain of plasma accelerator of at least 100 GeV, using five accelerator stages or more.

• Maximum wall-clock time is the same as baseline.

Details on the challenge problem are given in Table 33.

4.6.2 WarpX: Figure of Merit

The figure of merit for WarpX is defined in the following

FOM =
(αNc + βNp)NtBA

wall clock time
, (13)

where

Nc: number of grid cells,
Np: number of particles,
α, β: relative cost of grid push and particle push,
Nt: number of time steps.

The “Boost from Algorithms” (BA) term includes additional boost coming from algorithm developments and
is constrained BA ≤ 5.

The FOM without BA gives the “raw” speed from running, on a newer and bigger machine, the same
problem faster or at higher resolution (more grid cells, particles and time step) in the same time (just based
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Table 33: WarpX challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Dynamic Maxwell equations in the presence of a time-varying
electromagnetic field with both laser-driven and charged-particle source
terms.

Numerical approach,
algorithms

PIC using finite-difference (FDTD) and/or pseudo-spectral (FFT-based)
analytical time domain temporal discretization with FFT-based field
solve on AMR grids with solution in Lorentz boosted frame.

Simulation details: problem
size, complexity, geometry, etc.

Minimum of 1011 grid cells and 2× 1011 macroparticles. Minimum
number of five chained accelerator stages. Laser driver on the order of
1 PW peak.

Demonstration calculation
requirements

Run a minimum of 100 time steps such that performance is accurately
measured using a preloaded plasma column. Measure FOM for FDTD
and FFT-based solvers.

Resource requirements to run
demonstration calculation

2 hours on 100% of the machine.

on strong/weak scaling). Beyond this, speedup comes from (a) lower number of grid points and particles
(using AMR) and (b) lower number of time steps, using a novel large time step (LTS) algorithm. Hence, BA

is the combination of two possible algorithmic boosts:

BA = BAMRBLTS , (14)

where BAMR is the ratio of the number of cells in the simulation at highest resolution without AMR and
the number of cells with AMR and BLTS is the Courant condition of the novel LTS solver divided by the
Courant condition of the standard solver.

The current baseline measurement is ∼2× 1010 on 6,625 compute nodes of Cori (FOM scaled to the full
machine).

4.6.3 WarpX: KPP Stretch Goal

The goal of the project is to demonstrate the capability to perform the modeling of tens of consecutive
multi-GeV stages. For a multi-TeV collider design, hundreds to thousands of stages will be necessary. The
KPP stretch goal is thus naturally to reach an FOM that is as high as possible, without the constraint limit
on boost from algorithms (BA < 5). The stretch goal is thus to demonstrate the capability to model as many
consecutive multi-GeV stages as possible.

4.6.4 WarpX: Progress Towards Advanced Architectures

GPU Strategy

WarpX relies on the ECP AMReX framework in order to achieve performance portability on CPU and
GPU, with a single-source code base. More specifically, AMReX provides a C++ function ParallelFor as
well as similar reduction primitives, which are converted to GPU kernel launches when the code is compiled
for GPU (and is converted to a simple for loop when the code is compiled for CPU). Note that this solution
is similar to that used in Kokkos or Raja. WarpX has been extensively refactored, in order to use this
performance-portable framework throughout the code.

In addition, AMReX provides containers for particles and mesh data. When the code is compiled for GPU,
these containers are allocated in GPU managed memory. This means that host-device memory transfers are
performed automatically whenever the data is used on the host or the device, and thus that the code does
not need to contain explicit calls to e.g. cudaMemcpy.

Exascale Computing Project (ECP) 73 PM-AD-1080



100 101 102 103

Number of Summit nodes

10 1

100

101

102

103

Nu
m

be
r o

f p
ar

tic
le

s p
er

 st
ep

 p
er

 n
s GPUs

CPUs

Figure 26: Results of a weak scaling study on a uniform plasma benchmark
with WarpX, comparing GPU and CPU performance on Summit. The colored
circles indicate simulation results, while the dotted line illustrates perfect weak
scaling. Both cases used 8 particles per cell, Esirkepov current deposition, and
3rd-order interpolation. The GPU-accelerated runs used 6 GPUs per node, with 1
MPI task per GPU. The CPU-only runs used all 42 available POWER9 cores on
a Summit node, using 6 MPI tasks and 7 OpenMP threads per node. Both runs
exhibit excellent weak scaling. On 2,048 Summit nodes, the GPU-accelerated
run was approximately 22 times faster that the CPU-only run.

During a typical WarpX GPU simulation, *all* the compute operations now run on the GPU. As a
consequence, all the simulation data is automatically transferred to the device on the first timestep (via
managed memory transfer), and then stays on the device for the rest of the simulation. As a consequence,
host-device transfers are only needed when writing output data to disk.

Progress to Date

Prior to Summit, WarpX was running efficiently on CPUs and KNL architectures (NERSC Cori) via
low-level Fortran routines (PICSAR) which were called from a high-level C++ code (WarpX code base).
When transitioning to GPU, we initially experimented with OpenACC, in order to keep the same Fortran
code base. However, we found this approach to be hindered by the limited availability and capabilities of
compilers that support OpenACC in Fortran for GPU.

In the anticipation of Summit, we therefore transitioned to a C++-only strategy, based on the above-
mentioned portability layer from AMReX. WarpX was extensively refactored, and all particle-mesh routines
were converted to C++. The transition to a C++-only core enabled us to use a wider range of compilers for
various architectural targets and single-source programming for both OpenMP, CUDA and upcoming HIP
programming models improved code maintainability.

Benchmarks on Summit revealed excellent weak scaling, and a considerable speed-up from the use of
GPUs, as shown on Fig. 26.

We also performed comparisons between Cori’s KNL architecture and Summit’s V100 architecture. In
general, we noticed that the core compute routines (e.g. particle push, field update on the mesh, etc.)
were typically much faster on V100, but that the routines associated with MPI communications (e.g.
packing/unpacking of MPI buffers before/after MPI communications) did not benefit from the same speed-up.
Upon further investigation, we noticed that these routines involved many small kernel launches, and that the
kernel launch overhead (when running on V100) became a bottleneck in this case. These communication
routines were therefore refactored, so as to have as few kernel launches as possible. For instance, in the case
of guard cell exchanges, this was achieved by having a single kernel that loops over the 3D boundary of a
subdomain and packs the guard cell data into different MPI buffers (as opposed to having one kernel launch
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Figure 27: Time spent in communication-related routines (e.g. packing and
unpacking of MPI buffers) in a benchmark involving a typical boosted-frame
simulation of laser-wakefield acceleration with WarpX. The code was run on Cori
(blue) and Summit (green), using 900 KNL nodes and 900 V100 GPUs on 150
Summit nodes respectively.

per subdomain face/edge). The resulting speed-up is shown in Fig. 27, which compares the time takenby
these routines before this refactoring (June 2019) and after this refactoring (October 2019).

Next Steps

As mentioned above, WarpX relies on the AMReX framework for portability across different computing
architectures. AMReX currently supports NVIDIA GPUs (through CUDA), and is working towards support
for AMD GPUs through HIP. AMReX is also expected to support Intel GPUs via DPC++ or SYCL. On the
WarpX side, supporting these architectures should involve only minimal changes, since the WarpX code base
is isolated from these low-level programming models through the use of AMReX’s ParallelFor function
(and similar other high-level parallelization functions).

In addition, as raw compute power will increase on Aurora and Frontier, I/O is expected to become more
and more of a bottleneck. The WarpX team is keenly aware of the potential limitations associated with this,
and is exploring mitigation strategies, including fast, scalable I/O through ADIOS2, as well as in-situ data
processing/reduction with Sensei, Ascent, or ADIOS2 sustainable staging transport.

5. EARTH AND SPACE SCIENCE APPLICATIONS

End State: Deliver a broad array of comprehensive science-based computational applications able
to provide, through effective exploitation of exascale HPC technologies, breakthrough modeling
and simulation solutions to fundamental issues and scientific questions centered on key planetary
processes and the origin of the universe.

The Earth and Space Science Applications (ESS) application L3 area (Table 34) spans fundamental
scientific questions from the origin of the universe and chemical elements to planetary processes and interactions
affecting life and longevity. These application areas treat phenomena where controlled and fine resolution
data collection is extremely difficult or infeasible, and in many cases fundamental simulations are the best
source of data to confirm scientific theories and predict critical phenomena.

The key objective in the area of ESS is to utilize exascale resources to carry out simulations of phenomena
with massive ranges of space and temporal scales, and where controlled data collection is extremely limited
or impossible. These applications are critical to mankind’s well-being and understanding of fundamental
questions of the universe, and in many cases advanced simulation is the most effective vehicle for gaining
insight into these processes. As their computing requirements are massive, it is critical to develop these codes
to make efficient use of exascale computing resources.
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Table 34: Summary of supported ESS L4 projects.

WBS
number

Short name Project short description KPP-X

2.2.3.01 ExaStar Demystify the Origin of Chemical Elements KPP-2

2.2.3.02 ExaSky Cosmological Probe of the Standard Model KPP-1

2.2.3.03 EQSIM Seismic Hazard Risk Assessment KPP-1

2.2.3.04 Subsurface Carbon Capture, Fossil Fuel Extraction, Waste Disposal KPP-2

2.2.3.05 E3SM-MMF Regional Assessments in Earth Systems KPP-1

5.1 ExaStar

This project develops a new code suite, Clash, which will be a component-based multi-physics AMR-based
toolkit, accurately simulating coupled hydrodynamics, radiation transport, thermonuclear kinetics, and
nuclear microphysics for stellar explosion simulations. Clash will reach exascale efficiency by building upon
current multi- and many-core efficient local physics packages integrated into a task-based asynchronous
execution framework based on current AMR technology. The fundamental goal in the development of Clash
is to understand the production of the chemical elements in these explosions, particularly those heavier than
iron. While astronomical observations reveal the production of the heaviest nuclei began early in galactic
history, it is not known how and where these elements were formed. To address this topic via laboratory
measurements, a series of Nuclear Science Long Range Plans have supported construction of radioactive ion
beam facilities, culminating in the Facility for Rare Isotope Beams (FRIB). While FRIB is designed to acquire
extensive data on the nuclei relevant for astrophysical nucleosynthesis, its end science goal cannot be met
unless those experimental data are integrated into high-fidelity simulations of stellar explosions—supernovae
and neutron star mergers—that define the conditions under which such heavy element production most likely
takes place. Through a better understanding of the sites where the heaviest elements are made, Clash can
help focus experimental efforts at FRIB on those reactions of greatest influence.

5.1.1 ExaStar: Science Challenge Problem Description

The ExaStar challenge problem is a three-dimensional simulation of the first 2 seconds of evolution after iron
core bounce of a core-collapse supernova. The progenitor star model will be chosen at run time from the best
available models. The most likely progenitor models are (a) the solar metallicity 12 solarmass progenitor of
Sukhbold, Woosley, and Heger [6], chosen because it represents, in some sense, the “center” of the distribution
of massive stars that produce core collapse supernovae (CCSNe), or (b) the binary merger model of Menon
and Heger [7], chosen because it is believed to closely mimic the progenitor system of SN 1987a, the only
CCSNe from which there are multi-messenger signals to date.

The physical domain will extend from the center of the star outward to fully enclose the helium shell
of the evolved star. The precise location of this radius is progenitor dependent, but it is always more than
10,000 km. The maximum spatial resolution (enabled with AMR) will be at least 1 kilometer at the surface of
the proto-neutron star (i.e., in the inner 100 km or so of the event). At least 20 energy groups will be used to
resolve the spectra of neutrinos of all flavors (electron, mu, tau, and their anti-particles) from 0 to 300 MeV.
An approximation to general relativistic gravity utilizing at least 12 moments in a multipole approach will be
used, with the option to have a more realistic treatment if possible (e.g., conformally flat approximation). A
set of tabulated neutrino-matter interaction rates which include emission, absorption, scattering, and pair
production from various nuclear and nucleonic processes will be used. This table will be coupled to a set
of tabulated quantities derived from a high-density Equation of State (EOS) that will provide pressures,
entropies, and all other required thermodynamic values as required by, e.g., the hydrodynamics. The available
set of coupled rates and EOS tables will include, at least, the SHF0 EOS of Steiner, Hempel, and Fischer [8].
Details on the challenge problem are listed in Table 35.
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Table 35: ExaStar challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Core-collapse supernova, compressible hydrodynamics, self-gravity,
nuclear burning, specialized equation of state, neutrino transport

Numerical approach,
algorithms

Finite volume shock resolving Eulerian solvers, Poisson solver, ODE, 0D
calculations from tables for EOS, discontinuous Galerkin finite elements
for neutrino transport

Simulation details: problem
size, complexity, geometry, etc.

Maximum spatial resolution (enabled with AMR) will be at least 1 km
at the surface of the proto-neutron star (i.e., in the inner 100 km); 20
energy groups to resolve the spectra of neutrinos of all flavors (electron,
mu, tau, and their anti-particles) from 0 to 300 meV; an approximation
to general relativistic gravity utilizing at least 12 moments in a
multipole approach will be used, with the option to have a more realistic
treatment if possible (e.g., conformally flat approximation)

Demonstration calculation
requirements

Partial evolution from a post-bounce configuration (which can be
evolved to this point in spherical symmetry). The evolution must be
long enough to provoke several epochs of AMR mesh generation and
restriction.

Resource requirements to run
demonstration calculation

Full exascale machine for 2 hours

5.1.2 ExaStar: KPP Stretch Goal

The ExaStar stretch goal is a three-dimensional simulation of the initial phases of a neutron star merger.
Unlike the core collapse supernova challenge problem, this stretch goal requires a general relativistic (GR)
dynamical spacetime solver and a GR magneto-hydrodynamics solver, which represent a significant advance in
code capability. The initial conditions of the problem will consist of two neutron stars in a quasi-circular orbit
with a separation sufficient to complete 2–3 orbits before mergers. The simulation domain will cover 3,000 km
(roughly 300 neutron star radii) with a resolution using AMR of order 100 m. Instead of Newtonian gravity,
dynamical spacetime solver using a high-order finite differencing scheme will be employed with corresponding
Kreiss-Oliger dissipation terms to discretize spacetime variables in the BSSN formalism. In addition, a general
relativistic ideal magneto-hydrodynamics solver will use the metric from the spacetime solver to advance
the fluid dynamics while assuring a divergence-free magnetic field, They will use a generalized version of the
two-moment neutrino transport module that includes the relevant general relativistic terms, with of order 20
energy groups used to resolve the spectra of neutrinos. The transport will use a tabulated neutrino-matter
interaction rate. coupled to a set of tabulated quantities derived from a high-density EOS. Because the
physical conditions in the dynamical-phase of mergers do not involve complex nuclear reactions, only a small
reaction network including nucleons and alpha particles will be required. The simulation will cover roughly
the first 20 milliseconds of the merger, or if a black hole forms for a few milliseconds after formation, which is
sufficient to determine the amount of dynamical mass ejected and the composition and asymptotic kinetic
energy of the outflows.

5.1.3 ExaStar: Progress Towards Advanced Architectures

GPU Strategy

The ExaStar codes are based on the AMReX (§ 8.3) library for block-structured adaptive mesh refinement.
AMReX currently supports the use of CUDA, OpenACC and OpenMP. Internally, AMReX relies on CUDA
for NVIDIA accelerators, and is in the process of developing core-level support for AMD accelerators based
on HIP. AMReX provides the ability for users to construct loops over data using mesh and particle iterators.
AMReX iterators implicitly cycle through GPU streams on each iteration, keeping work in a given loop
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Figure 28: Weak scaling tests were performed for the Castro hydrodynamics
solver for the Sedov problem. The GPU version is about an order of magnitude
faster than the CPU version. Each configuration makes optimal use of all available
node resources.

ordered but taking advantage of unused GPU resources when they are available. While Castro makes extensive
use of the GPU-enabled capabilities of the AMReX iterators(using C++), FLASH (Fortran) relies primarily
on support for alternative directive-based offloading strategies provided by AMReX.

FLASH GPU-enabled units have been primarily developed using OpenACC and OpenMP offload directives.
We are presently transitioning all OpenACC kernels to OpenMP 4.5 to future-proof the code on Frontier and
subsequent platforms.

Progress to Date

Castro’s hydro solver has been ported to GPUs using a combination of the AMReX launch mechanism
and custom kernel launches of CUDA Fortran routines. GPU performance is compared to CPU performance
using all of the available node resources in a weak scaling benchmark in Fig. 28. Current work is concentrated
on moving all kernel launches to the AMReX launch mechanism.

Efforts to adapt the FLASH hydrodynamics solvers to GPUs are being focused on a new magneto-
hydrodynamics solver, Spark. That work is underway.

Thornado is developed as a collection of modules for neutrino radiation transport that can easily be
incorporated into FLASH or Castro. For this reason, a primary focus of Thornado development is node-level
performance on heterogeneous computing systems. GPU capability has been added via GPU directives and
linear algebra libraries. In particular, the explicit and implicit updates in the neutrino transport solver have
been moved to GPUs. Figure 29 demonstrates the performance of Thornado on one Summit node using GPU
directives.

The equation of state for dense matter is an especially important feature of ExaStar challenge problem
physics. WeakLib is a library and collection of microphysics for dense matter neutrino interactions that
includes a tabulated nuclear equation of state. The relevant interpolation kernels were ported to the GPU
with GPU directives. OpenACC or OpenMP offloading can be used by using the relevant preprocessor
macro. The performance of important opacity interpolation modules was tested indirectly in the Thornado
benchmark for Fig. 29.

The performance of Castro’s reaction network was evaluated on SummitDev. As shown in Fig. 30 below,
this approach works well for very small networks, but register pressure prevents networks larger than 15
species from running efficiently. This motivates further work to parallelize the reaction rate evaluation and
linear algebra across threads in a thread block. This work is already underway in the XNet module used in
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Figure 29: Performance of distinct Thornado components are measured for
different programming models of OpenACC and OpenMP offload for a problem
of a radiating sphere that mimics core-collapse supernova conditions. Speedup is
that of one Volta GPU relative to a single Power9 CPU core.

FLASH. An earlier version of the XNet module has shown good speedups via GPU acceleration for large (i.e.
160 species) networks. Shown in Fig. 31 is the time to solution for a nuclear burning simulation with FLASH
while employing an increasing number of CPU threads. In the GPU case, each CPU OpenMP thread is
launching kernels on the GPU to perform the network solves.

Next Steps

Our GPU strategy moving forward is based on a three-step process: (1) finalize the GPU implementations
in the individual physics modules, (2) interface these modules with FLASH/Castro, and (3) optimize and tune
the individual GPU kernels in the context of executing the challenge problem. Thornado and WeakLib have
both been fully interfaced with Castro; the FLASH interface is under active development. Both Thornado and
WeakLib have already been extensively optimized for GPUs, but incorporation of asynchronous kernel launches
may provide further benefit. The GPU implementation of the Spark module for magneto-hydrodynamics in
FLASH is also under active development using a similar approach (i.e. via directives) as demonstrated with
Thornado. A fully GPU-ported version of the XNet code for the reaction network is nearly complete and
will replace the existing implementation in FLASH. This version will be a substantial improvement over the
previous iteration which relied on GPUs only for the dense linear solve describing the coupled system of ODEs
for the reaction network. Interfacing this new reaction network solver with FLASH will be straight-forward
given the existing interface to the previous version of XNet.

5.2 ExaSky

Modern cosmological observations carried out with large-scale sky surveys are unique probes of fundamental
physics. They have led to a remarkably successful model for the dynamics of the universe as well as a number
of breakthrough discoveries. Three key ingredients—dark energy, dark matter, and inflation—are signposts to
further breakthroughs, as all reach beyond the known boundaries of the Standard Model of particle physics.
A new generation of sky surveys will provide key insights into questions raised by the current paradigm
as well as provide new classes of measurements, such as of neutrino masses. They may lead to exciting
new discoveries, including those of primordial gravitational waves and modifications of general relativity.
Sophisticated, large-scale simulations of cosmic structure formation are essential to this scientific enterprise.
They not only shed light on some of the deepest puzzles in all of physical science but also rank among the
very largest and most scientifically rich simulations run on supercomputers today. Existing machines do not
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Figure 30: Castro reaction network calculation which uses a single thread on
the GPU to time-integrate a single zone on the GPU.

Figure 31: FLASH Burn Test on Summit. Single node using 6 MPI ranks (1
rank/GPU) with different levels of OpenMP CPU threading; 160-species network,
explosive carbon burning.
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have the performance and the memory needed to run the next-generation simulations that are required to
meet the challenge posed by future surveys, whose timelines parallel that of the ECP. The ExaSky project
extends the HACC and Nyx cosmological simulations codes so as to efficiently utilize exascale resources as
they become available. The Eulerian AMR code Nyx complements the Lagrangian nature of HACC; the two
codes are being used to develop a joint program for verification of gravitational evolution, gas dynamics, and
subgrid models in cosmological simulations at very high dynamic range.

In order to establish accuracy baselines, there are statistical and systematic error requirements on a large
number of cosmological summary statistics. These statistics include the density fluctuation power spectrum,
the halo mass function, the halo bias as a function of mass, the weak gravitational lensing shear power
spectrum, and kinematic and thermal Sunyaev-Zeldovich effects for galaxy clusters. There are also a number
of cross-correlations such as the density-halo cross power and cosmic microwave background cross-correlation
with large-scale structure. The accuracy requirements are typically scale-dependent, large spatial scales being
subject to finite-size effects and small scales being subject to a number of more significant problems such as
particle shot noise and code evolution errors (including subgrid modeling biases). Strict accuracy requirements
have already been set by the observational requirements for DOE-supported surveys such as the CMB-Stage 4
(CMB-S4), Dark Energy Spectroscopic Instrument (DESI) and the Large Synoptic Survey Telescope (LSST),
which typically are sub-percent (statistical) over the range of well-observed scales. Systematic errors need to
be characterized, and controlled where possible, to the percent level or better. All of these error controls must
be satisfied when running the challenge problem simulations at the > 50× FOM requirement. For a recent
exploration of cosmological simulation errors in hydrodynamic simulations by ExaSky, see Emberson et al. [9],
this paper uses the ExaSky-developed CRK-HACC code that implements the new CRK-SPH method [10]
in a cosmological setting. The final challenge problem runs will be carried out with a new set of subgrid
models for gas cooling, UV heating, star formation, and supernova and AGN feedback, now under active
development.

The simulation sizes are set by the scales of the cosmological surveys. The challenge problem simulations
must cover boxes of linear size up to the few Gpc scale, with galaxy formation-related physics modeled down
to roughly 0.1 kpc (a dynamic range of one part in 10 million, improving the current state of the art by an
order of magnitude). Multiple-size boxes will be run to cover the range of scales that need to be robustly
predicted. The mass resolution of the simulations (in the smaller boxes) will go down to roughly a million
solar masses for the baryon tracer particles and about five times this value for the dark matter particles. The
final dynamic range achieved depends on the total memory available on the first-generation exascale systems.

5.2.1 ExaSky: Science Challenge Problem Description

The ExaSky science challenge problem will eventually consist of two very large cosmological simulations
run with HACC that simultaneously address many science problems of interest. Setting up the science
challenge problem in turn requires multiple simulations, which will be completed before the arrival of the
exascale systems. These involve building subgrid models by matching against results from very high-resolution
galaxy formation astrophysics codes via a nested-box simulation approach, a medium-scale set for parameter
exploration, and based on these results, implementing the final two large-scale challenge problem runs on the
exascale platforms.

The challenge problem runs are of two different types. The first is a large-volume, high mass and force
resolution gravity-only simulation (Table 36), and the second is a corresponding hydrodynamic simulation
that includes detailed subgrid modeling (Table 37). The second simulation will include hydrodynamics and
detailed subgrid modeling. The main probes targeted with these simulations are strong and weak lensing
shear measurements, galaxy clustering, clusters of galaxies, and cross-correlations (internal to this set as well
as with CMB probes, such as CMB lensing and thermal and kinematic Sunyaev-Zeldovich effect observations).
The challenge problem runs will have the same cosmology and simulation volume; they will also share the
same random phases in the initial conditions. This will allow us to investigate the effects of baryonic physics
on cosmological probes via a direct comparison across the two simulations.

There are two different optimization strategies for the ExaSky challenge problem, the first is to maximize
the performance of the gravity and hydro solvers and the second is to develop a new generation of subgrid
models in which known empirical results are emergent, rather than being enforced, as is mostly the case
currently. The aim with this more physics-based approach is to achieve a more consistent approach in which
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Table 36: ExaSky gravity-only challenge problem details.

Simulation target Specifications

Initial Conditions Multi-particle Gaussian random field initial conditions using a specified
linear power spectrum at the initial redshift (based on ExaSky’s 3-D
SWFFT with up to 30k cube FFTs)

Boundary Conditions Periodic (box size of 3 Gpc/h

Resolution Force resolution, ∼1 kpc, mass resolution ∼2× 108 solar masses
(gravity-only run), and ∼109 solar masses (dark matter), ∼2× 108 solar
masses (baryons) for the hydrodynamic simulation (this corresponds to
23,0403 particles for the first simulation and 2× 12,2883 for the hydro
simulation)

Physics N-body Gravity via spectral particle-mesh (long-range) and direct
particle-particle or tree/FMM (short-range); Lagrangian hydrodynamics
with CRK-SPH; subgrid models for UV cooling/heating, star/black
hole/galaxy formation and associated effects, supernova and AGN
feedback

Science Outputs Summary statistics for matter and velocity fields, Lyman-alpha forest,
weak lensing shear, halo properties and halo spatial statistics, halo
merger trees, tSZ and kSZ statistics; light-cone outputs, galaxy
summary statistics, strong/weak lensing for galaxy clusters, sky maps
for optical and CMB observables; multi-probe cross-correlations

Table 37: ExaSky subgrid challenge problem details.

Simulation target Specifications

Physical phenomena and
associated models

Multi-scale cosmic structure formation—gravitational evolution, gas
dynamics and subgrid models for astrophysical processes, including a
number of feedback mechanisms

Numerical approach,
algorithms

Lagrangian (N-Body) with CRK-SPH hydrodynamics for the HACC
code; multiple data-intensive algorithms (including AI/ML) in HACC’s
CosmoTools analysis library

Simulation details: problem
size, complexity, geometry, etc.

Multi-trillion multi-species particle simulation with fully representative
subgrid modeling for the challenge problem; results must be available at
low redshift (close to the current epoch)

Demonstration calculation
requirements

1) Limited number of timesteps with a fully representative simulation for
the solvers, but not for the subgrid models, ability to run to low redshift;
2) Smaller-scale simulation with subgrid models fully implemented, run
with a larger number of time-steps, again to low redshift

Resource requirements to run
demonstration calculation

The demonstration case will require a large fraction of an exascale
system for about 48 hours of run time
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the final results become independent of code parameters and are more easily interpreted. The new subgrid
models not only need to be optimized for the exascale platforms, but they also have an effect on the temporal
resolution of the simulations; once they are implemented, more time steps are needed, as more fine-grained
physics is being included and resolved. More than the raw performance of the main solvers, which is very
good and will remain so, this feature will strongly affect the computational requirements for running the
challenge problem.

5.2.2 ExaSky: Figure of Merit

In principle, the ExaSky FOM requires a discussion of several factors in order to arrive at a well-defined
single number that can simultaneously capture a multi-dimensional set of requirements. In terms of overall
throughput or delivered performance, the basic issues can be divided into three components: 1) Increase in
problem size (weak scaling); 2) Node-level computational performance (strong scaling); and 3) Addition of new
science capabilities (physics complexity, which in the case of ExaSky, is a statement about subgrid models).
Provided weak scaling targets are met, increases in problem size should provide a linear increase in the FOM;
likewise, provided the strong scaling targets are met, problems at fixed size should run proportionally faster.
Though ExaSky consists of two simulation codes, HACC and Nyx, since the final large-scale simulations
for the exascale challenge problem will be run with HACC, the FOM will be based on results with HACC
alone. To summarize, a scaled down version of the challenge problem run at low redshift will be used to
determine code throughput in three modes: gravity-only, gravity + hydro, and gravity + hydro + subgrid.
The results from these runs will be combined to yield a single FOM with weight factors chosen to represent
the importance of each particular test with respect to the challenge problem runs.

The problem with factoring the complexity of the subgrid models into the FOM is that since these models
are continuously evolving and were not run—and will not be run—on systems such as Mira and Titan, it is
very difficult to estimate what the performance ratios would be across platforms, especially if the baseline
platforms are either not available or it is not worth porting new applications to obsolete systems. Fortunately,
the subgrid model performance from the FOM can essentially be eliminated for two reasons: 1) the subgrid
models are entirely local, and as such do not affect the weak scaling performance of the code and 2) the
primary effect of having subgrid models is twofold, an increase in the time for an individual short-range
computational map that combines gravity and hydrodynamic forces, and a reduction in the actual value
of the short-range timestep (higher time resolution) once the subgrid models are incorporated. The latter
effect can be quite significant, leading to increases in the overall number of timesteps by one or two orders
of magnitude, whereas the actual increase in time due to the additional work per timestep is only of order
10–20%. For this reason, the FOM remains controlled by the time spent in the main solvers, i.e., gravity +
hydro, and therefore, the performance of these can be used to determine this value without having to consider
how the new subgrid models would perform on the baseline platforms.

The current baselines for the FOM have been established by gravity-only runs on Intel KNL platforms
(Cori II, Theta) and on the IBM BG/Q systems Mira and Sequoia; CPU/GPU runs include simulations
on Titan, SummitDev and Summit. Initial (nonradiative) CRK-SPH hydro runs have been carried out on
Cori II, Theta, SummitDev and Summit. Details of the baseline information are presented in the ExaSky
Milestone Report ADSE01-29 (MS3/Y2: Summit Performance Metrics for HACC). Because of HACC’s
demonstrated excellent weak and strong scaling performance, it is easy to convert wall-clock numbers from
one set of simulation runs to another, provided the physical parameters of the runs are kept unchanged (i.e.,
cosmological parameters, and force and mass resolution are held invariant, whereas the number of compute
nodes can be varied).

The HACC FOM calculation is therefore based on the following steps (ADSE01-29):

1. Establish scaling of the code on the reference and evaluation systems: HACC must 1) strong-scale at
settings typical of the challenge problem requirements and 2) weak-scale to the full size of the evaluation
system (both of these requirements must also be satisfied for the reference system).

2. Run representative problems on both systems (a smaller problem run on the reference system can be
appropriately scaled to the one on the evaluation system by using the known weak scaling performance)
and compute the per time step throughput (inverse of the time taken to run one time-step in a code
configuration typical of the late Universe, where the time-stepping is the most compute-intensive).
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3. Compute the throughput ratios of the evaluation system to the reference, making sure to scale the
reference system performance to 20 PFLOP (peak).

4. This methodology can be separately applied to the gravity-only part of the code, as well as to gravity
+ hydro, and to the final gravity + hydro + subgrid model code versions. This is useful because
intermediate FOMs for the solvers can be generated even if all the subgrid models are not implemented.
The final set of FOMs will be applied using Summit as the base system, with appropriate scaling based
on the known FOMs for Summit referred to the previous generation machines.

Example calculations of the FOM are given in ADSE01-29. Note that the methodology presented there
presents an FOM that is based strictly on strong scaling: how much faster does an equivalent problem run on
the system under test compared to the baseline? Such a measure does not account for the fact that the system
under test may have significantly more RAM and therefore can attack larger problems than the baseline
system. In the case of Titan and Summit for example, the RAM ratio is approximately (2.4PB/0.6PB) = 4,
so Summit can be used to solve cosmological problems, which are typically memory bound, that would be
impossible to do (in the same way) on Titan, but the FOM does not reflect this key advantage. The current
FOM for HACC in gravity-only mode for Summit is 13.6 (reported in ADSE01-29). The current expectation
is that for an exascale system this FOM will be greater than 60.

The initial hydro-solver FOMs have yet to be computed, since work on Summit optimization is continuing,
but the baseline data is available in the ADSE01-29 report (later runs on Cori II have also yielded more
information). The team expects to report the first hydro enhanced FOMs in the near future on the FOM
dashboard.

5.2.3 ExaSky: KPP Stretch Goal

The stretch goal will be to increase the number of particles in the simulations, depending on the memory
available on the systems. The improved mass resolution will increase the computational intensity and will
increase the wall clock requirement for the demonstration calculation. The current estimate for the stretch
goal is based on a 30,7203 particle problem (compared to the 23,0403 particles for the base gravity-only
problem) and 2× 15,3603 for the hydrodynamics problem. This will increase the demonstration runtime by a
factor of 2 at the minimum.

In terms of additional capabilities, it is important for the ExaSky project that a number of data-intensive
and Artificial Intelligence (AI)/Machine Learning (ML)-oriented analysis capabilities be available on the
exascale systems. As the first table above makes clear, the science outputs from the simulations are complex
and require multiple analyses carried out with HACC’s CosmoTools framework in all three analysis modes:
in situ, co-scheduled, and off-line. Consequently, the ExaSky project will stress test a number of capabilities
of the exascale systems (file IO, AI/ML performance, etc.) aside from the purely computation-oriented
requirements.

5.2.4 ExaSky: Progress Towards Advanced Architectures

GPU Strategy

The ExaSky challenge problem will be carried out with HACC, the Hardware/Hybrid Accelerated
Cosmology Code, with gravity-only and with gravity plus hydrodynamics simulations. The challenge problem
is a combination of these two types of simulations. The project’s FOM is therefore associated with HACC’s
performance in both usage modes. The gravity-only version of HACC has been able to take advantage of
GPUs ever since the initial development of the code. The first version for GPUs used OpenCL, a CUDA
version was developed for Titan due to the better support available from NVIDIA. Given the diverse hardware
in the exascale era, we recently revived the OpenCL version of HACC. This gives us a solid code base that
should be able to run on either Aurora or Frontier. In addition, working closely with the vendors, we are
exploring more vendor specific programming models, such as HIP for Frontier. Based on the OpenCL HACC
version, it is straightforward to switch to a different programming model quickly if it turns out that the
performance gains are considerable. The hydrodynamic version of HACC uses a new SPH method, CRKSPH,
and has been run at scale on Intel KNL systems. A first GPU version has been run on Summit and shown to
scale to the full machine. Currently we are optimizing this particular implementation.
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HACC does not rely on any ST or external software in its critical path. However, we are planning to
take advantage of several ST developments, in particular VeloC for a convenient and fast checkpoint/restart
implementation that will allow us to store more frequent checkpoints, SZ for data compression in order to
enable the storage of more detailed outputs from the simulations, and Cinema, for in-situ visualization.

Progress to Date

We have carried out three major science runs on Summit at the end of 2018. Each of the simulations
was carried out on 4,096 nodes of Summit and used all available GPUs. The simulations evolved close to 2
trillion particles each, resulting in some of the largest cosmology simulations at the achieved resolution (see
Figure 32). These simulations were carried out with the HACC gravity-only version. We used CosmoTools,
HACC’s analysis library, to carry out the first-level analysis completely on the fly. We used these simulations
to identify possible improvements to enable even better performance in the future. We found a handful of
bottlenecks in the in-situ analysis codes and were able to improve those considerably. The challenge problem
will evolve ∼6.5× more particles in the same simulation volume as these Summit runs and therefore will
increase the resolution by this factor. The results from Summit are very promising for future prospects on
exascale systems. We show the output from one rank from one of the Summit runs in Figure 33.

In addition to these three science runs, we have also carried out scaling runs and FOM runs with both
the gravity-only and the hydro versions of HACC. Scaling results are shown in Fig. 33. We showed that both
versions of the code scale up to the full machine. Our FOM includes time to solution as well as the particle
loading, as both metrics are crucial for cosmological simulations. For the FOM we used baseline test problems
set up on Theta (Intel KNL system at ALCF). The current projected FOM increase is measured to be 30.20
and the extrapolated FOM increase is 23.76. The FOM runs on Summit were carried out using 4,096 nodes
and 6 GPUs per node, the Theta runs used 3,072 nodes of Theta. We also compared results from exactly the
same problem size on Summit and Theta, using 128 nodes with 6 GPUs per node on Summit and 3,072 nodes
on Theta. While the time to solution on Summit and Theta for the hydro version of HACC were similar, the
gravity-only version which has been already maximally optimized for GPUs, was more than four times faster.
We are currently working on further improving the performance of the hydro version of HACC on GPUs.

Next Steps

The highest priority is continued work to improve the performance of the HACC hydro kernels on Summit.
The gravity-only version of the code is already very close to maximally performant. We have started to closely
interact with both vendor teams, Intel and AMD, including dedicated hackathons to develop the optimal
deployment strategy for HACC on both machines. We carefully follow the hardware and software developments
for both systems and evaluate the ramifications of these developments on the projected performance of HACC
periodically. We continuously compile and run on the latest software stack drops and measure and optimize
performance on provided test hardware (which include using hardware simulators). A combination of these
activities allows us to continuously project and refine the performance we obtain with our current software,
and we plan/implement new required algorithms to meet any limitations we see (written in any programming
language required). We continue to test different programming models to identify the best solution for HACC.

5.3 EQSIM

Large earthquakes present a significant risk around the world and are a major issue across the DOE mission
space ranging from the safety of DOE’s own inventory of one-of-a-kind mission critical facilities to all major US
energy systems (electric/gas distribution systems, renewable energy production facilities, nuclear power plants
etc.). Beyond the DOE enterprise, addressing earthquake risk, both from the standpoint of life safety and
damage/economic impact, is a major societal challenge for virtually every element of the built environment
including transportation, health, data/commerce and all urban infrastructure. The tremendous developments
occurring in high performance computing, data collection, and data exploitation can help advance earthquake
hazard and risk assessments. As computational power increases, the reliance on simplifying idealizations,
approximations and sparse empirical data can diminish, and attention can be focused on dealing with the
fundamental physics uncertainties in earthquake processes. Regional-scale ground motion simulations are
becoming computationally feasible, and simulation models that connect the domains of seismology and
geotechnical and structural engineering are becoming within grasp.
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Figure 32: Visualization of the mass distribution from one rank for a large
cosmology simulation carried out with HACC on 4,096 nodes of Summit. The
whole simulated volume is 24,576 times as big. Light colors indicate high density
regions.
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Figure 33: HACC weak scaling on Summit.

Exascale Computing Project (ECP) 86 PM-AD-1080



The EQSIM application development project is focused on creating an unprecedented computational
toolset and workflow for earthquake hazard and risk assessment. Starting with a set of the existing codes, SW4
(a fourth order, 3-D seismic wave propagation model), NEVADA (a nonlinear, finite displacement program
for building earthquake response), and ESSI (nonlinear finite-element program for coupled soil-structure
interaction), EQSIM is building an end-to-end capability to simulate from the fault rupture to surface ground
motions (earthquake hazard) and ultimately to infrastructure response (earthquake risk). The ultimate goal
of the EQSIM development is to remove computational limitations as a barrier to scientific exploration and
understanding of earthquake phenomenology, as wells as to practical earthquake hazard and risk assessments.

5.3.1 EQSIM: Science Challenge Problem Description

Traditional earthquake hazard and risk assessments for critical facilities have relied on empirically based
approaches that utilize historical earthquake ground motions from many different locations to estimate
future earthquake ground motions at a specific site of interest. Given the fact that ground motions for a
particular site are strongly influenced by the physics of the specific earthquake processes including the fault
rupture mechanics, seismic wave propagation through a heterogeneous medium and site response at the
location of a particular facility, earthquake ground motions are very complex with significant spatial variation
in both frequency content and amplitude. The homogenization of many disparate records in traditional
empirically based ground motion estimates cannot fully capture the complex site-specificity of ground motion.
Over the past decade, interest in utilizing advanced simulations to characterize earthquake ground motions
(earthquake hazard) and infrastructure response (earthquake risk) has accelerated significantly. However,
the extreme computational demands required to execute hazard and risk simulations at regional scale have
been prohibitive. A fundamental objective of the EQSIM application development project is to advance
regional-scale ground motion simulation capabilities from the historical computationally limited frequency
range of 0–2 Hz, to the frequency range of interest for a breadth of engineered infrastructure of 0–10 Hz. A
second fundamental objective of this project is to implement an HPC framework and workflow that directly
couples earthquake hazard and risk assessments through an end-to-end simulation framework that extends
from earthquake rupture to structural response, thereby capturing the complexities of interaction between
incident seismic waves and infrastructure systems.

To achieve the overall goals, there are two fundamental challenges that must be addressed. First, the
ability to effectively execute regional-scale forward ground motion simulations at unprecedented frequency
resolution with much larger, much faster models. Achieving fast earthquake simulation times is essential to
allowing the necessary parametric variations necessary to span critical problem parameters (e.g., multiple fault
rupture scenarios). Second, as the ability to compute at higher frequencies progresses, there will be a need
for better characterization of subsurface geologic structure at finer and finer scales, thus a companion schema
for representing fine-scale geologic heterogeneities in massive computational models must be developed. For
the purpose of evaluating regional-scale simulations and assessing progress on the application developments
of this project, a representative large regional-scale model of the San Francisco Bay Area (SFBA) has
been created. This model includes all necessary geophysics modeling features (3D geology, earth surface
topography, material attenuation, nonreflecting boundaries, fault rupture models). For a 10 Hz simulation,
the computational domain includes approximately two hundred and three billion grid points in the finite
difference domain. The SFBA model provides the basis for testing and evaluating both advanced physics
algorithms and computational implementations. Challenge problem details are given in Table 38.

5.3.2 EQSIM: Figure of Merit

The EQSIM project has established an application FOM that simply and clearly expresses both the compu-
tational and science goals of the overall effort. The FOM reflects the fact that the objective is to achieve
high frequency simulations in the shortest possible wall clock time. The FOM is executed in reference to
the frequency resolution and execution time of the regional scale SFBA model and reflects the fact that
doubling of the frequency resolved in the ground motion simulations requires essentially sixteen times the
computational effort2 and thus computational effort varies as frequency resolved to the fourth power. The

2Doubling the frequency resolution of the model requires reducing the mode grid size by a factor of 2 in each of three
directions and a halving of the integration time step size, resulting in a 16× computational increase.
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Table 38: EQSIM challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Earthquake simulations, including representative fault rupture
mechanics, wave propagation through heterogenous 3D geologic
structure, and appropriate coupling between regional geophysics and
local soil/structure models

Numerical approach,
algorithms

Geophysics simulations will be executed with a fourth-order, summation
by parts finite difference program (SW4) that will require extensive
advancement in order to achieve ground motion simulation goals.
Infrastructure simulations will be based on appropriate coupling of
regional-scale geophysics simulations with local soil-structure models.

Simulation details: problem
size, complexity, geometry, etc.

Regional-scale simulations will typically encompass a large urban region
surrounding the urban environments of interest and the regional
earthquake faults (sources) of interest. For the EQSIM project a
representative model for the San Francisco Bay Area (SFBA) has been
developed with a finite difference domain including on the order of 200
billion grid points for high frequency resolution simulations.

Demonstration calculation
requirements

The EQSIM science demonstration runs (performed annually in the
project milestone plan to establish current application FOM) will revolve
around the SFBA model with simulation of a representative M = 7
earthquake on the Hayward fault and simulation of a corresponding
90–120 seconds of earthquake motions. These runs measure the
project’s annual progress towards the exascale challenge problem.

Resource requirements to run
demonstration calculation

Based on results to-date and the objectives outlined above, it is
estimated that EQSIM would require ∼80–90 % with total integrated
wall clock machine time usage on the order of 90–150 hours for a single
earthquake scenario simulation. A single earthquake realization will
need 3–5 hours.
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initial application FOM was originally computed as

FOM =
f4max

wall clock time× 7.6
, (15)

where fmax is the highest frequency (Hz) resolve in the regional ground motion simulation, the wall clock time
(hours) is for one full rupture scenario simulation for a large earthquake (typically simulating on the order of
90 seconds of physical earthquake rupture and subsequent wave propagation), and 7.6 is a normalization
factor so that the application is baselined to a FOM of 1.0 in the first regional scale simulation performed
with the SW4 application at the start of the project, with a Vsmin = 500 m/s in the regional model.

As work progressed with the performance evaluations on the regional scale model, it became apparent that
it would also be desirable to explicitly reflect the dependency on the minimum geologic shear wave velocity
included in the regional model as the model grid discretization is dependent on the minimum shear wave
velocity in the model. In addition, regional simulations illustrate that in order to achieve realistic simulations
of risk it would be necessary to reduce Vsmin below 500 m/s to reflect the soft sediments on the bay margins
of the SFBA model. Thus, the final application FOM is defined as

FOM =
f4max

wall clock time× 7.6

( 500

Vsmin

)4
, (16)

where Vsmin is the smallest geologic shear wave speed included in the computational model (m/s), typically
associated with near-surface soft sediments.

The FOM has been tracked and updated since the start of the project, all values previously computed
are consistent with the final FOM since they were computed using a model with Vsmin of 500 m/s and thus
500/Vsmin was unity. More recently the team is moving towards lower Vsmin values (e.g., Vsmin = 250 m/s).
As described below, a number of advancements have been achieved and the application FOM has progressed
from 1.0 at the start of the development project to the recent highest achieved value of 66 on the Summit
platform at OLCF.

5.3.3 EQSIM: KPP Stretch Goal

Ultimately, soft near-surface sediments can exhibit nonlinear softening behavior under strong earthquake
ground motions. Representation of soil nonlinearity can be approximated in a number of ways (e.g. a series of
equivalent linear simulations that progressively modify soil properties) however, it would be desirable to directly
model the localized nonlinearity that can occur in near-surface sediments. This is a very computationally
challenging problem and would be a stretch goal for EQSIM depending on overall progress and performance
on Exascale platforms.

5.3.4 EQSIM: Progress Towards Advanced Architectures

GPU Strategy

In FY19 the EQSIM project had the need and resources, as it transitioned from a seed to full-scale project,
to take broader advantage of ECP ST developments. The engagement of the HDF5 team and the utilization
of HDF5 to enhance parallel I/O was an important step towards preparation of the EQSIM workflow for
execution on advanced platforms.

HDF5 has been used to implement a new geologic format, termed an Sfile, to store the material properties
and topography/bathymetry of a region. The Sfile implementation offers significantly enhanced portability,
improved parallel I/O performance, and reduced file size when compared to the previous raster file Rfile (a
binary block structured format) format developed for SW4. The main disadvantage of the Rfile block storage
paradigm is that material properties must be stored at all grid points below the highest topography in the
model. This means that air properties must be stored for all points that are above the topography. The new
Sfile format defines a number of curvilinear grids based on the topography, where grids near the surface of
the earth have finer spatial resolution, eliminating the need to store grid values above the topography. As
a result, the SFBA region Sfile is less than half the size of the corresponding Rfile (3.3 GB versus 7.1 GB),
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Figure 34: HDF5 enabled parallel I/O improvements for Hayward fault geologic
structure read times (new geologic Sfile versus previous Rfile formats).

and can be accessed more quickly (a 2.5× read speedup was realized with SW4 using 12,288 MPI processes)
when SW4 is running at large scale due to the efficiency of parallel HDF5 (Fig. 34).

The latest version of the EQSIM workflow also utilizes HDF5 to better manage fault-to-structure simulation
results. SW4 ground motions can be saved in user-specified selected volumes using a standardized HDF5
container. This functionality is a valuable tool for coupling SW4 incident seismic waves to soil structure
interaction (SSI) simulations through the Domain Reduction Method (DMR) using engineering finite element
programs such as ESSI. Comparisons between motions computed with SW4 at the surface and from equivalent
ESSI soil models (with SW4 motions injected at the boundaries of the finite element models) have been made
and show exceptionally good agreement.

The ability to efficiently and appropriately integrate SW4 ground motions into engineering finite element
models provides a unique ability to explore the interaction between complex incident seismic waveforms and
soil-structure systems.

Also in FY19, the SW4 code was partially ported to the Sierra and Summit platforms through the use
of RAJA C++ libraries. RAJA’s C++ loop abstractions are designed for writing portable and performant
grid-based simulation codes on high performance architectures. RAJA accomplishes this by separating the
loop bodies from the actual methods used to execute the loop through the use of C++ lambdas. The loop
body captured using one or more lambdas can be dispatched to run using a programming model and/or on a
selected execution space (e.g CPU or GPU), through the use of execution policies that are selected at compile
time. RAJA supports nested sequential and parallel loops as well as parallel loops with embedded reduction
operations.

For GPU based platforms, SW4 uses Umpire managed memory to perform setup on a CPU and to
automatically move the data to the GPU where it resides for the rest of the simulation. Some data is copied
to the host for message passing and I/O. Loops that contain reduction operations must use special RAJA
reduction variables and appropriate reduction policies must be used for correctness. The key computation
loops in SW4 are perfectly nested triple and quadruple loops that require more complex execution policies for
obtaining good performance. Some of the more complex loops had to be split along the coordinate directions
to reduce register pressure and these kernels execute at up to 36 % of the peak floating-point performance of
the GPU and up to 50 % of the maximum memory bandwidth. For nested loops, RAJA allows the nesting
order to be changed using the execution policy and this is often required for getting performant code when
switching architectures. RAJA also includes constructs for accessing shared memory on GPUs, coalescing
loops. The RAJA port of SW4 has been executing on machines with Nvidia GPUs and Intel CPUs (Xeon
and KNL). On future platforms, SW4 will require the new architecture to have a port of RAJA and Umpire
and to support a unified address space. If these requirements are met, porting would simply involve the
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Figure 35: Performance metrics for a M = 7 Hayward fault earthquake simula-
tion on both Cori and Summit (Note, these curves are for a minimum shear wave
velocity of 500 m/s in the SFBA model).

generation and tuning of a new set of execution policies.

Progress to Date

The EQSIM project formally plans a regional-scale science/performance demonstration calculation in
the 4th quarter of each fiscal year to evaluate the progress towards performance goals, and to demonstrate
scientific and engineering insight into what are earthquake simulations of unprecedented resolution. As
described below, the analysis of full, large-scale simulations of earthquake scenarios is also critical to informing
the computational requirements for future realistic simulations.

In FY19 ground motion simulations with SW4 were executed for the first time on Summit. Relative to
previous simulations using nearly all of Cori, a significant performance boost was realized as indicated in
Fig. 35. For a SFBA model, a 10 Hz frequency resolution was successfully achieved on Summit, however
this model only included near-surface soils with shear wave velocities down to 500 m/s. The evaluation of
sensitivity studies with the large-scale simulation results has indicated that the regional model must capture
near-surface soils, with shear wave velocities down to at least 250 m/s to fully represent the ground motion
hazard [11]. Lowering the minimum shear wave velocity will mandate larger simulations going forward. To
put the Summit simulation results in perspective, the SFBA simulation performed with EQSIM are compared
to all previous regional-scale simulations of the SFBA in Fig. 36. It is clear that the EQSIM results, and the
Summit simulation in particular, present a dramatic increase in earthquake simulation resolution.

Next Steps

Both HDF5 and RAJA will be essential elements of the EQSIM go-forward strategy for transition to
new exascale platforms. As we look forward to the emergence of future platforms (Aurora, Frontier), the
EQSIM team will work closely with the RAJA and HDF5 teams to identify necessary steps for successfully
transitioning from Summit.

5.4 Subsurface

An urgent challenge is to understand and predict the reservoir-scale behavior as affected by the long-term
integrity of the hundreds of thousands of deep wells that penetrate the subsurface for resource utilization. The
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Figure 36: EQSIM SFBA simulation progress in context with all previous SFBA
simulations.

performance of a wellbore hinges on the behavior of very thin interface features controlling the leakage of fluids
along the well casing-cement boundary. Similarly, leakage of buoyant fluids (e.g., CO2) through caprocks may
be controlled by micron-scale asperities in fracture networks that are themselves subject to geomechanical
and geochemical modification. At the reservoir or field scale (∼1–10 km domain size), multiphase flow and
reactions in fractured porous media are typically modeled using continuum models that make use of averaged
quantities and bulk parameters that do not fully take into account THCM-related heterogeneity at different
spatial and temporal scales. A more rigorous treatment is to resolve the pore-scale (0.1–10 µm) physical and
geochemical heterogeneities in wellbores and fractures so as to improve the ability to predict the evolution
of these features when subjected to geomechanical and geochemical stressors. The ultimate challenge is to
integrate the complex multi-physics processes occurring at multiple scales, from the micro to the kilometer
scale, in a high-resolution reservoir simulator. Meeting this challenge requires the use of innovative multiscale
coupling approaches and exascale computing.

The Subsurface project addresses this exascale computing challenge by coupling two mature code bases:
(1) Chombo-Crunch, developed at LBNL, which currently handles Navier-Stokes and Darcy flow coupled
to multicomponent geochemical reaction networks, and (2) the GEOSX code, developed at LLNL, which
handles geomechanical deformation and fracture+Darcy flow at a variety of scales.

A Science Challenge problem has been developed that focuses on the evolution of a single fracture in
wellbore cement, beginning at Stage 1 with diffusion-controlled reaction and weakening of the cement that
leads to fracturing. The propagation of the fracture as a result of further chemical reaction and fluid pressure
driven deformation is simulated with 1 µm resolution within the fracture and is coupled to a coarser resolution
(10 µm) representation of the porous cement adjacent to the evolving fracture. The resulting challenge problem
is estimated to require 1 trillion grid cells with 16 trillion degrees of freedom once the hydraulic, mechanical,
and chemical variables are included. Based on prior experiments and modeling, the Challenge Problem is
estimated to extend for 10 days of simulation in order to capture the evolving fracture and associated reaction
fronts.

5.4.1 Subsurface: Science Challenge Problem Description

There are a wide range of processes that take place in the subsurface that involve the evolution of fractures,
including both opening and closing due to some combination of mechanical and chemical stresses. In this
project the team focuses on the failure of a wellbore for CO2 sequestration in saline reservoirs as the single
Science Challenge problem, with consideration of a wellbore segment of up to 100 m, and times up to 1 year.
Wells are considered to be high-risk pathways for fluid leakage from geologic CO2 storage reservoirs, because
breaches in this engineered system have the potential to connect the reservoir to groundwater resources and
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the atmosphere (1). The geologic carbon storage community has raised further concerns about wellbore
stability because acidic fluids in the CO2 storage reservoir, alkaline cement meant to isolate the reservoir
fluids from the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular
concern for storage of CO2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable
standards.

The wellbore stability problem involves four physical processes that need to be considered in order to
model the challenge problem:

1. Geochemically driven fracture initiation. Initial crack growth near the wellbore occurs as a result of
chemical corrosion when acidic CO2 contacts alkaline cement. In these zones enhanced transport rates
contribute to chemical dissolution and weakening of the cement. Transport is expected to be dominated
by diffusion because of the initially low permeability of the cement, leading to a compact reaction front
in the porous cement.

2. Mechanically driven fracture propagation. This process involves the growth of a fracture based on the
stress/deformation field near the fracture tip. A fracture criterion is given for the rock; fracturing will
occur when this criterion has been exceeded. In the context of the challenge problem, this process is
driven by the fluid pressure within the fracture, which concentrates stress at the fracture tip.

3. Fracture sealing. This process is driven by reactive flow in the open fracture and can include 1) the
closure of flow pathways by mechanical compression of the asperities (collapse of fracture pillars) or 2)
by deposition of minerals in the fractures due to their supersaturation.

4. Chemically induced fracture growth. This process is also driven by reactive flow in the open fracture
and can include 1) sustained fracture growth by dissolution of the cement, potentially leading to
“wormholing”, and 2) increased stress due to deposition of minerals in the fracture (mineral precipitation-
induced fracturing). The second phenomenon can occur where the Gibbs free energy for mineral
precipitation exceeds the strength of the rock.

Subsurface energy applications, including the Science Challenge problem described above, are modeled at
a large scale known as the field or reservoir scale, O(0.1–1 km) and O(10 y), with spatial resolution as fine as
1 mm locally (e.g., close to the wellbore) and timesteps of minutes to hours for computationally tractable
simulations. Problems are typically analyzed with limited or no coupling between mechanical, hydraulic and
chemical processes that control fracture initiation and growth. Furthermore, the equations of motion are
based on an effective medium, parameterizing subgrid flow and transport processes as bulk properties (such
as permeability and reaction rate) that do not represent the true tortuosity of flow paths or reactive surface
area of the material.

In contrast to the conventional treatment of wellbore failure, accurate prediction of fracture evolution
depends on microscale resolution of fracture asperities (pillars) controlling permeability and chemical reactivity.
In particular, high resolution is needed in the vicinity of the fracture tip, where chemical corrosion combines
with the focused stress field to propagate the fracture. As in the classical sub-critical fracture growth
literature [12], the overall rate of fracture growth in these zones is controlled by coupled processes occurring
at the fracture tip.

Microscale resolution is also needed to accurately predict fracture permeability, since real rough fractures
are typically held open by asperities (pillars) of this scale. Chemical corrosion (dissolution) or mechanical
corrosion (pressure solution) of these asperities occurs at the same micron scale. Chemical dissolution may
actually have two opposing effects: 1) formation of channels or “wormholes” in the fracture plan that focus
flow, thus accelerating the opening of the fracture, or 2) dissolution of fracture asperities, thus allowing the
fracture to close under the ambient confining stress. The overall domain size of the fracture tip, O(cm), is
important because the resulting fractures can become the conduits for reactive flow (CO2 saturated brine)
in contact with highly reactive alkaline cement, potentially leading to wormholing that causes more rapid
wellbore cement failure and “runaway” borehole failure.

For the exascale challenge problem, one fracture tip with pore scale resolution is tracked. The localized
subdomain needed to resolve reactive transport processes at microscale resolution during fracture propagation is
a domain size up to 10 cm (in the length of the wellbore)×1 cm (along an azimuth in the cement annulus)×1 mm
(in the radial direction) with 1 µm resolution. This domain size is assumed to be the minimum domain needed
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Table 39: Subsurface challenge problem details.

Functional requirement Minimum criteria

Modeled physics Coupled flow, multi-component reactive transport and fracture
mechanics and deformation

Numerical approach,
algorithms

Chombo-Crunch: AMR, finite volume embedded boundary method for
flow and transport, level set;
GEOSX: finite element solid mechanics

Domain size 1 cm3 (e.g., 10 cm× 1 cm× 0.1 cm) near fracture tip

Grid resolution 1 µm
midrule Number of grid cells 1 trillion

Degrees of freedom 16 trillion (6 flow/mechanical variables, 10 solute transport variables)

Domain decomposition and
load balancing

32,768 grid cells per box per core

Resource requirement to run
exascale challenge problem
demonstration (based on
current architecture)

475,000 Cori KNL nodes (50× more than available); 80,000 Summit
nodes

Simulation time for exascale
challenge computation

10 days of simulated diffusion-reaction in Portland cement,
reaction-induced fracture evolution ⇒ 8640 global timesteps ⇒ 4 weeks
of machine time

to capture coupled reactive transport and mechanics effects in a fracture (e.g., pillar collapse). Up to 10 cm
is an adequate length with respect to the aspect ratio of the fracture. In the cross-section of the fracture
1 cm in the azimuthal direction takes into account the length scale for an REV. Order 1 mm in the radial
direction is required to capture diffusive transport over long time scales.

The resolution of 1 µm is required to explicitly resolve the reactive surface area of reacting materials in
the cement fill of the wellbore. This domain-to-grid resolution ratio at the pore scale conservatively requires
the equivalent of 30,000,000 KNL cores (475,000 KNL nodes) based on petascale Chombo-Crunch domain
decomposition and load balancing sweet spot of one 323 box of cells per core. With a current benchmark
for petascale capability of 600,000 KNL cores (9,000 nodes) for 24 nm resolution of a 100 µm block of shale,
the challenge problem is well into the regime of exascale resources as it is 50× current capability. Resources
based on Summit Volta GPUs can also be estimated. Given that Summit has same high-bandwidth memory
as Cori KNL (16 GB HBM), and 6 cards per GPU node, the requirement would be 80,000 Summit nodes.
The problem specifications are summarized in Table 39.

5.4.2 Subsurface: KPP Stretch Goal

The Stretch Challenge focuses on the simulation of 100 m of a single wellbore with proposed cell resolutions
down to 2 mm. The specifications for this problem are listed in Table 40. The wellbore scale component
of this problem is a GEOSX simulation using continuum/Darcy scale assumptions with coupled physics
consisting of solid mechanics, multicomponent multiphase flow, and fracture mechanics. While the wellbore
scale (GEOSX) component of the Stretch Challenge Problem will be developed independently of the Base
Challenge Problem, it is intended that the capabilities from the Base Challenge Problem are to be coupled
with the wellbore scale through methods developed within the project (ADSE05-21).

5.4.3 Subsurface: Progress Towards Advanced Architectures

GPU Strategy
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Table 40: Subsurface stretch problem details.

Functional requirement Specification

Modeled physics Fracture mechanics, multiphase multicomponent flow, reactive
transport/geochemistry

Numerical approach,
algorithms

GEOSX: finite element solid mechanics with REV-based upscaling from
Chombo-Crunch base challenge problem simulation data

Domain size 100 m× 0.8 m× 0.1 m high resolution zone

Grid resolution 2 mm resolution

Number of grid cells ∼800M elements

Degrees of freedom ∼10B DOF

Domain decomposition and
load balancing

2 ranks per node

Resource requirement to run
stretch problem (based on
current architecture)

1,600 Summit nodes

Simulation time for stretch
goal

6 months of simulated time. Execution time dependent on the
performance of the team’s linear solver strategy.

ECP Subsurface is developing a new multiphysics capability that couples flow, transport and reactions
using Chombo-Crunch with mechanics using GEOSX. There are two components to performance portability
for this project: one for Chombo-based codes which includes Chombo-Crunch and the coupling framework,
and one for GEOSX.

Chombo-Crunch will make use of a new abstraction layer called Proto. Proto is a C++ library that
provides a high-level representation for discretization operators on data defined on a single rectangle, replacing
the low-level Fortran/C-subset approach currently used. In Proto, the principal data type (class) is a collection
of values defined at each point in a rectangular patch (BoxData). BoxData corresponds to a multidimensional
rectangular array, but with the rectangular patch corresponding to the indices over which the array is defined
as a separate data type, similar to the FArrayBox class in Chombo and BoxLib. The major change from
the previous approach is that all of the performance-critical discretization methods that were represented as
low-level loops are now represented in applications code as compositions of two high-level operators applied
to BoxData instances: (i) Application of stencils (apply). In Proto, stencils are first-class objects, separately
defined and archived. (ii) Pointwise applications of user-defined functions applied to the values of the BoxData
at each point in the rectangular patch (forall). Embedded boundary (EB) calculations are used to compute
solutions on complex geometries. Because the nature of these algorithms is semi-structured, EB calculations
require more complex data structures. The EBProto performance portability layer is designed to meet this
complexity.

• The stencils, which vary from point to point on cut cells, are computed on the host and evaluated on
the device. Data live on a graph structure that can be more complex than a simple array. This data
lives on the device and requires complex indexing.

• Structures are built for fast stencil evaluation and pointwise function evaluation.

• A dictionary of stencil implementations is provided that can be easily accessed by the user. Most users
will never have to see the graph or moment information.

The primary ST dependencies for Chombo-based codes for the port to GPUs are PETSc/hypre for AMG
solvers and HDF5 for parallel IO.

The GEOSX portability strategy (GPU strategy) is centered on the use of LLNL’s RAJA and CHAI
libraries. In GEOSX we use RAJA achieve platform portable kernel launching as well as using some of
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the portability wrappers that RAJA provides to provide portable usage of shared memory, local arrays,
reductions, and thread safe atomics. GEOSX utilizes CHAI to manage the motion of data between the
different memory spaces. When coupled together, RAJA kernels that capture CHAI::ManagedArray’s will
trigger motion of data between the memory spaces, when motion is required. In cases where the data has not
been “touched” outside of the launch memory space (i.e. host or device), no data motion is required.

In addition GEOSX also has a strong dependence on linear solver packages. We currently have an
interchangable interface between Trilinos, HYPRE, and PETSc that will allow GEOSX to select the best
option for a given problem on a given platform (i.e. CPU, NVIDIA, AMD, etc.).

Progress to Date

We developed a performant implementation on Summit GPUs of Proto, including implementation and
performance assessment of benchmark kernels:

1. We developed an initial reference implementation on Summit GPUs of EBProto, including implementa-
tion and performance assessment of benchmark kernels.

(a) EBStencil

i. Generalization of Stencil objects for EB Operators

ii. Combination of a regular Proto::Stencil, and a sparse-matrix-vector operation near irregular
cells.

(b) EBDictionary

i. Archived EBStencil objects to minimize graph walking

ii. Recycles EBStencils across Chombo operators

2. Status

(a) Complete prototype exists and runs in parallel

(b) CPU and GPU capable

(c) MPI + CUDA capable

3. We have deployed extensions of Chombo distributed-data API for representing heterogeneous memory
(Chombo4).

4. We have an initial implementation of key components of EBChombo CFD code using EBProto, including
interfaces to the PETSc/Hypre linear solvers.

(a) EBProto-PETSc interface breadboard description is done

(b) EBProto Advection (scalar) is done

(c) EBProto Elliptic geometric multigrid solver is done

Chombo benchmark results are given in Tables 41 and 42. As shown in Table 42, performance of the
initial implementation of Proto on Summit was not that great—in the 200–300 GFLOP range—for the
27-point Laplacian kernel benchmarks. We have since improved performance of that kernel to 2.5 TFLOP
as reported in our annual review presentation. Arithmetic Intensity is still an issue. Complex algorithms
in Chombo-Crunch are compositions of Proto::Stencil and Proto::forall. Many forall operations have
low AI. Parallelism overheads are an issue for small patches kernel launch, or OpenMP fork-join. Realistic
mixtures of Stencil and forall execute at O(100) GFLOP. The plan for compositions of operators to get into
TFLOP regime is to automate fusion. Performance is well enough in hand for Proto so that EBProto has
been designed.

Complete design specification documents (math description, matching class design, doxygen reference
manual) for Proto and EBProto and Chombo4, including specification and performance models for benchmark
kernels have been written.

GEOSX currently runs low order finite element solid mechanics kernels on a single V100. We are currently
porting our packing/unpacking functionality to execute on device using host pinned memory for running MPI
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Table 41: Initial implementation on Summit of forall kernel benchmark, Riemann
problem; measurements are in GFLOP.

nx 1 stream 2 streams 4 streams 8 streams

64 220 208 222 220
128 236 231 233 234
256 65 72 233 234

Table 42: Initial implementation on Summit of apply kernel benchmark (27 pt
Laplacian); measurements are in GFLOP.

nx 1 stream 2 streams 4 streams 8 streams

64 232 231 231 231
128 243 242 243 243
256 268 276 271 265

across multiple GPU’s. When comparing a XEON node with perfect thread scaling against an LLNL/Lassen
node ( 4 × V100 ) the solid mechanics kernel shows a flat performance gain 80× for problems sizes from
1 million elements to 16 million elements. Given the known OpenMP thread scaling on the XEON node
(∼60 %), and an estimated MPI scaling efficiency of ∼50 % on LLNL/Lassen, we are expecting to achieve
a 70× performance gain in the node-to-node comparison for this kernel. These results are summarized in
Table 43. In addition, the execution of the Small Strain Solid Mechanics element kernel achieves approximately
6 TFLOP on the single V100.

We have not yet integrated the GPU strategies for the linear solver packages into GEOSX. We plan on
integration with the GPU strategies for Trilinos/PETSc/HYPRE in FY20.

Next Steps

The ECP Subsurface team has participated in the application readiness workshops and meetings for both
Aurora and Frontier. The first was an Aurora programming workshop in September then an Intel-organized
on-line workshop about the Aurora Exascale system in October. We also attended the Frontier Application
Readiness Kick-Off Workshop in October. We have also been active in the Intel + LLNS: PathForward
Monthly Tech Deep Dive since its inception.

In Chombo for any new architecture, the C++ abstraction layer, Proto, is designed such that the
abstraction layer does most of the work to accommodate architectural changes. Implementations of Proto are
customized for different platforms with no changes to applications code, leading to performance portability
on current and next generation platforms. This approach reduces maintained code from O(100,000) lines of
Chombo (now Chombo4, as the Proto binding) to 5,000 lines of Proto. The idea is to make use of the vendor
toolchain and let the compiler do the work.

Based on the application readiness workshops programming model issues on Aurora are a concern. One
thing we are trying to do is to get NERSC to use new Intel programming model for NERSC 9 so that we can

Table 43: Runtimes for Solid Mechanics Kernel with estimated node-to-node
comparison for XEON vs V100.

Number of Elements 1M 2M 4M 8M 16M

XEON—single thread 838 1,676 3,352 6,705 13,410
XEON—perfect scaling 23.3 46.6 93.1 186.2 372.5
XEON—36 threads 31.4 63.2 130.3 274.0 609.3
Single Volta V100 1.18 2.28 4.46 8.87 17.59
4 × Volta—perfect scaling 0.29 0.57 1.12 2.22 4.40
Quartz Node/Lassen Node 79.1 81.8 83.5 84.0 84.7
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have more time to develop and test. Concern is that Aurora relies on new compiler technology and Intel is
the main provider on DPC++ trajectory. We plan to be application ready for any developmental version of
Aurora when it becomes available. As for Frontier it is a Cray-run machine with which we have a good track
record for performance portability and where sub-vendors deliver diagnostic tools. The AMD-GPU is an
architecture that we are not familiar with. However, we are in a good position with the Proto abstraction layer
to deal with the differences from VT100, for example. We plan to be application ready for any developmental
version of Frontier when it becomes available.

The GEOSX plan for Aurora and Frontier has a hard dependency on RAJA and CHAI support for
those systems. Currently RAJA is developing a backend for HIP support, which will be ready for Frontier.
CHAI relies on allocators provided by UMPIRE, which currently has HIP malloc and pinned memory
allocators implemented. We expect that the port to each new machine will involve the addition of some
compile time tuning of the kernel launch parameters and register usage. The RAJA/CHAI/UMPIRE
support for SYCL is still in the initial stages, but we expect that as details about Aurora (and the compiler
support) become available we will have a clearer idea if any additional developments are required outside of
RAJA/CHAI/UMPIRE.

5.5 E3SM-MMF

The goal of the E3SM-MMF project is to develop a cloud-resolving earth system model with throughput
necessary for multi-decade, coupled high-resolution climate simulations. This next-generation model has the
potential to substantially reduce major systematic errors in precipitation found in current models because
of its more realistic and explicit treatment of convective storms. Consequently, it will improve the ability
to assess regional impacts of climate change on the water cycle that directly affect multiple sectors of
the US and global economies, especially agriculture and energy production. Current earth system models
possess limited ability to model the complex interactions between the large scale, mostly two-dimensional
baroclinic atmospheric motions and the smaller scale three-dimensional convective motions found in clouds
and individual storms. These motions and their interactions, to first order, determine the spatial distributions
and characteristics of regional precipitation. Complexities include the microscale chemistry and physics of
cloud formation and the impacts of anthropogenic climate change on cloud formation. Properly resolving
the key processes involved in cloud formation requires resolution (grid spacing) on the order of 1 km in the
atmosphere. It is possible to run such resolution on today’s O(10) petascale computing systems, but only at
great expense and for very short times (several simulated days). Running conventional climate models at this
resolution, for 100-year simulations, requires a 5,000× increase in computing resources.

For exascale, the team thus considers a multiscale modeling framework (MMF) approach to cloud resolving
modeling often referred to as superparameterization, which offers significant opportunities for unprecedented
model skill improvement that has yet to be fully explored due to limited computing resources. This project
will integrate a cloud-resolving convective parameterization (superparameterization) into the DOE E3SM
Earth System model using the Multiscale Modeling Framework (MMF) and explore its full potential to
scientifically and computationally advance climate simulation and prediction. The superparameterization will
be designed to make full use of GPU accelerated systems and will also involve refactoring and porting other key
components of the E3SM model for GPU systems. The acronym E3SM-MMF refers to the superparameterized
version of the E3SM model being developed under this ECP project.

5.5.1 E3SM-MMF: Science Challenge Problem Description

The overarching challenge problem is to develop an Earth system model with a fully weather-resolving
atmosphere and cloud-resolving super-parameterization, an eddy resolving ocean and ice components, all
while obtaining the necessary throughput to run 10–100-member ensembles of 100-year simulations in less
than a calendar year.

Size requirements: The challenge problem size has several aspects: (1) Achieving cloud resolving resolution
in the atmosphere super-parameterization, which is defined as at least 1km grid spacing in both horizontal
and vertical directions. (2) Achieving weather resolving resolution in the global atmosphere model, which is
defined as 50–25 km average grid spacing in the horizontal directions with ∼1 km grid spacing in the vertical
directions (the resolution of today’s global operational forecast models). (3) Achieving an eddy resolving
ocean/ice model, which is defined as a minimum 18 km resolution in equatorial regions, decreasing to 6 km
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Table 44: E3SM challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

E3SM-MMF is an Earth System Model focused on simulating the
Earth’s water cycle. It is made up of physical models of the Earth’s
atmosphere, ocean, land and sea ice.

Numerical approach,
algorithms

Finite elements, finite volumes and finite difference running on
unstructured grids with multiscale coupling and an extensive suite of
subgrid parameterizations

Simulation details: problem
size, complexity, geometry, etc.

Weather resolving atmosphere with a cloud-resolving
super-parameterization coupled to eddy resolving ocean and ice
components with the necessary throughput for 10–100 ensembles of
100-year simulations.

Demonstration calculation
requirements

Computational performance metrics require strong scaling benchmarks
out to the full machine size, using short simulations (5 simulated days,
∼O(5,000) timesteps)

Resource requirements to run
demonstration calculation

The full exascale machine for 12 hours and 20% of the machine for 20
days.

in polar regions to capture the reduction in eddy size with decreasing Rossby radius of deformation, with
O(100) levels in the vertical. The final aspect is (4) model throughput necessary to perform the simulation
campaign of the challenge problem in the course of one calendar year on the exascale Frontier system. The
team’s minimum requirement (10 member ensemble of 100 year simulations) requires the ability to run 1,000
simulated years in a calendar year, which can be achieved with a throughput rate of 5 SYPD. Ideally each
ensemble member will run at 5 SYPD, but this throughput can also be achieved if NX = 5, where N is
the number of ensemble members that can run on the machine simultaneously with X equal to the SYPD
performance of each ensemble member.

The E3SM-MMF will be evaluated using the E3SM water cycle metrics package (under development by the
E3SM project) which will measure the ability of the model to simulate extreme storms and coastal inundation.
Accuracy requirement will be to obtain accuracy similar or better than the high-resolution E3SM model
while running 50× faster as measured by the FOM. Due to the large natural variability and chaotic nature
of atmospheric and ocean dynamics, a rigorous assessment of these metrics requires the large ensembles of
century length runs identified in the challenge problem, requiring a large INCITE-class computing allocation.
The team’s challenge problem is a typical example of a simulation campaign used for Earth system science
studies. The demonstration calculation (described in Table 44) will use much fewer resources and is designed
to show that the E3SM-MMF model can achieve the computational performance and stability necessary to
complete the challenge problem. The performance will be established with a suite of short (5 day) strong
scaling benchmark calculations and the stability of the model will be stablished with a single multi-year
simulation.

5.5.2 E3SM-MMF: Figure of Merit

The E3SM-MMF’s project FOM is the throughput of a cloud resolving Earth system model, measured in
simulated-years-per-day (SYPD).

For the baseline, the team compares against the traditional E3SM model running at a global 3 km
resolution. As it is currently not possible to run this resolution on Titan, benchmarks of the E3SM high
resolution configuration (28 km) running on 20% of Titan are used, and then these results are scaled to the
100% of Titan and to 3km resolution. For the FOM speedup, the team will compare the baseline FOM to
the performance of the E3SM-MMF model running with a cloud resolving convective parameterization on
Summit, with GPU acceleration. This FOM speedup combines algorithmic speedup from the MMF approach,
and GPU acceleration. The cloud resolving convective parameterization will be run at a resolution of at least
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3km and potentially as fine as 1km.
Throughput was measured in simulated-years-per-day (SYPD) without I/O. I/O was excluded in order

to simplify the benchmarking procedures. The amount of I/O is very problem dependent, and it typically
varies from 10% to 50% of the total cost of the model, and thus including I/O would not substantially impact
the FOM. The team has tasks focused on improving the I/O infrastructure and these tasks measure their
performance through I/O rate benchmarks.

To estimate throughput of the full Earth system model, standardized benchmarks of simpler configurations
are used: an “F compset” and a “G compset”. The “F” compset isolates the performance of the atmosphere
and land components, while the “G compset” isolates the performance of the ocean and ice components.
Benchmarking these components separately makes it much easier to collect strong scaling data. It is difficult
to collect strong scaling data for the full coupled system as for a given number of nodes, optimal load
balancing and processor layouts need to be constructed. This is not difficult, but it is non-trivial and time
consuming. Based on the performance data collected in F and G compsets, the team can get a very good
estimate of the performance of the coupled system via

time-to-solution = 1.2×max(ocean time, atmosphere + ice time) .

This formula is based on current data which shows that coupling between components adds 20% to the overall
cost, and component concurrency (that atmosphere and ice model run sequentially with respect to each other
on the same nodes, while the ocean model runs concurrently on a different set of nodes).

Current progress towards the FOM is as follows:

• Baseline 2018/3: FOM = 0.005 (Titan with 17,576 nodes)

• Baseline revised, 2018/12: FOM = 0.011 (Titan, 18,700 nodes)

• E3SM-MMF, 2019/2: FOM = 0.095 (Titan, 2,700 nodes)

• E3SM-MMF, 2019/4: FOM = 0.34 (Summit, 1,024 nodes)

5.5.3 E3SM-MMF: KPP Stretch Goal

Develop an Earth system model with a fully cloud resolving 3 km atmosphere component and an eddy-resolving
ocean and ice components, all while obtaining 1.0 simulated-years-per-day for a single ensemble member on
Frontier or Aurora. For the stretch goal, they will use a E3SM configuration where the full atmosphere (not just
the super-parameterization) is run at global a global 3 km cloud resolving resolution. This E3SM configuration
currently serves as both a baseline to evaluate a cloud-resolving capability and as a risk mitigation strategy if
they are unable to obtain some aspects of a cloud resolving model with the super-parameterization approach
in the E3SM-MMF configuration.

5.5.4 E3SM-MMF: Progress Towards Advanced Architectures

GPU Strategy

The goal of the E3SM-MMF project is to develop a cloud-resolving earth system model with throughput
necessary for multi-decade, coupled high-resolution climate simulations. We are using a MMF approach
to cloud resolving modeling often referred to as super-parameterization. Our exascale challenge problem
requires us to run a fully weather resolving atmosphere and cloud-resolving super-parameterization, an eddy
resolving ocean and ice components, all while obtaining the necessary throughput to run 10–100 member
ensembles of 100-year simulations. In this configuration of the model, the atmosphere component is by far
the most computationally expensive, with most of the run time spent in the atmosphere’s Cloud Resolving
Model (CRM) code. The ocean component is the second most expensive. The remaining components are
either relatively inexpensive, or dominated by communication/networking that would not benefit from GPU
acceleration.

Our GPU strategy is thus to port the CRM and ocean components to the GPU. Our current approach is
based completely on Fortran, MPI and OpenACC. It has consisted of extensive code refactoring to reduce
GPU/CPU communication and to ensure that loops can be efficiently parallelized on the GPU with OpenACC
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directives. Our main focus is on on-node GPU performance. We continue to rely critically on MPI, but
anticipate most performance gains on exascale systems will be through better node utilization. Longer term,
for our Fortran components we plan on transitioning from OpenACC to OpenMP. We also need to update
the microphysics in the CRM from single moment to two moment. For this work, we plan on adopting
microphysics packages from the E3SM project that our being written in C++/Kokkos.

For the computational performance of the model, we thus rely heavily on Fortran, MPI and OpenACC, and
on exascale systems expect to be also using OpenMP, C++ and Kokkos. In addition improved computation,
we will also need significant upgrades to our I/O infrastructure in order to complete or exascale challenge
problem. For this work, we rely on the PIO library, ADIOS and PNETCDF.

Progress to Date

On Summit we are currently running the model in time-slice configuration, which uses active atmosphere,
land and sea ice components with prescribed sea surface temperatures and sea ice extent. We run the CRM
on the GPU. In this configuration, the CRM represents 98 % of the cost of the atmosphere component, which
in turn is close to 90 % of the cost of the full model.

The CRM code was ported to the GPU using OpenACC directives and CUDA Managed Memory with
the PGI compiler. We undertook several major refactoring efforts to prepare this code for effective utilization
of GPUs. We pushed the loop across different CRM instances down the callstack and into the CRM code as
the fastest varying dimension for more exposed threading. We handle data explicitly, as “managed” data
overheads were too large, and the PGI pool allocator performed poorly. All routines inside the main time
stepping loop execute on the GPU without interruption, and we only send data to and from the GPU outside
this loop

We show the weak and strong scaling performance of our application on Summit in Fig. 37. The
weak scaling problem configuration uses a consistent 169 CRMs per Summit node with CRMs containing
64× 64× 58 cells as we scale up. The strong scaling problem configuration uses 777,602 total CRMs, each
containing 16× 16× 58 cells. We have 100 % weak scaling parallel efficiency, and the strong scaling achieves
95 % and 65 % parallel efficiency on 1,150 and 4,600 nodes, respectively, compared to a baseline of 288 nodes.
All timers are end-to-end for the entire model excluding file I/O. The benchmark uses the same problem
configuration we plan to use in our 2019 and 2020 simulations on Summit (namely, 1-moment microphysics).
The key metric for scaling and GPU utilization efficiency is the total number of cells per node. In the
largest node count for strong scaling, we have 2.5M total cells per node on 4,600 nodes. Our upcoming
Summit simulations will use 2.4M total cells per node on only 1,000 Summit nodes. Note that strong scaling
degradation is not due to MPI overheads but rather due to load imbalance and GPU efficiency reduction due
to smaller kernel runtimes. MPI overhead remains less than 1 % in these runs.

To estimate the GPU Performance, we used nvprof to directly measure the on-node performance in terms
of percentage of peak double precision floating point operations per second. We have a total of 151 GPU
kernels that cumulatively clocked 2.5 % peak flops on Summit for the OpenACC code, which is quite decent
for a fluids application. This compares favorably to the 1.6 % peak result on Summit for HPCG, a benchmark
that is a better representative of memory-bound application performance than Linpack.

Next Steps

To prepare our code to run on Aurora and Frontier, we have several types of work. For the Fortran
components which are running well on Summit, we need to transition from OpenACC to OpenMP. We also
have additional Fortran components for which our OpenACC GPU port is still in progress—in particular the
ocean component and the RRTMGP radiation subcomponent in the atmosphere. This porting work needs to
be finished and then also transitioned to OpenMP. In addition, we have algorithmic improvements needed in
the MMF and the CRM, as well as improvements to the CRM to upgrade to two moment microphysics. For
our algorithmic work, we are improving the atmospheric physics/dynamics coupling by moving the physics
onto a lower resolution finite volume grid. This reduces some computational noise in the model and also
improves the efficiency, reducing the cost of the model on both CPU and GPU systems. To upgrade the CRM
to support two moment microphysics, we will be incorporating new code developed by the E3SM project.
This code is written in C++ and supports GPUs via the Kokkos library. We also plan to further improve the
GPU efficiency of the CRM’s dynamical core through better timestepping algorithms and a WENO-type
approach for dissipation. This subcomponent will be rewritten from scratch for optimal GPU performance.
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Figure 37: Strong and weak scaling of the E3SM-MMF on Summit for one
model day. The weak scaling problem uses a consistent 169 CRMs per Summit
node with CRMs containing 64 × 64 × 58 cells. The strong scaling problem uses
777,602 total CRMs, each containing 16 × 16 × 58 cells.

6. DATA ANALYTICS AND OPTIMIZATION APPLICATIONS

End State: Deliver comprehensive data-driven and science-based computational applications able
to provide, through effective exploitation of exascale HPC technologies, breakthrough solutions
that yield high-confidence insights and answers to challenges in a selected variety of DOE and
non-DOE US government agencies.

The Data Analytics and Optimization (DAO) L3 area (Table 45) includes applications whose predictive
capability is in part based on modern data analysis and machine learning techniques rather than strictly
on approximate solutions to equations that state fundamental physical principles or reduced semiempirical
models. These applications target the mission space of DOE and other relevant federal agencies such as NIH,
NSF, NASA, and NOAA, identified as high priority per the National Strategic Computing Initiative (NSCI).
They include a broad range of application areas and techniques, some of which are only recently coming
into maturity in the context of high-end simulation. As such they represent greater risk but also significant
potential for new discovery.

The principal goal of this activity is the development of the ECP applications capable of delivering
demonstrable solutions to specific DAO challenge problem simulations on the exascale systems. These
applications must target science and energy challenge problems within the mission space of the relevant
agency. Another objective is to educate, train, and inform DAO staff on the best practice approaches for
exascale application development, including an integration objective of demonstrating, for the DAO area, the
vital role and return on investment provided by predictive modeling and simulation technologies in delivering
on DAO strategic goals. An additional objective is to gather requirements from the DAO applications to help
guide the ST and Hardware and Integration (HI) R&D activities.

6.1 ExaSGD

Energy delivery systems such as national power grids operate by maintaining balance between energy supply
and demand. Energy is produced at generators and via renewables and other sources and is transmitted
through a bulk power system at a frequency of 60 Hz. Attacks (via physical or cyber means) and hazards
on the grid can create an imbalance between supply and demand, which can result in drops in voltage or
frequency, both of which can permanently damage very large and expensive components. As a result, great
care is taken to operate the grid with very high reliability within narrow operating voltage and frequency
ranges.
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Table 45: Summary of supported DAO L4 projects.

WBS
number

Short name Project short description KPP-X

2.2.4.02 ExaSGD Reliable and Efficient Planning of the Power Grid KPP-2

2.2.4.03 CANDLE Accelerate and Translate Cancer Research KPP-1

2.2.4.04 ExaBiome Improve Understanding of the Microbiome KPP-2

2.2.4.05 ExaFEL Light Source-Enabled Analysis of Molecular Structure KPP-2

Recovering from generation/load imbalance can be achieved by shedding load (deliberately allowing some
load to go unserved creating a partial blackout) to preserve the functionality of the remainder of the power
grid. But the behavior of the power grid can be influenced at many points within the system because of
the increasing prevalence of cyber-enabled control and sensing, renewables (such as transient wind or solar
power), plug-in storage devices (such as electric vehicles that can put power into the grid, or remove it),
smart meters that can control load at a fine granularity (such as throttling home appliances or A/C at times
of peak demand), and other sensored elements that can be controlled remotely. Today’s practice focuses
primarily on a conventional load-shedding approach, in which portions of the system are disconnected to
remove the load they impose, which may miss more efficient strategies for dynamically achieving balance
using a more complete spectrum of grid elements. A capability for discovering more optimal configurations
to recover from generation/load imbalance will improve the national readiness to recover from a variety of
hazards to the power grid.

6.1.1 ExaSGD: Science Challenge Problem Description

The ExaSGD challenge problem is to optimize the grid’s response in a near-term timeframe (e.g., 30 minutes
per NERC operating standards) to a variety of underfrequency hazard via physical and control threat scenarios
using comprehensive modeling that includes generation, transmission, load, and cyber/control elements. This
will make it possible to analyze a large number of sampled hazards to quickly discover strategies to reestablish
balance with minimal impact to loads served. The ExaSGD team will compare the frequency recovery
performance of a complex grid plus control system in the presence and absence of smart devices, renewables,
and demand response technologies. This will involve at least two calculations of the distribution of severity
of frequency response to grid hazards/effects relevant to the OE stakeholder community. Estimating these
distributions involves the solution to a large number of optimal power flow calculations that consider different
underfrequency scenarios. Each optimal power flow calculation requires the solution to a large-scale nonlinear
optimization problem. Additionally, this challenge problem will consider the integrated execution of these
optimization problems to warm-start subsequent power flow calculations across scenarios. Challenge problem
details are shown in Table 46.

6.1.2 ExaSGD: KPP Stretch Goal

The KPP Stretch Goal is a transient security constrained AC optimal power flow problem with frequency
recovery and restoration (TSCOPF-F). The objective is to determine control settings on generators, loads, and
renewable energy resources, such that the system frequency is restored after the occurrence of the contingency
fast enough to avoid loss of stability and prevent possible cascading outages. The content of the KPP Stretch
Goal beyond the target criteria is:

• Addition of storage devices, EV charging stations, and controllable loads in the set of resources available
to mitigate frequency deviations, in addition to conventional generators. The large amount of physical
and virtual storage further increases the complexity of the grid, not only in terms of more optimization
parameters and scenarios to consider, but also in terms of qualitative changes in power grid behavior,
such as possible transmission scale backflow.
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Table 46: ExaSGD challenge problem details.

Functional requirement Minimum criteria

Models A nonlinear optimization model describing physical and control systems
for grid operation including frequency-dependent fitness

Numerical Methods Nonlinear optimization with equality and inequality constraints

Problem size and complexity 103–105 scenarios
105 × 105 system size
106 “N− 1” contingencies + 106 “N− ∗” contingencies
103–105 statistical samples
Scenarios can be evaluated independently, but the team will apply
loosely coupled scenario acceleration using partial solution strategies
across scenarios

Demonstration calculation
requirements

Application team will implement the whole application stack and
demonstrate on models that capture a significant fraction of a model
representative of the North American power grid. Initial calculations
should require 103–105 scenarios and 102–103 statistical samples on a
large portion of the full grid model (at least 104 components). Following
success at this scale, the team will increase number of scenarios,
samples, system size and contingencies targeting above ranges.

Resource requirements to run
demonstration calculation

Production runs for challenge problem at highest scale will be ∼1 day
on full exascale systems.

• Aurora: 1 day on full system

• Summit: 1 day on full system
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Figure 38: Schematic description of interior point method computational work-
flow.

• Using transient rather than steady state constraints. Transient analysis shows not only that a desired
solution exists, but also that the control action can bring the system to that solution. TSCOPF-F will
provide critical analysis capability needed to take advantage of new grid control technologies such as
grid-forming (a.k.a. smart) inverters and dynamic shunt compensators. In TSCOPF-F, the objective
function is obtained as the solution of a set of discrete differential-algebraic equations (DAEs). Such
defined problem is far more computationally challenging because a system of DAEs needs to be solved
every time the optimization solver requests the objective function update.

The stretch goal is designed to stress test the project’s algorithms and libraries using a class of problems
that have not been extensively studied even on sub-exascale benchmarks. If successful, the stretch goal will
demonstrate the breadth of applications where ExaSGD technology can be deployed.

6.1.3 ExaSGD: Progress Towards Advanced Architectures

GPU Strategy

The ExaSGD project develops large scale optimal power flow simulations for power grids with multiple
sources of uncertainty and multiple contingencies. To the best of our knowledge computations like this have
not been performed on GPU accelerator platforms before and this project is pioneering methods for power
grid analysis on GPUs.

The optimization algorithm used is based on interior point method [13]. The algorithm can be schematically
described as in Fig. 38.

The interior point method implementation executes control logic and makes calls to BLAS Level-1 functions
and the Newton solver. Our plan is to execute control logic on CPU and run compute intensive BLAS kernels
on GPU. Host-device communication is minimal in this setting and consists only of sending error vector
norms (single floating-point numbers) computed on GPU back to the control logic run on CPU. The Newton
solver is structured in a similar way. It runs adaptive line-search algorithm control logic, which in turn calls
certain BLAS Level-1 kernels and the linear solver. Similarly, the control logic will be run on CPU and the
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BLAS Level-1 kernels will be executed on GPU. This approach is standard for abstract nonlinear algebra
computations (see e.g. Ref. [14]). Different BLAS Level-1 kernels are available from multiple ECP projects
and could be leveraged here [14, 15]. Nonstandard BLAS Level-1 kernels can be implemented with little
developer effort using vendor-specific environments like CUDA or hardware abstraction layers such as Kokkos
or RAJA.

The main computational challenges are in the linear solver implementation. The linear solution takes up
more computational cost than all the other parts of the computation together. The linear problems typically
arising in optimal power flow analysis are sparse symmetric indefinite. Furthermore, these problems are often
ill-conditioned, so iterative linear solvers are largely ineffective there. The linear solver also has to provide
matrix inertia to the optimization algorithm. Solvers that meet those requirements are mainly CPU based,
such as MUMPS, Pardiso, or MA57. We assessed that development of GPU-based solvers in this area (both
within and outside ECP) will not be at the pace that meets our project requirements.

To address this risk, we reformulated the optimization algorithm [16] so that instead of a large sparse
linear problem, it leads to multiple dense linear problems of manageable size. In that way, we can leverage
ECP sponsored libraries such as Slate [17] and MAGMA [18] who are far more mature in terms of code
stability and performance than sparse direct linear solvers on GPU.

Another computational challenge is the model evaluation, which to the best of our knowledge has not
been tried on GPUs before for power grid problems (or for any other problems defined by a complex network
of algebraic and/or differential equations for that matter). The reason is the heterogeneous and irregular
nature of power grid models that often leads to warp divergence and makes data coalescence challenging.
Because of that, most of the prior work in the domain area has used highly optimized CPU code instead.

While power grid equations are highly irregular, they are assembled from component model equations
for only a few different component model types (buses, transmission lines, generators, etc.). By evaluating
the same component type on all threads within a warp, the warp divergence can be avoided. By grouping
components that are coupled to each other within same thread block, data coalescence can be improved.
We will use this approach to set up the problem so that power grid model equations are mapped to GPU
threads to minimize warp divergence and improve data coalescence. We will prototype this mapping and
model performance using mini-apps written in CUDA. We chose CUDA, because it gives us most opportunity
to optimize the code and utilize hardware efficiently. Once satisfactory performance is achieved, we will
investigate if similar performance could be attained when using hardware abstraction layers such as Kokkos
and RAJA. Initially, we plan to have the model setup on CPU and model evaluations (called by an iterative
solver) on GPU. The problem setup on GPU is more challenging, but at the same time less consequential as
it adds one-time cost and is likely to be amortized when running complex iterative algorithms such as those
in optimal power flow. The problem setup on GPU will be addressed at a later project stage.

Progress to Date

We created a mini-app in CUDA for model evaluation testing. The mini-app is emulating model evaluation
in a mock-up solver environment. The solution vector is populated by random numbers instead of an
optimization solver as shown in Fig. 38. We use synthetic grid models with the same size and similar graph
properties as real power grid models. We tested the mini-app on a Power9/Volta architecture on Newell
mini-cluster at PNNL and Ascent cluster at ORNL (both having same node architecture as Summit).

The initial implementation of the mini-app running on a single Volta device performed well and showed
>25× speedup over the CPU implementation running on 16 threads. This addressed our main concern that
model evaluation could create a performance bottleneck. The optimized mini-app showed flat scaling (Figure
2), indicating that a single model evaluation for problem sizes typical for optimal power flow analysis is not
utilizing the entire Volta device. This was verified by profiling the code using NVIDIA Nsight tool.

The profiling also indicated that CUDA kernel launching latencies need to be taken into account when
optimizing the performance. Kernels runs take between 5–20 µs (as timed by nvprof), while kernel launch
latency on Power9 platform is typically between 5–7 µs (per private communication with NVIDIA engineers).
A recommended approach to hide these latencies is to run multiple model evaluations on separate streams on
each device. This approach is consistent with our optimal power flow analysis strategy, where we partition
the large-scale problem into a large number of small to medium size problems (order of 104–105 unknowns)
with low communication overhead. We are currently evaluating techniques for flooding GPU device with
large number of small kernels to hide kernel launch latencies, including use of CUDA Graphs.
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Figure 39: Preliminary performance results for model evaluation. Results are
shown for CPU 16 threads, naive, and optimized single-device GPU implementa-
tion.

Figure 40: Host-device latencies compared to model evaluation runtimes.

We also measured host-device communication latencies relative to the model evaluation kernels runtimes
on the device. For the smallest problem size we tested, moving data between the device and the host takes
approximately the same amount of time as evaluating model residual function. As we go to larger problem
sizes, host-device communication latencies become almost twice as long as kernel runtimes (see Fig. 40). This
reinforced our initial assumption that for optimal performance, model data should remain on the device
during the entire computation.

We tested performance of a sparse symmetric indefinite linear solver SSIDS from Spral library [19].
This solver capability matches requirement of our original approach. However, we found that SSIDS GPU
performance is worse than its CPU performance for test cases arising from our optimal power flow analysis
(Fig. 41). We performed tests for 4 different linear problems ranging in size from 13,000 to 300,000 and having
number of nonzeros from 40,000 to 1,000,000. In each case CPU implementation running on 16 threads
outperformed GPU implementation. Based on these testing results, in addition to literature survey, we
concluded that GPU technology for sparse direct linear solvers may not be mature enough to support our
project needs. That is why we decided to do algorithms-implementation co-design, where we reformulated
the optimization algorithm, so that it recasts a large sparse linear problem in several manageable dense linear
problems.

Next Steps
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Figure 41: Sparse symmetric indefinite direct linear solver performance on CPU
on 16 threads compared to performance on a single GPU device. Tests performed
on Intel Xeon E5-2620 v4 and NVIDIA Tesla P100 device.

We will use CUDA mini-apps to prototype and optimize key computational kernels for our software stack
on Summit platform. We chose CUDA because it is the most mature GPU technology to date and because it
gives us best control over the GPU hardware. We will use hand-optimized CUDA code to set up performance
targets for the portable version of our code.

We will rely on performance portability libraries such as Kokkos [20] or RAJA [21] to prepare our
software stack to run on Aurora and Frontier architectures. We are still assessing which portability layer
addresses our needs better. At this time, Kokkos seems to be a more mature and feature rich platform.
UMPIRE/Chai/RAJA software provides a more modular environment and allows for gradual transition from
vendor specific to portable code.

We will use our CUDA implementation to guide portable implementation of the software stack. We will
leverage libraries developed at other ECP projects, in particular MAGMA and Slate, where applicable. In
cases where portability abstraction creates a performance bottleneck, we will fall back to vendor specific
solutions. Finally, we will engage Kokkos and RAJA developers when porting model evaluation kernels
characteristic for power grid (and other complex network) models, which have not received sufficient attention
in the past.

6.2 CANDLE

The DOE has entered into a partnership with the National Cancer Institute (NCI) of the NIH and has
identified three key challenges that the combined resources of DOE and NCI can accelerate. The first challenge
(called the “drug response problem”) is to develop predictive models for drug response that can be used to
optimize pre-clinical drug screening and drive precision medicine-based treatments for cancer patients. The
second challenge (called the “RAS pathway problem”) is to understand the molecular basis of key protein
interactions in the RAS/RAF pathway that is present in 30% of cancers. The third challenge (called the
“treatment strategy problem”) is to automate the analysis and extraction of information from millions of
cancer patient records to determine optimal cancer treatment strategies across a range of patient lifestyles,
environmental exposures, cancer types, and healthcare systems. While each of these three challenges are at
different scales and have specific scientific teams collaborating on the data acquisition, data analysis, model
formulation, and scientific runs of simulations, they also share several common threads. The ECP project
The Exascale Deep Learning and Simulation Enabled Precision Medicine for Cancer focuses on the machine
learning aspect of the three challenges and, in particular, builds on a single scalable deep neural network
code called CANDLE (CANcer Distributed Learning Environment).

6.2.1 CANDLE: Science Challenge Problem Description

The CANDLE challenge problem is to solve large-scale machine learning problems for three cancer-related
pilot applications: predicting drug interactions, predicting the state of molecular dynamics simulations, and
predicting cancer phenotypes and treatment trajectories from patient documents. The CANDLE project
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Figure 42: Illustration of a transfer learning design to train one million models
for predicting the effect of a single drug on a single cancer cell line.

has three specific strategies to address these three challenges. For the drug response problem, unsupervised
machine learning methods are used to capture the complex, nonlinear relationships between the properties of
drugs and the properties of the tumors to predict response to treatment (and therefore develop a model that
can provide treatment recommendations for a given tumor). For the RAS pathway problem, multi-scale MD
runs are guided through a large-scale state-space search using unsupervised learning to determine the scope
and scale of the next series of simulations based on the history of previous simulations. For the treatment
strategy problem, semi-supervised machine learning is used to automatically read and encode millions of
clinical reports into a form that can be computed upon. Each problem requires a different approach to
the embedded learning problem, all of which are supported with the same scalable deep learning code in
CANDLE.

The challenge for exascale manifests in the need to train large numbers of models. A need inherent to
each of the pilot applications is producing high resolution models that cover the space of specific predictions
(individualized in the precision medicine sense). Take for example training a model that is specific to a
certain drug and individual cancer. Starting with 1,000 different cancer cell lines and 1,000 different drugs, a
leave-one-out strategy to create a high-resolution model for all drug by cancers requires approximately one
million models. Yet, these models are similar enough that using a transfer learning strategy where weights
are shared during training in a way that avoids information leakage can significantly reduce the time needed
to train a large set of models. Figure 42 shows a general strategy of this weight sharing approach to training
large numbers of models in which a transfer of weights delineates stages in the workflow.

In practice, speed up related to weight sharing can be discussed in the context of the challenge problem in
terms of work actually done and näıve work done. Consider work actually done WD being the number of jobs
J times actual number of epochs E trained for all stages s,

WD =

s∑
1

JE . (17)

A stage is a discrete and naive work done WN being the number of jobs in the last stage times the number of
epochs needed for a model to converge Ec,

Wn = JsEc . (18)

The team can then talk about speed up as being the ratio WN/WD.
A number of parameters exist when considering accelerated model training via transfer of weights. These

include how many transfer events, how to partition the input data, and how many epochs before a transfer
occurs. Additional considerations include what weights to transfer and whether or not to allow those weights
to be updated in subsequent models. The requirements associated with the science challenge problem of
training large number of high-resolution models are outlined in Table 47.
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Table 47: CANDLE challenge problem details.

Functional requirement Minimum criteria

Models Deep learning neural networks for cancer: feed-forward, auto-encoder,
recurrent neural networks

Numerical methods Gradient descent of model parameters; optimization of loss function;
network activation function; regularization; and learning rate scaling
methods

Problem size and complexity KPP-1: Large-scale machine learning solutions will be computed for the
three cancer pilots.
• Pilot1—leave-one-out cross validation of roughly 1,000 drugs by

1000 cell lines. This involves roughly one million models.
Partition the drugs and cell lines into n sets and train with those
for e epochs then transfer the weights w to the next set of
models expanding the number of models in each iteration. Each
of the models at iteration i can be safely (avoiding information
leakage) used to seed models for iteration i+ 1, where the set of
drugs and cell lines in the i+ 1 validation set were not in the
training set of the model at iteration i.

• Pilot2—state identification and classification of one or more RAS
proteins binding to a lipid membrane; prediction over time of
clustering behavior of key lipid populations that leads to RAS
protein binding. RAS proteins are represented in sufficient
resolution to model all pairwise interactions within and between
proteins. Lipid membranes are represented as continuous density
fields of tens of species of lipid concentration. Predictions are
trained on the cross-product 1,000s of simulations, each of which
are thousands of time steps, over multiple protein configurations,
and performed for a large range of different concentrations.

• Pilot3—predicting cancer phenotypes and patient treatment
trajectories from millions of cancer registry documents.
Thousands of multitask phenotype classification models will be
built from defined combinations of descriptive terms extracted
from 10K curated text training sets. To accelerate model
training, the team will use a transfer learning scheme with
sharing of weights during training.

Demonstration calculation
requirements

The computation performed at scale will be standard neural network
computations, matric multiplies, 2D convolutions, pooling, etc. These
will be specifically defined by the models chosen to demonstrate transfer
learning. The computations performed at scale will require sharing of
weights.

Resource requirements to run
demonstration calculation

For each Pilot, it is estimated that each pilot problem will require up to
12 hours at full system.
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6.2.2 CANDLE: Figure of Merit

The CANDLE FOM is the average “rate” of model training to convergence. On a given system, it can be
demonstrated that n instances of a pilot model (Pi) can be trained to convergence in a given time t thus
producing a rate xi equal to n/t. Models are defined as part of each of the three pilot applications. Because
each of the three pilot applications will focus on different deep neural network based models, and because
rates are being measured for each pilot model, the total FOM will be the harmonic mean (H) of the rates
across the models from the three pilot applications where x is the rate of nth model trained to convergence,

H =
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

. (19)

The rate of model training to convergence is model specific, and the time varies accordingly with the
number of epochs needed to train the model to convergence. For this reason, the team will need to choose a few
numbers of models (ideally one per pilot project), fix the input data and fix the number of epochs associated
with each model so that repeated measurements of the FOM can be compared to previous measurements.
A weighted harmonic mean (Hw) will be used that considers the number of epochs required to train to
convergence for the different models. In cases where computational resources or training to convergence
exceeds standard queue policies, and if it may be assumed that the time per epoch is constant, Hw remains a
valid choice. The weighted harmonic mean of the rate of model training can be represented as

Hw =
n

ec1
e1x1

+ ec2
e2x2

+ · · ·+ ecn
enxn

, (20)

or
HW =

n∑n
i=1

eci
eixi

, (21)

where Hw is now a weighted harmonic mean, eci is the number of epochs needed to train the ith model to
convergence and ei is the number of epochs actually run for the ith model. This assumes that the time per
epoch is constant, which holds true for many of the pilot application’s models.

The CANDLE FOM will be computed using training benchmarks for Pilot1 and Pilot3 models. Integration
of benchmarks for Pilot2 models is part of the CANDLE stretch goal.

6.2.3 CANDLE: KPP Stretch Goal

CANDLE will consider two KPP stretch goals:

1. For the RAS pathway problem, Pilot2, multi-scale MD runs are guided through a large-scale state-space
search using unsupervised learning to determine the scope and scale of the next series of simulations
based on the history of previous simulations. CANDLE has demonstrated a prototype DNN that
performs unsupervised feature learning on MD simulation neighborhoods. This stretch goal will consider
alternative DNN formulations to improve the predictive performance of Pilot2 models. The final result
will be the demonstration of the CANDLE FOM that includes a training rate for the revised Pilot2
models.

2. CANDLE will develop the first ever full US population level precision oncology model. This model will
leverage the work in the DOE-NCI Pilot3 to apply NLP to the national cancer registries to extract
structured terms from pathology reports to identify the type, stage and location of tumors, DOE-NCI
Pilot1’s models to predict tumor drug response to single drug and drug combinations, the NCI Genomic
Data Commons repository of tumors and genomic profiles for more than 15,000 patients and the ALCF’s
CANDLE Early Science Data Science project. The goal is to develop a nationwide population level
estimate of the potential benefit of precision medicine applied to Cancer. The team will use the SEERs
database processed with MT-HCAN to generate a national estimate of the emerging Cancer patient
population profile (approximately 1.6M new Cancer cases per year) for the next ten years. This patient
profile will be combined with the GDC database to generate a national level tumor population estimate
(including tumor type, genomic, transcript profile, etc.). The resulting “digital twin” database of
16M Cancer patients will then be processed using the drug response models to evaluate optimal drug
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treatments strategies for each virtual patient. The team will use the “Uno-MT-UQ” drug response
model to predict response for each of the 700 drugs in the current set of “standard of care” (SoC) drugs
and drugs in clinical development. UQ methods will be used to provide confidence intervals for each of
the predictions. In addition, the team will predict drug response for approximately 5,000 SoC drug
combinations using our “Combo-UQ” model. The result would be the first ever national scale predictive
oncology “benefit” map, outlining which Cancers, which regions and which population groups would
benefit the most from a comprehensive implementation of precision medicine.

6.2.4 CANDLE: Progress Towards Advanced Architectures

GPU Strategy

The efficient use of the GPU is crucial to utilize exascale computing capabilities thoroughly. We
continuously monitor the optimal use of computing resources from a single GPU level to the application level.
We use profiling techniques to identify bottlenecks in our benchmark codes and refactor to achieve better
GPU utilization. We periodically revisit the benchmark codes to spot room to improve.

Our GPU strategy for codes needed to complete our exascale challenge problems spans leveraging advances
in hardware to improvements in the application codes. Each of these is discussed briefly.

• Hardware: As new hardware becomes available along with the necessary supporting libraries, we will
examine the runtime and learning metrics associated with our benchmarks, and make necessary changes
to leverage these advances.

• Frameworks: As new frameworks are released, we will analyze the runtime and learning performance
of these changes. When appropriate, we make necessary changes to our code to benefit from performance
improvements in new releases of the deep learning frameworks. We are able to achieve speedup with
framework supported multi-GPU functionality. We profile multi-GPU scenarios to improve performance
further, in addition to examining other mechanisms for data-parallelism and model-parallelism.

• Libraries: Improvement to the lower level libraries such as new releases of cuDNN and new optimization
such as tensor cores are continuously evaluated.

• Precision: Mixed Precision or lower precision such as FP16, BFP16 should have a significant impact
on runtime performance. Early tests show that learning metrics of the deep learning models are not
significantly impacted by lower precision numbers. Multiple reports support the range of half-precision
is sufficient for machine learning applications as long as the gradients are adequately scaled. The
half-precision operation can speed up training significantly in Summit. The Nvidia V100 GPU offers
125 teraFLOPS with tensor cores, which is eight times larger than the single-precision FLOPS.

• Weight Sharing: Reducing the overall time to train thousands of models by sharing weights between
networks has the potential to have a significant impact on the runtime performance of our benchmarks.

• Model Properties: Model Improvements based on things such as hyperparameters, network pruning,
and learning schedulers are continuously pursued as part of our continuing pursuit of the best predictive
model.

• CANDLE Improvements: Software improvements to CANDLE and the Benchmarks are resulting
from ongoing profiling. At the application level, we exploit various resource-set configurations in
Summit. CANDLE can combine 6 GPUs in a single resource-set and employ multi-GPU parallelization,
or split into six resource-sets and run code in single GPU mode. In this case, the CANDLE workflow
will be able to train six times more models at the same time. We will examine the best configuration to
accomplish our challenge problem.

Progress to Date

We have been testing with a subset of challenge problems and are planning to use the multi-GPU mode in
the next challenge problem run. We are still in the process of understanding the training characteristics and
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Figure 43: Training time on multi-GPUs.

Figure 44: Validation loss changes during training.

relationships between runtime performance and model performance. We were able to gain 2× speedup with 5
GPUs (Fig. 43), but we observed some model accuracy degradation as we increase the number of GPUs. The
models were not conversing as fast as the single-GPU mode (Fig. 44). We think degradation is negligible
because, after 30 epochs (which is one-tenth of training requirements), the differences were becoming within
0.05 %.

We started evaluating half and mixed-precision training with our benchmarks. We observed 1.7× speedup
on mixed-precision training (Fig. 45) as measured by the time to make one pass over the training data set.
However, the model validation loss converged more slowly, thereby negating the runtime performance gains
due to more passes over the data being required to achieve the same loss value. We are investigating this
further and treat it as a preliminary result.

With one of our Pilot1 benchmarks (TC1), we used the automatic mixed-precision function provided by
Keras. The feature is still in experimental mode. We will follow up with the framework updates. Besides, we
tested half-precision training with the Pilot3 benchmark (Fig. 46). We compared training speed (time per
epoch) between the single-precision and half-precision across one to six GPUs. We will continue to evaluate
the mixed-precision training with other benchmarks with a careful review of speed gain training accuracy.

Next Steps

For Aurora, Intel GPU supports bfloat16 with an 8× speedup. We aligned our efforts in the mixed-
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Figure 45: Validation loss change on time; benchmark TC1; single precision vs
mixed.

Figure 46: Training time difference between single-precision and half-precision
over multi-GPUs; benchmark P3B4
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precision training in this direction. We will evaluate Intel Deep Neural Network Library (DNNL) and
collaborate by providing our examples and feedbacks.

For the Frontier machine, we will continue to collaborate with Cray and AMD engineers. The Frontier
Centers of Excellence (CoE) machine for ECP projects, name Poplar, will be available by mid-Nov 2019.
Once we can access the system, we will start evaluating the current version of software stacks in addition to
the AMD deep learning libraries.

6.3 ExaBiome

Metagenomics—the application of high-throughput genome sequencing technologies to DNA extracted from
microbiomes—is a powerful and general method for studying microbial diversity, integration, and dynamics.
Since the introduction of metagenomics over a decade ago, it has become an essential and routine tool.
Assembly and comparative analyses of metagenomic datasets are among the most computationally demanding
tasks in bioinformatics. The scale and rate of growth of these datasets will require exascale resources to process
(i.e., assemble) and interpret through annotation and comparative analysis. The ExaBiome project aims
to provide scalable tools for three core computational problems in metagenomics:(i) metagenome assembly,
which takes raw sequence data and produces long genome sequences for each species; (ii) protein clustering,
which finds families of closely related proteins; and (iii) signature-based approaches to enable scalable and
efficient comparative metagenome analysis, which may show variability of an environmental community over
time, for example.

The ExaBiome team has developed a scalable metagenome assembler, MetaHipMer, which scales well on
thousands of compute nodes on today’s petascale architectures and has already assembled large environmental
data sets that had not been possible with previous tools. They continue to work on further scalability
improvements across nodes and new node level optimizations to take advantage of fine-grained on-node
parallelism and memory structures, including GPUs. MetaHipMer exhibits competitive quality with other
assemblers, and the team continues to add innovations and parameters to control various aspects of how
the data is analyzed, driven by the experience of science teams. MetaHipMer is designed for short read
(Illumina) data, but a second assembler for long reads is also under development and shows even higher
computational intensity, which may be a good fit for exascale systems. A second ExaBiome code, HipMCL,
provides scalable protein clustering. HipMCL runs on thousands of nodes and has already been used to
provide insight on the structure of protein families across hundreds of millions of proteins, a data set that
was previously intractable. These codes and comparative analysis tools use some common computational
patterns, including dynamic programming for string alignment (either DNA or proteins) with minimal edits,
counting and analysis of fixed-length strings (k-mers), and a variety of graph and sparse matrix methods.
The ExaBiome challenge problem focuses on metagenome assembly, but that capability will enable exascale
feasibility for other bioinformatics problems in ExaBiome and more broadly.

6.3.1 ExaBiome: Science Challenge Problem Description

ExaBiome’s challenge problem is to demonstrate a high-quality assembly or set of assemblies on at least 50 TB
of environmental data (reads) that runs across a full exascale machine. The intent is to use a scientifically
interesting environmental sample that may include multiple temporal or spatial samples and to be performed
as a single assembly using complete sequence data. In contrast, current state-of-the-art assembly pipelines
are forced to use subsampling when datasets get large, which limits the ability to assemble rare, low-coverage
species, and with confusing duplications of genomes. Furthermore, assembling data across time and spatial
scales together will not only enhance the assembly quality, but could reveal functions that otherwise would
remain hidden. Addressing this challenge problem will demonstrate a first-in-class science capability using
the power of exascale computing combined with novel graph algorithms. There are many potential beneficial
science impacts, for example, enhancing understanding of microbial functions that can aid in environmental
remediation, food production, and medical research. Given the growth of genomic data, a scientifically
interesting 50 TB environmental sample should be available by 2022 and is expected to be large enough
to fully utilize an exascale machine. However, the challenge problem could also use synthetic data with
environmental characteristics or an ensemble assembly of multiple independent environmental data sets. It
may also use short reads, long reads, or a hybrid of the two. Challenge problem specifications for ExaBiome
are listed in Table 48.
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Table 48: ExaBiome challenge problem details.

Functional requirement Minimum criteria

Models Given a set of genome fragments DNA with a given range of length and
error rate, (100–200 base pairs with < 0.1% errors or 10,000+ base pairs
with up to 18% errors) a genomic assembly is an arrangement of these
fragments to form large contiguous sequences from which genes and
species can be identified. Standard quality metrics are used to assess the
accuracy of these sequences: the average length of output strings
(10,000+ base pairs for short reads), and percentage of the input reads
that map to the output (> 90% is reasonable).

Numerical Methods De Brujin graphs construction and analysis, dynamic programming for
string alignment, Bloom filters, k-mer counting/analysis, distributed
hash tables.

Problem size and complexity 50 TB of environmental data (real or synthetic) using short reads, long
reads, or a combination.

Demonstration calculation
requirements

To demonstrate the challenge problem, the team will need to run a
complete assembly, since all the stages need to be executed to truly test
the scaling. The MetaHipMer and diBELLA pipelines can be run in
separate stages, with data output to a file system if desired. Thus,
before performing a full-scale assembly, the scalability of each stage will
be tested to ensure it is progressing at a reasonable rate. The team will
also use intermediate problem sizes and machine sizes to validate scaling
assumptions.

Resource requirements to run
demonstration calculation

Total work required and memory/operation resource requirements can
be estimated for the full dataset by extrapolating from current scaling
performance. The extrapolation starts with the fact that it required
about 4.5 hours to assemble a 3 TB dataset on 1,000 Cori KNL nodes.
The computational complexity scales with the size of the dataset
(assuming good load balance), so a 50 TB dataset should take ∼75 hours
on 1,000 Cori KNL nodes (ignoring for a moment the memory
requirements). If 50% scaling efficiency from 1,000 nodes to the full Cori
KNL system (9,000 nodes) is assumed, this should be around 17 hours,
and assuming once again 50% scaling to a full exascale system (hence
going from 30 PFLOP to 1 EFLOP) it could take about an hour.
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6.3.2 ExaBiome: KPP Stretch Goal

The stretch goal of ExaBiome is to develop and use exascale tools to analyze at least 1 PB of environmental
data. The ExaBiome project is developing exascale tools for metagenome assembly, specifically targeting
environmental large microbial communities, but also applicable to complex plant genomes and possibly
pan-genome studies that co-assemble a family of related genomes. The JGI currently has over 8 PB of genomic
data, and this is expected to grow. For this goal it may also be combined with other data sets, including
the NIH Sequence Read Archive (SRA) and the newly formed National Microbiome Data Collaboratory.
The ExaBiome team is also building protein analysis tools that operate on large community databases,
including exploration of deep learning techniques in addition to the PISA + HipMCL clustering pipeline. The
comparative metagenomics work will also lead to new analysis techniques based on k-mer profiles, alignment
against databases, or machine learning and may operate on assembled or unassembled data. Realization of
this goal may also involve support for new long-read sequencing technologies or high-quality extension of those
techniques, which may require additional algorithmic work and software. The team will work toward this
1 PB goal with intermediate scale problems beyond the 50 TB in the assembly baseline goal. The higher-level
scientific objective is to build more complete assemblies and improve understanding of the relationship
between different species n using environmental samples collected over space or time for DOE applications in
energy and the environment.

6.3.3 ExaBiome: Progress Towards Advanced Architectures

GPU Strategy

The ExaBiome project has three major thrusts: genome assembly (MetaHipMer for short reads and
diBELLA for long reads,), protein clustering (PISA plus HipMCL), and metagenome comparative analysis
(metamer and others). The baseline challenge problem requires assembly using either MetaHipMer or diBELLA
with the stretch goal involving the other tools. There are three computational kernels that dominate the
local node computation including k-mer counting, alignment, and sparse matrix multiplication. There are
other local computations, but these three dominate the computation across our application. k-mers are fixed
length strings of either DNA or proteins, and alignment involves finding the minimum set of edits required
to make two sequences (again either DNA or proteins) match. The dominant data structures across these
applications are hash tables and (sometimes stored as a hash table) sparse matrices.

Because of the small set of computational kernels and existing 3rd-party libraries for all three problems,
our GPU strategy involves use of optimized libraries for each algorithm that can be used on different alphabets
(4-character DNA or 21-character proteins) and supports various heuristics for cutting down in the quadratic
cost of pairwise alignment or the quartic running time for all-to-all-alignment. These heuristics are common
in practice but tailored to a given problem, e.g., cutting off search for an alignment early if it is clear no
high quality alignment is possible. We have explored existing 3rd party libraries, but are building our own
implementations, currently optimized for NVIDIA hardware using CUDA, but adaptable to Intel and AMD
GPUs with reasonable levels of effort. We have sent team members to meetings and training sessions to learn
about the hardware and programming tools, and expect to use HIP on Frontier and SYCL on Aurora for our
computational kernels. We will continue to track OpenMP, OpenCL, Legion, and Kokkos, but believe we can
gain better performance and reasonable portability by having a library of kernels optimized for these systems.

MetaHipMer uses fine-grained one-sided communication which is mixed with computation rather to
maximize overlap than having bulk-synchronous communication and computation phases. It is written
in UPC and UPC++ and runs in top of GASNet. To address the need for low-overhead, modest-size
communication events, we are exploring the use of accelerator-initiated communication that transfers data
directly between accelerator memories on multiple nodes. We have worked closely with the PAGODA ECP
team on UPC++ and GASnet and will continue to do so in identifying specific requirements for the use of
accelerators in the ExaBiome applications.

Progress to Date

We have developed GPU implementations for two alignment algorithms (striped Smith-Waterman for
short sequences and x-drop for longer ones), k-mer counting, and sparse matrix-matrix multiplication.
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Figure 47: Single node SmithWaterman performance with our GPU code.
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Figure 48: Single node x-drop speedup comparing our LOGAN GPU code to a
popular multithreaded library, SeqAn.

Both of the alignment algorithms perform dynamic programming, filling in a nxm matrix for strings of
length n and m. The use of Smith-Waterman in ExaBiome applications operates on relatively short strings,
i.e., at least one string is a read of 100–200 characters, which is not sufficient to overcome GPU startup
overheads. The longer reads supported for example in diBELLA can be over 10,000 characters, but the
x-drop algorithm used in this case both limits the dynamic programming matrix to solutions that have limited
numbers of mismatches (is dynamically banded) and also stops early when no good solution can be found. In
both cases the running time is fairly short, so good GPU performance requires a “batched” approach that
aligns a set of pairs in parallel on the GPU. (Note that this eliminates many of the existing implementations
from consideration, because they get good GPU speedups on long strings but are not competitive in overall
running time.)

Figure 47 shows the running time of a batched Smith-Waterman algorithm running on single nodes at
NERSC, covering CPU (Intel Haswell), Manycore (Intel KNL) and GPU (NVIDIA V100) nodes. These
benchamrks use one thread per core on the Haswell and KNL nodes, so maximizing parallelism there as well
as the GPU node. The two GPU version are both from ExaBiome team in collaboration with the NERSC
NESAP program, with the most recent version showing an 11× speedup relative to a single Haswell node.

Figure 48 shows the speedup of the x-drop alignment algorithm varying the cutoff value x. For larger
values of x the running time is slower and the GPU speedup larger. Small values of x (under 100) can
miss alignments that are important for overall assembly quality, although the relationship depends on other
parameters in alignment. This comparison is done on Summit using the v100 GPUs and 168 threads on the
Power9 CPU for the SeqAn code, a popular externally developed x-drop implementation.
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Figure 49: Single node k-mer counting GPU speedup relative to a 64-thread
Haswell implementation.

Figure 3 shows the running time of k-mer counting on various numbers of k-mers (in millions). These
single node results were taken on Cori and compare 64 threads on the Intel Haswell nodes to a single NVIDIA
V100 GPU. The CPU code is based on the ExaBiome code from the single node diBELLA implementation
(BELLA) and the GPU code is our own implementation.

The Markov Cluster (MCL) algorithm is one of the most popular algorithms for clustering biological data.
HipMCL is a high-performance distributed memory implementation of the Markov Cluster algorithm that
heavily relies on computations on sparse matrices. The MCL algorithm iteratively alternates between two
successive steps of expansion and inflation until it converges. The expansion step performs random walks
of higher lengths and it enables connecting to different regions in the graph. The inflation step aims to
strengthen the intra-cluster connections and weaken the inter-cluster connections. One step of the random
walk from all vertices can efficiently be implemented as sparse matrix squaring, a special case of sparse
matrix-matrix multiplication (SpGEMM). Figure 50 shows the overall time for HipMCL running on 100
nodes of Summit with the time broken down into the major computation and communication phases. The
optimized” code uses the GPU nodes with an without overlap, resulting in a 12.4× speedup relative to
the MPI HipMCL code that uses maximum threading on the Power9 nodes. The algorithm uses different
(pre-existing) GPU implementations for the matrix multiplication, since the best choice depends on the
(sub)matrix characteristics.

Next Steps

There are several steps already underway in preparing our applications for exascale systems. The first
is time breakdowns for the overall assembly process on large environmental genomes. Our target exascale
problem is 50 Terabytes (TB), and we have completed a 3 TB assembly and are working on a larger one.
However the dominant time breakdown varies with the input characteristics and has changed dramatically over
the past several months due to scalability improvements and quality enhancements. This will give us a better
idea of the total potential for GPU speedups from alignment and k-mer counting, for example, or whether
communication performance will dominate. In addition, we plan to integrate the GPU-optimized alignment
algorithms into the parallel many-to-many alignments that are performed in MetaHipMer, diBELLA, and
PISA (the expensive matrix construction stage the precedes HipMCL). In addition, we are continuing to
improve the GPU implementations, scale to multiple GPUs per node, and find new data layouts, parallelism
strategies, or overlap opportunities. We are also tracking the sequencing technology that is evolving along
with the exascale planning, and are placing additional resources into long read technology, both as a hybrid
with short read data sets and standalone data.

6.4 ExaFEL

The overarching goal of the ExaFEL project is to substantially reduce, from weeks to minutes, the time to
analyze molecular structure X-ray diffraction data generated by the SLAC Linac Coherent Light Source
(LCLS) facility. Near real-time interpretation of molecular structure revealed by X-ray diffraction will
require computational intensities of unprecedented scales coupled to a data path of unprecedented bandwidth.
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Figure 50: The running time HipMCL and the GPU-optimized HipMCL on a
network of 35 million proteins and 17 billion connections on 100 nodes of Summit.

Detector data rates at light sources are advancing exponentially: LCLS will increase its data throughput by
three orders of magnitude by 2025 with the LCLS-II-HE upgrade.

Users of the LCLS require an integrated combination of data processing and scientific interpretation,
where both aspects demand intensive computational analysis. The ultrafast X-ray pulses are used like flashes
from a high-speed strobe light that produce stop-action movies of atoms and molecules. The analysis must
be carried out quickly to allow users to iterate their experiments and extract the most value from scarce
beam time. Enabling new photon science from the LCLS will require near real time analysis (∼10 min) of
data bursts, requiring commensurate bursts of exascale-class computational intensities.

The high repetition rate and ultra-high brightness of the LCLS make it possible to determine the structure
of individual molecules, mapping out their natural variation in conformation and flexibility. Structural
dynamics and heterogeneities, such as changes in size and shape of nanoparticles, or conformational flexibility
in macromolecules, are at the basis of understanding, predicting and eventually engineering functional
properties in biology, material and energy sciences. The ability to image these structural dynamics and
heterogeneities using non-crystalline based diffractive imaging, including single-particle imaging and fluctuation
x-ray scattering, has been one of the driving forces of the development of x-ray free-electron lasers. However,
in experiments with large biological macromolecules the time-dependent dynamic changes of greatest interest
may involve only a few atoms out of tens of thousands, and therefore the X-ray diffraction difference effects
will only be on the order of 1-2% of total diffraction. To visualize important structural changes on this scale,
very large datasets are required (10 7 diffraction patterns from randomly oriented samples), as well as new
computational algorithms for more accurate analysis.

6.4.1 ExaFEL: Science Challenge Problem Description

The ExaFEL challenge problem is the creation of an automated analysis pipeline for serial femtosecond
crystallography (SFX), also known as nanocrystallography. While the traditional data analysis pipeline
quantifies the diffracted Bragg spots by summation-integration (a Bragg spot typically covers more than
one pixel), the envisioned exascale algorithm will model each pixel on the image, and thus push the overall
accuracy to the desired level.

The basic workflow is envisioned as a parameter-optimization inverse problem. Traditional crystallographic
data analysis is used to determine approximate starting values for both the structure factors and geometric
factors. The nanoBragg / CCTBX software is used to forward-simulate the diffraction images using a
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Table 49: ExaFEL challenge problem details.

Functional requirement Minimum criteria

Models Iterative estimation of crystallographic structure factors from diffraction
images, using the size, shape and intensity profile of Bragg spots.

Numerical Methods FFT, Quasi-Newton parameter estimation (Limited-memory
Fletcher-Boyden-Goldfarb-Shanno); Bayesian estimation

Problem size and complexity Data Ingest: Ability to ingest diffraction images at 1 TB/s.
Memory: Ability to store between 0.1 and 10 PB of events data in
memory (each calculation will require between 107 (one run) and 109

(one experiment) diffraction images and the size of an image will be
O(10 MB)).
Workflow: Ability to ingest data while calculation is on-going, ability
to delegate data across multiple nodes for analysis, ability to
exchange/average the parameter estimates across nodes, ability to
offload the most computing intensive tasks (e.g. X-ray tracing modeling
step with nanoBragg) to GPU accelerators.

Demonstration calculation
requirements

At a minimum we’ll run SFX against O(107) images. If resources (e.g.,
memory) will be available, we’ll perform the full demonstration
calculation of running SFX against O(109) images.

Resource requirements to run
demonstration calculation

The team expects to need roughly half of the exascale machine for 20
minutes to run the demonstration calculation for O(109) images.

parametric model of pixel intensity, with which we can estimate the posterior probability of the model
within a Bayesian framework. We then employ an iterative first derivative-based method to compute better
parameter estimates, and repeat the cycle until convergence at the maximum posterior probability.

Rapid feedback is crucial for tuning sample concentrations to achieve a sufficient crystal hit rate, ensuring
that adequate data is collected, and steering the experiment. The availability of exascale computing resources
and a HPC workflow that can handle incremental bursts of data in the analysis will allow one to perform data
analysis on the fly, providing immediate feedback on the quality of the experimental data, while determining
the 3D structure of the molecule at the same time.

In order to show the scalability of the analysis pipeline, we plan to progressively increase the fraction
of the machine used for reconstruction while keeping constant the number of diffraction images distributed
across multiple nodes. The goal is to distribute the images over an increasing number of nodes while reducing
the overall reconstruction time up to the point where the analysis can keep up with the data collection rates
(5 kHz).

6.4.2 ExaFEL: KPP Stretch Goal

The team proposes two high-risk, high-reward stretch goals for ExaFEL in the areas of resource orchestration
and single particle imaging.

Resource orchestration

This stretch goal will aim at scaling resource orchestration capabilities in order to allow:

• stream the science data from the beamline to the supercomputer at LCLS-II throughputs; and

• start analysis within seconds from the start of data collection.

The main risk associated with this goal is related to the fact that the ExaFEL team has not complete
control over these capabilities, which will require engagement with the computing facilities.

Single Particle Imaging
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This stretch goal will aim at scaling SPI reconstruction with the M-TIP algorithm (multi-tiered iterative
phasing) in order to keep up with LCLS-II data collection rates and, possibly, be able to run M-TIP at scale
against actual experimental data. The main risk associated with the scaling goal is due to the significant R&D
challenge required to deserialize M-TIP and hence being able to scale. The main risk associated with being
able to run against experimental data is that the ExaFEL team doesn’t have control over which experiments
will be performed at the LCLS during the lifetime of ECP.

In SPI, diffraction images are collected from individual particles, and are used to determine molecular
(or atomic) structure, even from multiple conformational states (or non-identical particles) under operating
conditions. Determining structures from SPI experiments is challenging, since orientations and states of
imaged particles are unknown and images are highly contaminated with noise. Furthermore, the number of
useful images is often limited by achievable single-particle hit rates, currently �1. The M-TIP algorithm
introduces an iterative projection framework to simultaneously determine orientations, states, and molecular
structure from limited single-particle data by leveraging structural constraints throughout the reconstruction,
offering a potential pathway to increasing the amount of information that can be extracted from single-particle
diffraction.

6.4.3 ExaFEL: Progress Towards Advanced Architectures

GPU Strategy

ExaFEL has a two prong GPU strategy: (1) optimize the most computing intensive ExaFEL kernels on
accelerators and (2) optimize the execution of the ExaFEL applications by overlapping concurrent work on
the CPU and GPU. Examples of the former effort during FY19 were porting/optimizing the experimental
data analysis code for the Multi-Tiered Iterative Phasing for Fluctuation X-ray Scattering algorithm (M-TIP
FXS) to the leadership class machine Summit and porting/optimizing the X-ray tracing package nanoBragg
to the NESAP system (Cori rack with NVIDIA GPUs). An example of the overlapping effort in FY19 was
the development of a proxy application for M-TIP FXS to exploit the advantages of the Legion task-based
programming model. The next section details the progress to date in this two prong strategy.

Progress to Date

M-TIP FXS is an algorithm that takes as input the experimental data from light source experiments on
samples such as viruses and provides structural information about ensembles of molecules. The acceleration
effort for M-TIP FXS focused on developing code that executes on both the central processing (CPU) and
acceleration (GPU) hardware on the Summit supercomputer cluster and on comparing the code performance
before and after porting. Key takeaways are that the original code performance was dominated by Fourier
and matrix-matrix operations. GPU acceleration via CUDA showed an 8-fold speedup. Note that 90 % of the
code was ported to CUDA for this speedup.

On the nanocrystallography side, our eventual goal is to use exascale computing to improve the interpreta-
tion of protein diffraction by inverse modeling: to this end, we will modify the model of the crystal until the
predicted pattern matches most closely with the observed data. NanoBragg is an algorithm that simulates an
X-ray diffraction pattern given a complete description of a protein crystal. In the past year we participated in
the NESAP program, aiming to develop a GPU-ready version of nanoBragg for Perlmutter. X-ray patterns
are simulated by a single nanoBragg kernel, for which we have both CPU (OpenMP/C++) or GPU versions,
held together by a Python framework. Acceleration is achieved (either OpenMP or GPU) by calculating
image pixel intensities independently. Initially we found that a 2,000 seconds image simulation (Cori KNL,
16 OpenMP threads) was reduced to only 100 seconds using a single Nvidia device on the Cori-GPU testbed.
Further analysis was performed in a NESAP hackathon addressing CUDA performance. We achieved an
additional 7-fold GPU performance gain by refactoring our kernel calls to eliminate unneeded host-to-device
and device-to-host memory transfer and to remove typecasting, and debug-mode instrumentation. Finally,
the CUDA code was profiled, leading to an additional 1.6x gain by taking advantage of the fact that our use
case involves sparse diffraction patterns, thus avoiding calculations for blank pixels.

On the programming model side, we have been investigating the potential of Legion to provide a flexible
task-based execution model. Developers mark functions as tasks, and tasks are parallelized automatically by
the system according to the dependencies that exist between tasks (based on what data is read and written by
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Figure 51: MiniFEL overlapping CPU/GPU utilization.

each task). Among other things, tasks make it very easy to express nested or hierarchical parallelism, as well
as parallelism on heterogeneous processors such as accelerators, and make it easy to overlap communication
and computation as well as work on the CPU and GPU. Thus we wanted to conduct an evaluation with
an iterative code base, like M-TIP, that was critical to our future developments and that had the potential
of showcasing Legion’s advantages. To do this, we developed a proxy application called MiniFEL which
implements a simplified subset of the functionality in the full M-TIP code base.

MiniFEL works by reading a set of diffraction images using the Psana analysis framework. It then uses
the orientation of each image to merge it into a 3D diffraction volume. This 3D diffraction volume is then
analyzed via two algorithms called HIO (hybrid input-output) and ER (error reduction) to recover the
unknown phase information from the diffraction volume. This can then be used to reconstruct the 3D electron
density of the molecule under consideration. The core HIO and ER loops involve the use of FFTs and inverse
FFTs, in addition to some smaller kernels. These were implemented first in Python using NumPy, then
ported to CUDA (using cuFFT) for execution on the GPU. The proxy application consists of about 400 lines
of Python, with 230 lines of CUDA code, and additional 5,000 lines of Python code for detector corrections
and other utility functionality. This small size was accomplished in part because the Python bindings for
Legion are quite concise, and the core algorithms themselves were provided either by NumPy or by cuFFT.
The Legion Python bindings were also expanded and made more complete as part of this work and a number
of issues were addressed.

In order to evaluate the quantitative impact of Legion’s ability to overlap CPU and GPU work, we
performed an experiment on Summit with 10 concurrent reconstructions on 2 GPUs. By nature, the speedup
that can be achieved by this method can be at most 2×, and depends on the ratio of work available to execute
on the CPU and GPU. Our results serve as a proof of concept to demonstrate that this capability is available
and works as intended. Due to the simplified nature of MiniFEL it was not necessary to use more GPUs or
nodes.

Legion achieves a 1.8× speedup when overlapping work on both CPU and GPU, as compared to allowing
the CPU to block and be idle while the GPU is working. In this test the preprocessing stages of MiniFEL
(to align each image within the 3D volume) were executed on the CPU, while the reconstruction of the 3D
electron density was performed on the GPU. Note that even in the reconstruction, a certain amount of work
remained on the CPU, and Legion was able to successfully overlap this work by making use of task parallelism
between the independent reconstructions.

Figure 51 shows a utilization plot of the CPU and GPU over time as the program is executing. This plot
was generated automatically via Legion’s profiling tools which record the utilization of each processor. As
can be seen in the plot, the execution of the program is bimodal. In the first half the execution, data is still
being actively collected, and the preprocessing of this data shifts the balance of work towards the CPU. In
the second half of the execution, the collection and preprocessing of data is complete and the balance shifts
towards the GPU. Legion automatically chooses the best scheduling based on the current balance of work
between CPU and GPU.

Next Steps

Most of last year work was dedicated to single node acceleration of the ExaFEL codes. For next year, we
plan to scale these codes on Summit and on the NESAP system. In addition, regarding the M-TIP effort,
we’ll investigate why porting the remaining 10 % of the code to CUDA did not produce a speedup. New risks
and challenges include ensuring the accelerated M-TIP FXS code works on various GPUs that will be on the
exascale computers. Finally, we’ll start investigating the most computing intensive kernels in the SPI version
of M-TIP.

Last year results gave us confidence that Legion is indeed able to overlap work on the CPU and GPU.
Although this comparison focused on that specific aspect of overlap, Legion’s task scheduling capability
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Table 50: Summary of supported NNSA L4 projects.

WBS
number

Short name Project short description KPP-X

2.2.5.01 Ristra ATDM LANL Application KPP-2

2.2.5.02 MARBL ATDM LLNL Application KPP-2

2.2.5.03 SPARC and
EMPIRE

ATDM SNL Applications KPP-2

proved to be generally useful towards overlapping computation and communication, or computation and I/O,
etc. We feel this capability will be especially important in the context of the upcoming exascale platforms
as many of the hardware details and their performance are still unknown, and Legion’s ability to flexibly
schedule tasks provides valuable mitigation against potentially sources of performance degradation in more
traditional, bulk synchronous programming models.

7. NATIONAL SECURITY APPLICATIONS

End State: Deliver comprehensive science-based computational weapons applications able to
provide, through effective exploitation of exascale HPC technologies, breakthrough modeling and
simulation solutions that yield high confidence insights into at least three currently infeasible
problems of interest to the NNSA Stockpile Stewardship Program (SSP).

The National Security Applications include projects (Table 50) centered on the stewardship of the US
nuclear stockpile and related physics and engineering modelling and scientific inquiries consistent with that
mission space. The focus of the Advanced Technology Development and Mitigation (ATDM) element of
the NNSA ASC Program is on the development of new nuclear weapons applications, one for each of the
three NNSA Laboratories (LANL, LLNL, SNL), with each application having a specific challenge problem
target, namely, a currently intractable 3D problem of interest. For LANL and LLNL, the demonstration
application includes one or more weapons-relevant simulations. For SNL, the demonstration applications
include weapons-relevant simulations of re-entry aerodynamics and electromagnetic plasma effects. All three
applications must exhibit efficient use of both of the exascale architectures, although one may be more
efficient than the others, as well as acceptable multi-node scaling on existing systems at NNSA laboratories.
Scalability has been a design priority from the beginning, and the ability of the new codes to scale to some
significant fraction of future machines is an objective.

The outcomes and products of this activity will be integrated into the next generation of integrated and
high-performance ASC codes on advanced (next decade) architectures. The LANL approach is to concurrently
develop a flexible framework, code infrastructure, and physics components, based on the outcome of an initial
feasibility and scoping study. LLNL is developing algorithms to minimize data motion relative to computation,
which are then incorporated into prototype codes built on a lightweight software layer. The SNL approach is
to build agile components on top of a comprehensive toolkit, which includes a data model, an abstraction
layer, and high-quality solvers. Together, the three NNSA laboratories aim to deliver applications that can
address currently infeasible 3D problems of interest. These different approaches are complementary, providing
both peer review and risk mitigation.

7.1 Ristra

The property and behavior of various materials under a wide variety of extreme conditions is central to many
applications within the realm of national security. Such modeling requires multiple length and time scales,
and drive requirements for exascale computing. LANL is developing a next-generation multi-physics code
for national security applications that focuses on 3D multi-physics, mesoscale insight for extreme condition
materials, and high-energy density physics simulations.
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7.1.1 Ristra: Science Challenge Problem Description

The ultimate goal of LANL’s Ristra Next-Generation Code Project is to create a set of codes that must:

1. Solve multi-physics problems using computational methods with characteristics of those required for
national security problems;

2. Do so in an efficient way on emerging high-performance computing (HPC) architectures leading to
exascale;

3. Provide a flexible, extensible, productive programming environment featuring a separation of concerns
between complex physics expression and underlying HPC technologies, thereby enabling agile response
to future drivers from mission needs and computing technology; and

4. Provide a realistic testbed for the evaluation of novel programming models and data management
technologies.

Computer science technologies that allow efficient use of emerging HPC architectures suggest a need for
physics algorithms that permit increased concurrency at many scales. This motivates a fresh look at the
numerical decisions made throughout the simulation process, from setup through analysis. With this in mind,
Ristra is casting a wide net across available physics algorithms for multi-physics simulation, in addition to an
exploration of programming models for emerging architectures.

Key to the architecture of Ristra’s applications is FleCSI (Flexible Computer Science Infrastructure),
an abstraction layer that provides the desired separation of concerns between computational physics and
computer science. FleCSI provides an abstract data model supporting compile- and run-time configurability
for implementing a variety of discretizations (mesh and mesh-free) and physics fields and operators over them,
together with an abstract execution model that can target a variety of underlying parallel programming
runtimes from well-established options (MPI) to ambitious new programming systems such as Legion, a
data-centric model with out-of-order task execution. Evaluation of Legion’s potential is an important goal for
Ristra.

Ristra’s focus is on two application domains, both of which feature multi-scale methods that will be an
important component of extreme-scale multi-physics simulations of the future:

• High Energy Density Physics for Inertial Confinement Fusion. Ristra’s Symphony code is an unstruc-
tured multi-material radiation hydrodynamics application that features a multi-scale algorithm for the
radiation solve: a fully-coupled low-order radiation hydrodynamics system is updated by a high-order
radiation solver which has the potential to be executed asynchronously (work in progress).

• Multi-Scale Hydrodynamics of Materials in Extreme Conditions. Ristra’s FUEL code is an unstructured
multi-material Arbitrary Lagrangian-Eulerian (ALE) hydrodynamics code that can be coupled to
complex material models in order to take account of mesoscale physics, such as grain structure, in the
dynamic response of materials. Mesoscale modeling is computationally intensive, and the multi-scale
approach has potential for effective use of exascale-class systems, as well as providing a promising target
for data-driven machine-learning (ML) techniques.

7.2 MARBL

LLNL is developing next-generation multi-physics simulation capabilities for national security applications
and has adopted a modular approach to code development. A foundational component of this approach is the
Axom computer science (CS) toolkit which provides infrastructure for the development of modular, multi-
physics application codes. MARBL is a next-generation application code built on the Axom base to address
the modeling needs of the high energy density physics (HEDP) community for simulating high-explosive,
magnetic or laser driven experiments such as Inertial Confinement Fusion (ICF), pulsed-power Magneto
Hydrodynamics (MHD), EOS and material strength studies as part of the NNSA’s SSP.

MARBL is designed from inception to support multiple diverse algorithms, including ALE and direct Eu-
lerian methods for solving the conservation laws associated with its various physics packages. A distinguishing
feature of MARBL is the use of advanced, high-order numerical discretizations such as high-order finite element

Exascale Computing Project (ECP) 125 PM-AD-1080



ALE and high-order finite difference Eulerian methods. This algorithmic diversity encompasses the ECP
simulation motifs of unstructured and structured AMR. High-order numerical methods were chosen because
they have higher resolution/accuracy per unknown compared to standard low-order finite volume schemes and
because they have computational characteristics which play to the strengths of current and emerging HPC
architectures. Specifically, they have higher FLOP/byte ratios meaning that more floating-point operations
are performed for each piece of data retrieved from memory. This leads to improved strong parallel scalability
on GPU platforms and increased computational efficiency.

A key goal for MARBL is enhanced end-user productivity including improved workflow for problem setup
and meshing, simulation robustness, support for UQ and optimization driven ensembles, and in situ data
visualization and analysis. High-order ALE and Eulerian schemes have proven to be more robust and should
significantly improve the overall analysis workflow for users. The advanced simulation capabilities provided
by MARBL will improve user throughput along two axes: faster turnaround for multi-physics simulations on
advanced architectures and less manual user intervention.

MARBL is part of a larger effort, the Multi-Physics on Advanced Platforms Project (MAPP). MAPP
also includes the separate development of national security application codes following the same basic
development philosophies outlined above; modular infrastructure leveraging Axom developments, modular
physics capabilities and multiple options for every major physics capability.

7.2.1 MARBL: Science Challenge Problem Description

Along with the other NNSA labs, the team is targeting a FY20 demonstration of a 3D multi-physics problem
of interest to the stockpile stewardship program at LLNL on one-quarter of the Sierra machine as well as a
performance portability demonstration by running a similar problem on the SNL Astra (ARM based) platform.
The calculation will be multi-physics in nature, high-resolution and will utilize multiple new algorithms and
novel capabilities developed as part of this work.

Success of MAPP will ultimately be determined by the degree of adoption of its simulation tools by
the LLNL user community. To this end, emphasis at this relatively early stage of development is being
placed on adding physics and capabilities to meet the current state of the art that users demand from
today’s petascale production simulation codes. In the case of MARBL, this includes coupled multi-material
radiation-magneto-hydrodynamics, thermonuclear burn for ICF fusion calculations, general equations of state,
material opacities and electrical conductivities, simulation diagnostics and queries, in situ analytics/rendering,
and parallel computational and file IO performance at a massive scale. In addition, performance of the
new codes on advanced architectures like the GPU based Sierra system at LLNL is critical. Portability
of the software stack and long-term maintainability are critical as well, placing stringent demands on the
integration and interoperability of high-quality production level software libraries and tools. Finally, MARBL
will be the first demonstration of the viability of advanced high-order numerical approaches for production
multi-physics simulation at scale in the NNSA and has already produced first-of-a-kind simulation results
using such methods.

7.3 SPARC and EMPIRE

The development of exascale computing presents an opportunity for Sandia to develop new capability to impact
the labs’ broad national security mission space. Sandia is pursuing development of two new applications under
ATDM: SPARC, a hypersonic reentry simulation capability, and EMPIRE, an electromagnetic plasma physics
simulation activity. These applications are using simultaneously developed next-generation components,
exploiting Sandia’s vision to enable applications to build on foundational capabilities developed and deployed
by other teams that provides leverage and potential for reuse and increased impact. The ATDM project
incorporates formal tools for planning, development, testing, version control, code reviews, and deployment,
for both applications.

SPARC for Virtual Flight Testing

The SPARC (Sandia Parallel Aerodynamics and Reentry Code) application represents a revolutionary
hypersonic reentry simulation capability that captures the random vibration and thermal environments
created by re-entry of a vehicle into the earth’s atmosphere. SPARC incorporates the innovative approaches
of ATDM projects on several fronts, including effective harnessing of heterogeneous compute nodes using
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Kokkos, exascale-ready parallel scalability through asynchronous multi-tasking, uncertainty quantification
through Sacado integration, implementation of state-of-the-art reentry physics and multiscale models, use of
advanced verification and validation methods, and enabling of improved workflows for users.

EMPIRE for Electromagnetic Plasma Physics

The EMPIRE application is an advanced electromagnetic and plasma physics capability that will sup-
port analysis of system-generated electromagnetic pulse (SGEMP) and source-region electromagnetic pulse
(SREMP) phenomena. Validated computational simulation tools are critical because certain plasma environ-
ments must be extrapolated from what can be realized with test facilities. The phenomena encountered in
these environments require models of extremely complicated gas chemistry, plasmas, and EM fields over a wide
range of conditions. EMPIRE incorporates the innovative approaches of ATDM projects on several fronts,
including effective harnessing of heterogeneous compute nodes using Kokkos, exascale-ready parallel scalability
through asynchronous multi-tasking, uncertainty quantification through Sacado integration, implementation
of state-of-the-art plasma physics, use of advanced verification and validation methods, and enabling of
improved workflows for users.

7.3.1 SPARC and EMPIRE: Science Challenge Problem Description

Each of Sandia’s applications will perform a science challenge problem for the FY20 NNSA milestone that
will run on at least a quarter of the Sierra machine, at least half of Trinity, and the entirety of Astra. Running
at this scale will show the progress made in developing simulation capabilities that can operate effectively
across the user workflow, from mesh generation, to problem throughput, file I/O, and visualization.

SPARC’s Science Challenge Problem

The science challenge problem for SPARC is to perform a virtual flight test of a reentry vehicle, in its
entirety, to predict the structural and thermal response of the vehicle’s components under simulated reentry
environments. Performing this analysis includes simulation of the flowfield around the vehicle (including the
aft end and its wake) using a turbulence model suited for hypersonic, unsteady turbulent fluid dynamics.
The thermal loads generated from the computational fluid dynamics simulation will be used to predict the
ablation and thermal response of the vehicle’s thermal protection system and internal components. The
structural loads generated from pressure and shear stress fluctuations predictions by the turbulence models
will be used to analyze the vibrational response of the vehicle and its internal components.

EMPIRE’s Science Challenge Problem

The science challenge problem for EMPIRE is to perform large-scale kinetic plasma simulations of an
experiment fielded at the National Ignition Facility (NIF). In this problem, an X-ray source interacts with
metallic surfaces to generate a plasma by the photoelectric effect, that then interacts with the geometry to
generate currents on components of interest. This simulation will demonstrate the capability of EMPIRE and
builds upon the progress made in FY19 on validation of a simpler diagnostic fielded on NIF and Z. Models
for surface emission, space-charge limited emission, neutral blow-off, and particle collisions will be used, and
the ability of EMPIRE to scale to billions of elements and hundreds of billions of particles will be shown on a
mission-relevant problem to achieve a resolution fidelity beyond what is possible with the current plasma
simulation capability.

8. CO-DESIGN

End State: Develop cross-cutting, motif-based CD software technologies and integrate them
into applications, providing them the potential to fully utilize exascale hardware technologies
and achieve their challenge problem capabilities. Direct HPC vendors and R&D staff on the key
application characteristics that must inform the CD of exascale software and hardware technologies
through proxy application software.

The co-design activity includes six co-design centers focused on specific computational motifs. These target
cross-cutting algorithmic methods that capture the most common patterns of computation and communication
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Table 51: Summary of supported CD L4 centers.

WBS
number

Short name Project short description KPP-X

2.2.6.01 Proxy Apps ECP Proxy Applications N/A

2.2.6.02 Apps
Assessment

ECP Applications Assessment N/A

2.2.6.03 CODAR Co-design Center for Online Data Analysis and Reduction
at the exascale

KPP-3

2.2.6.04 CoPA Co-design Center for Particle Applications KPP-3

2.2.6.05 AMReX Block-Structured AMR Co-design Center KPP-3

2.2.6.06 CEED Center for Efficient Exascale Discretizations KPP-3

2.2.6.07 ExaGraph GraphEx Co-design Center KPP-3

2.2.6.08 ExaLearn Co-design Center for Exascale Machine Learning
Technologies

KPP-3

(known as motifs) in the ECP applications. The current list of motifs includes structured and unstructured
grids (with adaptive mesh refinement), dense and sparse linear algebra, spectral methods, particle methods,
Monte Carlo methods, backtrack/branch-and-bound, combinatorial logic, dynamic programming, finite state
machine, graphical models, graph traversal, and map reduce. All of these motifs, and others that may emerge
over the lifetime of the ECP (including machine learning methods, the focus of a recently added co-design
center), will be considered within the co-design activity, with the exception of dense and sparse linear algebra,
which is supported within the ST focus area.

Each of the six funded co-design centers (Table 51) focuses on a unique collection of algorithmic motifs
needed by two or more applications. The top collections of motifs (based on application requirements) were
initially targeted, resulting in corresponding co-design centers. The integration activity will assess application
predictive maturity (e.g., as guided by the SNL Predictive Capability Maturity Model) and integration of
exascale technology through regular, independent application assessments.

The goal of the co-design activity is to integrate the rapidly developing software stack with emerging
hardware technologies, while developing software components that embody the most common application
motifs. These co-designed components will then be integrated into the respective application software
environments for testing, use, and requirements feedback. This process must balance application requirements
with constraints imposed by the hardware and what is feasible in the software stack to facilitate performant
exascale applications.

In addition to the six co-design centers, a Proxy Applications project is managed within the co-design
activity; its mission is to improve the quality of ECP proxy applications (“apps”) and maximize the benefit
received from their use, including by maintaining and distributing the ECP Proxy App Suite. Proxy apps
are tools to explore algorithms, data structures/layouts, optimizations, etc., and the associated tradeoffs on
different architectures. Success is measured by identifiable “lessons learned” that are translated either directly
into parent production application codes or into libraries, with a demonstrated performance improvement.
An Application Assessment project conducts unbiased evaluations of the capability, performance and scaling,
and performance portability of ECP application codes.

8.1 CODAR

A growing disparity between simulation speeds and I/O rates makes it increasingly infeasible for high-
performance applications to save all results for offline analysis. By 2024, computers are expected to compute
at 1018 operations per second but write to disk only at 1012 B/s: a compute-to-output ratio 200 times worse
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than on the first petascale systems. In this new world, applications must increasingly perform online data
analysis and reduction—tasks that introduce algorithmic, implementation, and programming model challenges
that are unfamiliar to many scientists and that have major implications for the design of various elements of
exascale systems.

CODAR, a co-design center focused on online data analysis and reduction at the exascale addresses
this issue. Working closely with the ECP applications, CODAR is undertaking a focused process that
targets both common data analysis and reduction methods (e.g., anomaly detection and feature tracking,
and compression) and methods specific to particular data types and domains (e.g., particle and structured
finite-element methods). The team engages directly with providers of the ECP system software, programming
models, data analysis and reduction algorithms, and applications in order to understand and guide tradeoffs in
the development of applications and software frameworks, given constraints relating to application development
costs, application fidelity, performance portability, scalability, and power efficiency.

The goals of CODAR are to: (1) reduce the development risk for the ECP application teams by investigating
crucial performance tradeoffs related to the treatment of scientific results created by scientific models, (2)
produce high-performance implementations of data analysis and reduction methods, (3) enable easy and
efficient integration of those methods with applications, and (4) contribute to the co-design of effective exascale
applications and software. To accomplish these goals, the team produces infrastructure for online data
analysis and reduction; provides valuable abstractions for implementing and customizing data analysis and
reduction methods; imports, integrates, and develops essential libraries implemented using these abstractions;
incorporates the libraries into scientific applications and quantifies accuracy and performance; releases software
artifacts; constructs application-oriented case studies; documents success stories and the process applied to
obtain them; and reports on co-design tradeoff investigations.

8.1.1 CODAR: Algorithms and Software Objectives

Software is partitioned into two pieces: (1) infrastructure for orchestrating online data analysis and reduction
workflows and running, collating, and analyzing co-design experiments, and (2) the development of high-
performance implementations of online data analysis and reduction methods that are inspired by unique data
access requirement and unfulfilled application needs. Descriptions of the components developed by CODAR
are provided in the Infrastructure and Online Methods subsections, while a more detailed description of
how the software is used with applications is provided in the Co-design Engagements and Integration Points
section.

Infrastructure: Cheetah, Savanna, Chimbuko

Cheetah enables co-design experiments for improving performance and functionality of online analytics
and reduction for exascale science. Cheetah is the interface for defining the co-design experiments. Specifically,
the Cheetah component works to define a set of conventions and re-usable scripts for conducting parameter
sweep experiments on different science application scenarios that are necessary for co-design studies.

Savanna is the runtime that can launch and manage and the individual co-design experiments on current
and future extreme scale systems. The role of the Savanna component is to isolate the definition of the set of
online workflows from the enaction and enforcement of those workflows and their policies. The transitions
between different scheduler systems, parameters set on command line versus environment variables, and so
on are managed through the uniform service interface.

Chimbuko works with data provided by TAU to identify performance anomalies and save relevant
information in a window around the anomaly for further analysis. In particular, Chimbuko is capable
of capturing, analyzing and visualizing performance metrics for complex scientific workflows that include
online data analysis and reduction and relating these metrics to the context of their execution on extreme-
scale machines. This tool enables empirical studies of workflow performance during the initial application
development phase or when porting to a new computational environment.

Online Methods: Z-checker, Feature Tracking Kit, MGARD

Z-checker is designed to assess lossy compression comprehensively offline and online in parallel for scientific
data sets. Because of the vast volume of data being produced by todays scientific simulations and experiments,
lossy data compression allowing user-controlled loss of accuracy during the compression is a relevant solution
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for significantly reducing the data size. However, lossy compressor developers and users are missing a tool
to explore the features of scientific data sets and understand the data alteration after compression in a
systematic and reliable way. Z-checker is an open-source community tool developed to fill this gap.

The Feature Tracking Kit (FTK) is designed to robustly extract, track, and visualize features as they
evolve in large-scale simulations. This kit fills a gap in the production visualization tools being developed
in the ECP software technologies area to associate detected features in adjacent time steps. This work was
inspired by the WDMApp project that needs to detect and track blobs and streamers in 5D gyrokinetic
tokamak simulations, such as XGC.

MGARD is a technique for multi-grid adaptive reduction of data. Special attention is given to the case
of tensor product grids, where the team’s approach permits the use of non-uniformly spaced grids in each
direction, which can prove problematic for many types of data reduction methods. An important feature of
CODAR’s approach is the provision of guaranteed, computable bounds on the loss incurred by the reduction
of the data and the preservation of quantities of interest and statistics.

8.1.2 CODAR: Performance Objectives

CODAR’s focus on the online data analysis and reduction motif means that a CODAR application typically
comprises one or more application components, analysis components, and reduction components, all running at
the same time on the same or different nodes. Performance challenges can occur within any component and/or
as a result of communication among components. Decisions that need to be made related to performance
include the placement of components across the cores within the nodes (heterogenous node usage) or running
the components in separate nodes (homogeneous node usage), mapping components to utilize CPU, GPU, and
other resources, the types of memory to use within the nodes and across nodes for the different components
(e.g., NVRAM), and the selection of online data analysis and reduction components (e.g., the lossy compression
routine to apply to ensure user-controlled accuracy is maintained) and the frequency with which to apply
them. The overarching approach to meeting these challenges is as follows:

1. Overall architecture: The application composition (Savanna) architecture allow us to configure
and experiment with alternative mechanisms and configurations on different platforms (including
component placements and memory type) and the performance data collection and analysis system
(TAU and Chimbuko) that provides performance feedback.

2. Application components: The performance of individual application components is viewed as being
out of scope for CODAR. The team can document when individual components perform badly and
communicate that information to application developers but addressing such performance problems is
not in the CODAR charter.

3. Data analysis and reduction components: Whenever possible existing high-performance imple-
mentations of methods (e.g., SZ and ZFP for compression) are integrated. The team can document
when these components perform badly and communicate that information to the software technology
team but addressing such performance problems is not in the CODAR charter. For the online data
analysis and reduction components that the team develops in its toolkit, the work to optimization these
components (e.g., MGARD) on the specific machines is undertaken.

4. Inter-component communication: The team leverage the ADIOS communication library for com-
munication between components. ADIOS uses specialized mechanisms to enable high-speed data transfer
between parallel components, such as shared memory mechanisms when processes are running on the
same node.

The Cheetah experiment management system allows one to perform, collate, and analyze experiments to
identify performance bottlenecks and either address them for internally developed software or relay them to
application development and software technology teams.

The team’s metrics of success are application dependent and include the ability to use online data analysis
and reduction methods to write information of sufficient quality to the file system at a rate that does lead to
the application idling while waiting for I/O to complete. At the same time, the addition of the online data
analysis and reduction methods needs to fit within resource restrictions (e.g., cores and impact on application
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Table 52: CODAR KPP-3 goals and metrics

Passing value Stretch value Tentative present value

3 6 1

performance) set by the application development teams. If the team can simultaneously satisfy all these
resource restrictions, it will be able to provide the right information at the right time and place to accelerate
scientific discovery.

8.1.3 CODAR: Co-design Engagements and Integration Points

CODAR’s engagement with application development and ST teams consists of three activities: infrastructure
integration and co-design studies for online data analysis and reduction; the development of application-
inspired data analysis and reduction methods; and investigations of runtime support required for task parallel
computation.

Application integration activities have so far focused on the WDMApp (§ 4.5), NWChemEx (§ 3.2), and
CANDLE (§ 6.2) projects.

Application-inspired Methods

In addition to the infrastructure integration and co-design studies, the team also engages with application
teams to identify their needs for novel data analysis and reduction methods. These are focused activities
between a small number of team members from CODAR and the application, to develop methods that either
fill gaps in methods available from existing software technologies, cover different types of data (e.g., structured,
unstructured, or particle data), or exhibit unique data access patterns (e.g., multi-grid or hierarchical access).

The application-inspired methods pipeline includes methods that are being developed into a production
capability including the Feature Tracking Kit (inspired by WDMApp), the MGARD multi-grid data reduction
method (inspired by combustion) and the performance anomaly detection methods (inspired by NWChemEx)
and included in Chimbuko. In addition, activities in the exploration phase include developing improved
statistical metrics for compression quality analysis (inspired by ExaSky and WDMApp and to be include
in Z-checker) and numerical optimization-based compression (inspired by EXAALT (§ 3.4)). Two activities
were stopped after prototyping: the functional data analysis topic (inspired by WDMApp) and the hierarchical
data analysis topic (inspired by ExaSky (§ 5.2)). Further development of the hierarchical data analysis
methods for computing halo centers may be undertaken by the ExaSky project and implemented in their
CosmoTools package.

As part of the online data analysis and reduction method development, the team will provide benchmarks
and other artifacts to software technology projects. This community service includes the Scientific Data
Reductions Benchmarks [22] that was developed as part of the Z-checker activity.

Runtime Support for Task-parallel Computation

CODAR worked to design and prototype a new MPI mechanism, MPI Comm launch, which allows a child
MPI application to be launched inside the resources originally held by processes of a parent MPI application.
Two important aspects of MPI Comm launch is that it pauses the calling process and runs the child processes
on the parent’s CPU cores, but in an isolated manner with respect to memory. CODAR scientists used this
prototype to experiment with the use of the new construct and demonstrate its value for applications that
need to run multiple components at the same time, in such a way that termination of one component does
not cause a computation to fail. This exercise thus constitutes a valuable co-design exercise for exascale
system software.

8.1.4 CODAR: Progress Towards Advanced Architectures

GPU Strategy

Our GPU portability strategy depends on the type of software as described below.
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Table 53: CODAR code base

Package name LOC Target exascale challenge problems Computational motifs

Cheetah ∼2k Launch and manage the execution of a set of
co-design experiments on supercomputer
platforms, as specified by co-design specification
file.

Performance portability

Chimbuko N/A Performance metrics collection of scientific
workflows through performance tools, and
correlating performance information collected for
different workflow components.

Performance portability

FTK 10k Feature tracking and extraction (to be used for
WDMApp; potential use for Climate)

Data analysis

MGARD N/A Data reduction while preserving quantities of
interest and statistics (already used to compress
data for WDMApp; to be used for Combustion)

Data reduction

Savanna N/A Run a multi-component application (e.g., 1+
application modules, analysis modules, reduction
models) on a supercomputer platform

Performance portability

Z-checker 40k Data reduction error analysis (already used to
assess compression errors for ExaSky, ExaFEL,
EXAALT, GAMESS; to also be used for
NWChemEx, QMCPACK).

Data reduction

The Cheetah/Savanna software focuses on command-and-control scheduling and placement for online, in
situ, and code coupling scenarios. A key concern is a dependency for Savanna on the details of the scheduler
interface for pinning and managing placement of processes onto CPU and GPU cores, as that is a primary
testing point for a number of our client technologies. The abstractions in Savanna will allow us to add the
necessary support for the schedulers to perform these placement studies.

The Chimbuko software analyzes performance trace data in real time for exascale applications and
workflows and uses the TAU software to supply the performance data that is analyzed. At present TAU only
collects performance data on the CPUs and so the Chimbuko services are only running on the CPU’s. We
are actively working with the TAU team to enable data collection on the GPUs, at which point we would
move the Chimbuko analysis services to the GPUs to analyze the data where it is produced to avoid heavy
data transfer costs.

FTK is a data analysis method for tracking features in the simulation data as they evolve over time. We
are currently prototyping on-node GPU parallelism with Kokkos for feature tracking in 4D spacetime regular
grid data. The kernel function that scans individual mesh elements is executed by Kokkos for performance
portability.

MGARD is a compression methods being developed for data that resides on structured and unstructured
grids. It was observed that about 75 % of the time spent in compression was in the backend lossless compressor
used in MGARD. We will incorporate GPU-enabled lossless compressors including http://cudpp.github.io

and http://bzip2-cuda.github.io, which use the CUDA programming model. We are also implementing
the rest of MGARD to use CUDA in all of the time-consuming kernels.

Z-checker tests the quality of lossy compressors on simulation data. This tool integrates compressors that
have been ported to GPUs using the programming model of their preference. The Z-checker calculation of
statistical lossy compression quality metrics will to be ported to GPUs using Kokkos.

Progress to Date

The Cheetah/Savanna orchestration software has been ported to Summit and we have successfully

Exascale Computing Project (ECP) 132 PM-AD-1080

http://cudpp.github.io
http://bzip2-cuda.github.io


orchestrated and performed demonstrations of the technologies on that system using the WDM and Gray-
Scott miniapps. The Gray-Scott miniapp in conjunction with various compression and data reduction
technologies is a key component, and we recently ported this miniapp to Kokkos and have an OpenACC
version that is almost complete. This miniapp allows us to demonstrate the Cheetah/Savanna capabilities on
using both CPUs and GPUs on Summit.

We have run Chimbuko on Summit using 1,000 nodes utilizing 20 MPI threads per node for evaluating
a NWChem workflow, where TAU is used to collect the performance information that Chimbuko analyzes.
When TAU support for capturing performance information on GPUs matures, we be able to run further
studies using the GPUs on Summit.

We have been prototyping FTK support for on-node parallelism on a Linux sandbox with an NVIDIA
GPU. The distributed CPU-only feature tracking has been benchmarked on Theta up to 1,024 processes with
40 % parallel efficiency. We anticipate similar scaling on GPU machines after the on-node parallelism is fully
implemented and tested on a single node.

Our current progress on GPU optimization for MGARD has been done only on Summit. We worked with
the fusion dataset from the WDMApp and showed that we can reduce the data by 8× when running MGARD
on one Summit GPU. We have begun to investigate the asynchronous data movement from the code’s main
memory to MGARD routines, but since the WDMApp utilizes GPU, we were asked to use a small set of
separate nodes. We use ADIOS to move the data in memory from the nodes running the WDMApp to the
data reduction nodes, and in our tests it requires just one Summit node to reduce the data.

For Z-checker, only the compressors can utilize the GPUs so far. We plan to use Summit when port the
statistical metrics integrated in Z-checker to use the GPUs. We are still in the phase of identifying application
quality analysis metrics. Once identified, we will integrate in Z-checker the GPU version of the analysis code,
if available.

Next Steps

For Cheetah/Savanna, we are targeting approaches to continue to understand the future scheduler and
interconnect changes on the new platforms as we generalize the Cheetah/Savanna task placement interface to
support different hardware through a common API. We also are continuing to work with the component
technologies important to our codesign studies in order to understand how they will port to the new hardware
so we can address the most relevant codesign workflow topics for them.

For Chimbuko, we are working with TAU to enable performance data collection on CPUs and GPUs.
Once established we will explore where best to place the performance data analysis for both Summit and for
the coming Exascale systems based on the data movement pathways and costs.

Our plan for FTK is to further implement and test FTK on a single GPU node and then benchmark FTK
on Summit in order to prepare for running on Aurora and Frontier.

The next steps for MGARD are to integrate GPU lossless compression routine to MGARD and investigate
Kokkos as the performance-portable programming model for the “rest” of MGARD.

We will use early prototype and/or simulators to port Z-checker statistical metrics for Aurora and Frontier
accelerators using the portable Kokkos programming model. If performance does not acheive expectations,
we will first attempt to optimize the Kokkos code before resorting to porting the critical kernels to the native
accelerator programming model used on Aurora and Frontier.

8.2 CoPA

The ECP Co-design Center for Particle Applications (CoPA) is addressing challenges for particle-based
applications to run on upcoming exascale computing architectures. This scope is partitioned into four “sub-
motifs”: short-range particle-particle interactions (e.g., those which often dominate MD and SPH methods),
long-range particle-particle (e.g., electrostatic and gravitational) interactions, PIC methods, and linear-scaling
electronic structure and Quantum Molecular Dynamics (QMD) algorithms. The crosscutting co-designed
technologies fall into two types, proxy apps (including ExaMiniMD, ExaSP2, CabanaMD, and CabanaPIC)
and libraries. Libraries are modular instantiations that multiple applications can utilize or be built upon, and
include the Cabana particle library, PROGRESS/BML matrix library packages for QMD, and the SWFFT
and fftMPI parallel FFT libraries. Success is measured by the adoption by production codes (existing or
newly developed), with both productivity and performance benefits.
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8.2.1 CoPA: Algorithms and Software Objectives

PROGRESS/BML

The QMD capabilities are included in a computational framework aiming to foster developments in com-
putational chemistry and electronic structure packages. This framework consists of two libraries (PROGRESS
and BML) where the computational developments are performed. The Parallel, Rapid O(N) and Graph-based
Recursive Electronic Structure Solvers (PROGRESS) Library is a FORTRAN library that can be used for
general purpose quantum chemistry calculations. The basic matrix library package (BML) provides a common
application programming interface (API) for linear algebra and matrix functions in C and Fortran, targeting
those operations and use cases that commonly arise in quantum chemistry codes. Linear-scaling electronic
structure applications rely on sparse linear algebra and require hand-tuned implementations of sparse matrix
operations. Since existing libraries for sparse linear algebra, such as MKL, ACL, and NVIDIA’s CUDA sparse
Matrix Library (cuSPARSE) were found to be limited and lacking in performance, BML was developed to
addresses this challenge by offering high level abstractions for matrix operations independent of the underlying
data structures and algorithms. The BML API is matrix format independent; dense, ELLPACK-R sparse,
and CSR sparse matrix data types are available, each with different implementations, and a new blocked
format, ELLBLOCK, is currently under development. PROGRESS relies entirely on BML for algebraic
operations, so while quantum chemistry and electronic structure algorithms and calculations are outlined in
PROGRESS the underlying mathematical manipulations are all performed in BML. At the application level,
multiple codes will benefit from the new solvers (techniques) developed within PROGRESS. The current
focus is on low-level BML library implementations on accelerated architectures (e.g., GPUs).

Cabana

The CoPA particle toolkit (dubbed “Cabana”) is a collection of software packages which will allow scientific
software developers targeting exascale machines to develop scalable and portable particle-based algorithms
and applications. This toolkit provides an open-source implementation of a variety of basic particle-based
algorithms and data structures applicable to a wide range of application types including (but not limited to)
PIC and its derivatives, MD, and SPH codes. Cabana is written in C++, and usable by application codes
written in C++, C, and Fortran.

Cabana provides native particle data structures, parallel programming APIs, and algorithm implementa-
tions using those data structures. These algorithms will span the space of particle operations necessary to
support each relevant application type. This includes intra-node (local and threaded) operations on particles
and inter-node (communication between nodes) operations to form a hybrid parallel capability. The initial
set of algorithms sort particles build lists of neighboring particles, exchange particles distributed across a set
of nodes (i.e., a halo exchange), interpolate between a set of particles and an underlying mesh, or vice versa,
and provide a variety of long-range solvers. Efforts are currently underway to add functionality, including
load balancing. From the perspective of users, these data structures and algorithms can then be integrated
into an application as building blocks for a wide variety of particle-based physics algorithms.

Cabana algorithms are built on parallel loop constructs, which ensure code-it-once performance portability
on pre-exascale and anticipated exascale platforms. The toolkit will be interoperable (e.g., easily permit
linking and allow for simultaneous use) with other ECP scientific computing libraries which the user may
leverage for other needed services not provided by, or not in the scope of, the Cabana toolkit. Use of Cabana
in concert with other ECP software technologies should facilitate the composition of scalable particle-based
application codes on these new architectures.

ExaMiniMD/CabanaMD

ExaMiniMD/CabanaMD are extensible MD proxy apps with a modular design to enable experimentation
with different interatomic potentials, time integrators, neighbor/cell list algorithms, and diagnostic computa-
tions, including new parallel algorithms at either the inter-node (MPI) or intra-node (primarily Kokkos) level.
The parent LAMMPS MD code, used in the EXAALT (EXascale Atomistics for Accuracy, Length, and Time)
ECP project, has a similar modular structure as well as similar MPI-level parallelism based on a spatial
decomposition of the simulation domain. To accurately model tungsten-based fusion materials, EXAALT
requires a performance portable implementation of the spectral neighbor analysis potential (SNAP). While
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ExaMiniMD was the initial MD proxy app, the newer CabanaMD provides full integration with the Cabana
particle toolkit. Both provide useful platforms for development, as well as a compact expression of use cases
which can be used for vendor engagement and experimentation. Code developed in ExaMiniMD has been
ported both directly into the parent applications code (LAMMPS) and also into the Cabana library, where it
is tested with CabanaMD (e.g., neighbor list construction algorithms).

SWFFT/fftMPI

Electrostatic and gravitational interactions arise in many particle-based applications. Since a direct N2

calculation is neither practical nor necessary, long-range (e.g., Poisson) solvers are required. While several
methods, including particle-particle particle-mesh (PPPM, or P3M) and particle-mesh Ewald (PME), utilize
FFTs, others, including the fast multipole method (FMM), do not. As an initial step towards a general
long-range solver library that enables the user to readily switch between and evaluate different algorithms
for their particular use case(s), the team began by extracting custom parallel FFT implementations from
applications partners and evaluating their use in other applications. SWFFT is a 3D complex-to-complex FFT
library based on the distributed FFT originally developed for the cosmology code HACC. It was developed to
run very large 3D complex-to-complex FFTs (e.g., of order 10,0003 with a relatively low memory overhead,
excellent scalability, and good performance. Using SWFFT makes it easy for other applications to also use
advanced Poisson solver techniques tailored to their particular needs. Similarly, the fftMPI library was created
by extracting the FFT kernels from the LAMMPS code and repackaging them as a stand-alone library, with
supporting test harnesses and documentation.

8.2.2 CoPA: Performance Objectives

PROGRESS/BML

The challenge is to develop libraries that are portable across the range of available multicore, many-core
and hybrid accelerated architectures while still supporting a wide range of compilers (e.g., GNU, Intel,
IBM, PGI, Clang, . . . ), low-level linear algebra implementations (e.g., BLAS, MKL, ESSL) and accelerator
programming options (including MAGMA, OpenMP offload, cuSPARSE/cuBLAS, and SLATE). This is
exacerbated by the varying maturity of compliers and the underlying hardware, e.g., for OpenMP offload.
The general strategy has been to keep up with the current state of maturity and invest in similar technologies
that can be readily converted, rather than committing to any single specific programming model or math
library.

Cabana

A fundamental challenge of developing a particle library is the programming of loops over complex particle
data layouts in a flexible and performance portable fashion, recognizing the fact that most particle pushing
algorithms are memory bound. The aim is to allow a user to program with a pool of kernels to compose
different algorithms, or the same algorithm with different flavors. The implementation strategy is to take
advantage of modern C++ functional and metaprogramming techniques to create a flexible design of the
software library that exhibits performance on a variety of architectures. In the team’s implementation the data
structures and particle loop composition build on the Kokkos library to enable performance portability across
different devices. This strategy allows us to explore and develop different particle data layouts, threading
models, and code that may more easily vectorize on modern architectures and to make these developments
accessible to users of the library. As a result, a user can compose their application with the Cabana library
and compile it with cross-platform support, creating a single implementation which can both execute and
perform on expected exascale platforms. Simple kernels and representative mini-applications (e.g., for MD
and PIC) built on Cabana are used to track performance and identify and address any gaps that arise.

ExaMiniMD/CabanaMD

ExaMiniMD and CabanaMD are being used to experiment with new hardware capabilities, such as
NVIDIA’s shared-memory (SHMEM). MD communication kernels are being re-implemented with a SHMEM
option to test performance against conventional MPI. Development of new algorithmic options for MD that
have superior performance on highly threaded hardware that does not support fast atomics (e.g., Intel KNLs)
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are also being tested. While this work is driven by LAMMPS, it mostly involves internal Kokkos code, and
will thus benefit other Kokkos-based applications within ECP.

SWFFT/fftMPI

Both SWFFT and fftMPI are designed for large distributed 3D FFTs. Slab-decomposed parallel FFTs
are not scalable to very large MPI ranks but require only one “all-to-all” communication. On the other hand,
data partitioning across a two-dimensional subgrid (“pencil” decomposition) is scalable but requires multiple
“all-to-all” communication steps. Additions to fftMPI include (1) an option to perform data rearrangement
as a one-step pencil-to-pencil transpose (LAMMPS style) versus a two-step pencil-to-block, block-to-pencil
(HACC style) operation; and (2) a method to auto-tune for optimal performance on a particular FFT size and
processor count, by scanning a set of available algorithmic and parameter choices. These will be back-ported
to LAMMPS once further CoPA benchmarking is complete. Within CoPA, SWFFT and fftMPI are used
by the Cabana-based long-range solver effort. Because they are currently CPU-only, new options are being
examined, namely heterogeneous node support (using both CPU and GPU), and threading of 1d FFTs for
GPUs and multi-core CPUs.

8.2.3 CoPA: Co-design Engagements and Integration Points

Applications

The closest engagements are with four applications with whom personnel are shared; these AD projects
(and relevant codes) are: ExaSky (HACC) (§ 5.2), EXAALT (LAMMPS and LATTE) (§ 3.4), WDMAPP
(XGC) (§ 4.5), and ExaAM (ExaMPM) (§ 3.5). The PROGRESS/BML libraries have been integrated into
LATTE, and the team works closely with EXAALT members to co-design new capabilities and modifications
as needed. As discussed above, libraries and proxies have been extracted from HACC, LAMMPS, and LATTE
(ExaSP2), and the PIC-related algorithm kernels developed in the Cabana library are designed to be usable
by XGC, WarpX, and ExaMPM. The interactions with these ECP applications have been ongoing since the
library design phase and continue through the current development and eventual deployment. ExaMPM is a
new Material Point Method application code which is being co-designed in parallel with Cabana. WarpX
has motivated the development of a mini-PIC app based on Cabana. XGC is a legacy code that is being
used to guide the Fortran interoperability design strategy; the successful performance portability already
obtained using Cabana for the electron push bottleneck of XGC has motivated their team to begin using the
XGC/Cabana version for production runs on Summit. AD interactions span inputs on the design of data
structures and programming interfaces to algorithmic content and integration with mini-apps and kernels
representative of the applications. The EXAALT team has provided algorithmic and interface input to
Cabana development for MD applications, provided performance numbers for relevant computational kernels,
and is in the process of investigating Cabana performance using the ExaMiniMD proxy. The availability of
enhanced FFTs in LAMMPS will be useful for the EXAALT project in conjunction with the LATTE DFTB
code (which has its own Coulombic solver) and materials modeling for charged systems (UO2 fission fuel).

In a collaboration across co-design centers, potential integration of the Cabana and AMReX libraries for
block-structured adaptive mesh refinement with particles has been discussed. While a direct coupling has not
been achieved, the MFIX-Exa (§ 4.4) project (built on AMReX) has adopted Cabana algorithms to construct
neighbor lists on GPUs. In another collaboration with AMReX, the team has integrated SWFFT to solve the
discrete Poisson equation on a single level of refinement, and demonstrated that Nyx, the ExaSky cosmology
code built on AMReX, can build and run using the SWFFT solver. The fftMPI library is being used by the
WarpX (§ 4.6) application (Rob Ryne) for an initial stage in their modeling workflow.

ExaMiniMD and SWFFT are part of the ECP Proxy Applications Suite and were used by the ECP Proxy
Applications project in their first quantitative performance assessment by comparing their computation and
memory behavior to their parent applications (LAMMPS and HACC, respectively). ExaSP2 is also in the
ECP Proxy Applications catalog, and in response to multiple requests, the team has also contributed a
lightweight PIC proxy, CabanaPIC, as an early test of the Cabana library.

Benchmark/Bake-off problems

The successful engagement with XGC has driven the need to incorporate benchmark and bake-off problems
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Table 54: CoPA KPP-3 goals and metrics

Passing value Stretch value Tentative present value

3 7 4

into the CoPA co-design process. In this case, a benchmark/bake-off problem is an application specific
problem that isolates the section in the application code (subroutine/algorithm) that is the focus of the
co-design engagement. In this way, an apples-to-apples comparison can be made before and after code
refactoring or adoption.

Software Technologies

The MAGMA library has been successfully integrated into BML for node-level dense matrix operations
on GPUs. In the move to a more distributed approach, the SLATE library will be added into BML for dense
distributed matrices. The team is aware of the performance evaluation of the current version of SLATE
for EXAALT/LATTE and will learn from their experience. Performance of BML was assessed using the
Roofline/Advisor performance tools. This evaluation will be revisited periodically as more capability is added.
In the move to the matrix operations to run on accelerated architectures there will be more interaction with
the OpenMP project for the offload capability. The team will also explore the new capabilities offered by the
MPI project in its distributed approach.

The Kokkos library is a core dependency of ExaMiniMD and the Cabana library. Kokkos provides the
basic Cabana memory allocation utilities, some data structures, portable performant parallel loop constructs,
and data layout options for different hardware types which Cabana uses to represent particle data and to
implement algorithms and operations on particle data. Cabana developers have and continue to engage
extensively with the Kokkos development team, including the PI, with Cabana developers providing feedback
and requesting Kokkos changes as well as Kokkos developers providing code changes for Cabana. In addition,
other ECP application and software teams using Kokkos are being engaged to develop a broader knowledge
base and set of best practices for using the library.

fftMPI is currently being analyzed and benchmarked by the SLATE software project, and discussions
with both of the new ECP FFT projects (Canning and Dongarra) have also occurred; they will use fftMPI as
a baseline in their benchmarking and new algorithm development.

Vendors

The team has participated in Intel, AMD, and Cray deep dives/hackathons, using the BML library
and ExaSP2 and ExaMiniMD proxy apps with their simulators. The team participated in the NERSC
GPU hackathon. Using the Cabana library. Team members have participated in the NVIDIA Summit
on Summit/Sierra (SoSS) meetings and bi-weekly conference calls per GPU issues on Summit and Sierra.
The team held videoconferences and in-person meetings to discuss potential use cases for new PathForward
technologies. Team members have participated in the Aurora workshop and online, as well as the Frontier
workshop, in preparation for porting libraries and proxy applications to the exascale architectures. While the
team anticipates the Kokkos library to be transferable, the choice of AMD for the Frontier GPU will require
a comparable deep engagement with AMD comparable to SoSS with NVIDIA.

8.2.4 CoPA: Progress Towards Advanced Architectures

GPU Strategy

CoPA includes multiple GPU strategies summarized as follows. CoPA depends on underlying portable
libraries where possible, optimized for pre-exascale and exascale hardware. The LAMMPS/SNAP Potential
Implementation and the Cabana particle toolkit are dependent on Kokkos to supply the GPU interface.

The PROGRESS/BML Libraries for QMD codes relies on a couple different strategies. The BML library
relies on the MAGMA library for dense matrix operations on GPU, and eventually SLATE. OpenMP offload
is the choice implementation on GPUs for sparse matrix operations, such as ELLPACK. There are still
considerable differences in performance across compilers for OpenMP offload. We trust that there will be
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Table 55: CoPA code base

Package name LOC Target exascale challenge problems Computational motifs

PROGRESS/BML 70,900 EXAALT (LATTE) Sparse/dense linear
algebra

Cabana 10,000 ExaAM (ExaMPM), WDMAPP (XGC) Particles, Long-Range
Solvers

ExaMiniMD 6,200 EXAALT (LAMMPS) Particles

SWFFT 3,600 ExaSky (HACC) FFT

fftMPI 6,400 WarpX FFT

increased performance as we reach exascale. The pre-exascale and exascale GPU BLAS and SPARSE libraries
such as CUBLAS and CUSPARSE from NVIDIA will be used as needed. The PROGRESS library relies on
BML to supply the GPU interface.

Progress to Date

The LAMMPS/SNAP Potential Implementation required complete restructuring of the SNAP algorithm
and data structures to run efficiently on GPUs. The OLCF NERSC GPU Hackathon served as an opportunity
to improve performance. SNAP GPU Performance over time is shown in Fig. 52.

The efficient implementation of the SNAP potential for GPU acceleration required re-engineering the
SNAP kernel from the ground up, adopting compact memory representation and improving memory access
patterns, breaking up of the force kernel into sub-kernels and pushing atom/neighbor parallelism into the
sub-kernels.

This resulted in a significant increase of roughly 5× in performance over the baseline implementation of
the SNAP benchmark running on NVIDIA V100 GPUs. Deploying the new kernel on Summit resulted in
a simulation throughput of 175,100 atoms-steps/wall-clock second per node, exploiting all 6 GPUs and 42
CPU cores on a node. Extrapolated to the full machine, this predicts an increase of 90× in the EXAALT
FOM over baseline on the ALCF/Mira system, putting EXAALT on track to meeting, and even exceeding
KPP targets on the eventual exascale systems.

Future plans for GPU acceleration include Cuda kernel fusion and hierarchical threading strategies for
improved performance on small systems (per GPU), use of mixed-precision data for improved performance
on large systems, faster neighbor-list building algorithms, improved FFT methods which leverage vendor
GPU libraries, and strategies to reduce data transfer overheads (between the CPU and GPU).

The PROGRESS/BML + MAGMA Libraries have enabled EXAALT/Latte scaling on Summit for metallic
systems. The density matrix build for Silver nano-particles of increasing size was run on a single Summit
node using diagonalization through MAGMA. Figure 53 shows performance for CPU only versus CPU +
GPU (a Power9 CPU using 21 threads and 1 V100 GPU). BML was compiled with MAGMA to handle on
node dense matrix operations. We see similar performance on CPU and CPU + GPU for small system sizes.
Natrices of small sizes (<3,000) do more compute on the CPU for diagonalization in MAGMA. As the matrix
size/system size increases the CPU + GPU is the clear winner with good speedup.

Currently, small system GPU utilization and performance is lacking. We will be exploring optimizations
to improve small system performance for EXAALT/Latte by considering code refactoring, moving more work
to the GPU, and exploring the use of Multi-Process Service (MPS).

The Cabana Particle Toolkit relies on Kokkos for its GPU interface. Performance for the classical MD
mini-app, CabanaMD, is shown in Fig. 54 using the Leonard-Jones force potential. The impact of data
layout and communication decisions on performance across different hardware is shown by routine. Another
particle-in-cell mini-app, CabanaPIC (loosely based on VPIC), is GPU enabled, uses the existing Cabana
communication plan and halo functionality.

WDMapp/XGC has adopted Cabana/Kokkos for handling data management and kernel execution for
easy portability across architectures. This provides an easy, flexible framework for porting more kernels to
GPU. Comparison and scaling across Summit is shown in the left plot of Fig. 55. A performance comparison
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Figure 52: SNAP Performance improvement on a single Summit node May-
October 2019.
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Figure 53: Scaling (a) and speedup (b) of PROGRESS/BML on a single Summit
node.
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(L) Suboptimal data layout (1 AoSoA / vector length 16/1 for CPU/GPU)
(R) Optimal data layout (6 AoSoA / vector length 1/16 for CPU/GPU) 

• IBM POWER9 (32 core/4 threads, LLNL Lassen/Sierra)
• Intel Broadwell (36 core/2 threads, LLNL Quartz)
• AMD Epyc (48 core/2 threads, LLNL Corona)
• ARM ThunderX2 (48 core/4 threads, LLNL Ulna)
• NVIDIA V100 (4 GPU, LLNL Lassen)

Figure 54: Compared performance of CabanaMD using different data layouts
on different architectures.

Old specialized 
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Old CPU 
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Cabana 
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Figure 55: XGC-Cabana Summit performance comparison and scaling.

of the old XGC CPU version, the old specialized XGC Cuda version, and the new XGC Cabana version
shows improved performance. Weak scaling is shown in the right plot of Fig. 55.

CopA/Cabana enabled XGC big science studies on full-scale Summit. The improved Cabana version
performs better than the original GPU version XGC to full-size Summit for a production case tokamak
plasma and geometry.

Next Steps

Development and running on Summit will initially prepare us for moving to early Aurora and Frontier.
We will explore moving more computation to the GPUs. We will take advantage of the Aurora and Frontier
GPU libraries/capabilities that will be made available on Summit using the NVIDIA GPUs.

A number of CoPA members attended Aurora and Frontier Workshops in-person and on-line. We will
identify all the necessary mappings for our libraries and mini-apps. At this stage we will focus on converting
our libraries and mini-apps so they can run on the current software stacks available. We may have to wait
for Kokkos, MAGMA, and SLATE implementations. At this time compiling and correctness are important.
Performance will come later. We will take the opportunity to explore the performance analysis tools in
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preparation for optimizing for exascale hardware.
The PROGRESS/BML libraries will continue their current strategy of using MAGMA for dense matrix

operations, and OpenMP offload for sparse (ELLPACK, CSR) matrix operations on Aurora and Frontier.
As needed, we will take advantage of the MKL (Aurora) and blas and sparse libraries (AMD) as available.
Cabana will continue to employ its current implementation strategy of using the MPI + Kokkos programming
model for performance portability. Two Kokkos back-end implementations are currently planned to be
available for both Frontier and Aurora. Given the similar accelerator-based design of these two platforms as
compared to Summit and Sierra we expect this programming model to continue to be successful.

8.3 AMReX

The goal of this project is to develop a new framework, AMReX, to support the development of block-
structured AMR algorithms for solving systems of partial differential equations on exascale architectures.
Block-structured AMR provides the basis for the temporal and spatial discretization strategy for a large
number of applications relevant to DOE. Six ECP application projects—in the areas of accelerator design
(WarpX, § 4.6), astrophysics (ExaStar, § 5.1), combustion (Pele, § 4.2), cosmology (ExaSky, § 5.2), multiphase
flow (MFIX-Exa, § 4.4), and additive manufacturing (ExaAM, § 3.5)—are using the exascale AMR capability
under development. AMReX provides a unified infrastructure with the functionality needed for these and
other AMR applications to be able to utilize exascale architectures effectively.

AMR reduces the computational cost and memory footprint compared to a uniform mesh while preserving
the local descriptions of different physical processes in complex multi-physics algorithms. Fundamental to
block-structured AMR algorithms is a hierarchical representation of the solution at multiple levels of resolution.
At each level of refinement, the solution is defined on the union of data containers at that resolution, each
of which represents the solution over a logically rectangular subregion of the domain. Solution strategies
vary from level-by-level approaches (with or without subcycling in time) with multilevel synchronization
to full-hierarchy approaches, and any combination thereof. AMReX provides data containers and iterators
that understand the underlying hierarchical parallelism for field variables on a mesh, particle data and
embedded boundary (cut cell) representations of complex geometries. Both particles and embedded boundary
representations introduce additional irregularity and complexity in the way data is stored and operated on,
requiring special attention in the presence of the dynamically changing hierarchical mesh structure and AMR
time stepping approaches.

The AMReX team is working closely with application partners to ensure that the software meets their
requirements. The team is also working closely with a number of ST projects to take advantage of new tools
that are being developed. Finally, the team is engaged in a dialogue with hardware vendors to provide them
with information about adaptive mesh algorithms and provide feedback on the impact of hardware design
decisions on AMR applications.

8.3.1 AMReX: Algorithms and Software Objectives

The goal of the AMReX co-design center is to develop a computational infrastructure, AMReX, to support
applications that already use or plan to use block-structured AMR at the exascale. For the purposes of this
project, block-structured AMR is considered to have the following defining features:

• The mesh covering the computational domain is decomposed spatially into structured patches (grids)
that each cover a logically rectangular region of the domain.

• Patches with the same mesh spacing are disjoint; the union of such patches is referred to as a level.
Only the coarsest level is required to cover the domain, though finer levels can cover it as well.

• The complete mesh hierarchy on which field variables are defined is the union of all the levels. Proper
nesting is enforced, i.e. the union of grids at level l > 0 is strictly contained within the union of grids at
level l − 1.

• The physical region covered by each level can be decomposed into different patches to support particle
vs mesh data.

• The mesh hierarchy can change dynamically throughout a simulation.
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Within this broad framework, the applications supported represent a wide range of multi-physics problems
that couple a variety of different processes and have different computational requirements. Many of these
processes are described by systems of partial differential equations that are discretized on a mesh. Discretization
strategies for these processes often use either explicit discretizations that express updates in terms of the
local state or implicit discretizations that require solution of linear systems. In some cases, the problem
includes stiff systems of ordinary differential equations that represent single-point processes such as chemical
kinetics or nucleosynthesis. Many AMReX-based applications also utilize Lagrangian particles to represent
some aspect of the solution. Particles play a variety of different roles in different applications, ranging from
passively advected quantities used for analysis to playing the dominant role in the overall dynamics. Several
applications have a requirement for complex geometries. For these types of applications, the team is developing
an efficient embedded boundaries (EB) representation, in which the solid boundaries are represented as an
interface that cuts through a regular adaptive mesh on which the fluid variables are defined.

At the core of the AMReX software is a flexible set of data structures that can be used to represent
block-structured mesh data in a distributed memory environment. Operations supported on these data
structures include iterators for operations at a level, a communications layer to handle ghost cell exchange
and data distribution and tools for synchronization between levels. The iterators support logical tiling with
OpenMP on CPU-based architectures, as well as kernel launching and effective use of managed memory on
hybrid CPU/GPU systems.

This basic framework includes native geometric multigrid solvers, with support for solving systems arising
from embedded boundary discretizations, as well as interfaces to external solvers such as hypre and PETSc.
The team provides an interface to SUNDIALS for integration of stiff ODEs. On top of this core functionality
the team is also developing a rich and flexible set of tools for treating Lagrangian particles. These tools allow
for different representations of particle data (Structure-of-Arrays (SoA) versus Array-of-Structures (AoS)),
particle communications and support for particle algorithms in an AMR context. For embedded boundary
representations of complex geometry, AMReX provides support for the necessary geometric information.
Additionally, AMReX provides tools for regridding operations and load balancing; a fast I/O layer for writing
checkpoint, restart, and visualization/analysis data; and a rich set of native profiling tools.

The AMReX design allows developers to interact with the software at several different levels of abstraction.
In one approach, the developer uses the AMReX data structures and iterators for single- and multi-level
operations but retains complete control over the time evolution algorithm, i.e., the ordering of algorithmic
components at each level and across levels. In an alternative approach, the developer exploits additional
functionality in AMReX that is designed in particular to support traditional subcycling-in-time algorithms.
In this approach, stubs are provided for the necessary operations such as advancing the solution on a level,
correcting coarse grid fluxes with time- and space-averaged fine grid fluxes, averaging data from fine to
coarse and interpolating from coarse to fine. A guiding principle for the AMReX design is to maintain
flexibility in discretizations and time-stepping strategies. The core software components are designed to
provide the flexibility to support the exploration, development and implementation of new algorithms that
might generate additional performance gains. While many core discretizations, such as standard second-order
and some fourth-order spatial and temporal discretizations, are provided within the AMReX framework
for the convenience of users and developers, AMReX allows application developers sufficient access to the
underlying data structures to allow them to implement and optimize new discretizations as well.

8.3.2 AMReX: Performance Objectives

The applications AMReX supports represent a wide range of multi-physics applications with different
performance characteristics. Consequently, AMReX needs to provide a rich set of tools to allow sufficient
flexibility so that performance can be tuned for different situations. Furthermore, as part of the AMReX
design, specific language requirements are not imposed on users. Specifically, the project supports application
modules written in Fortran, C, C++ or other languages that can be linked to C++.

On-node parallelism

The basic AMReX paradigm is distribution of one or more patches of data to each node with an owner-
computes rule to allocate tasks between nodes. For code executing on CPUs, AMReX supports logical
tiling for cache re-use and OpenMP threading. Tile size can be adjusted at run time to improve cache
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performance; tile size can also vary between operations. AMReX includes both a standard synchronous
strategy for scheduling tiles as well as an asynchronous scheduling methodology. The asynchronous scheduling
uses runtime support from Perilla. AMReX also provides extensive support for kernel launching on GPU
accelerators (using C++ lambda functions) and for the effective use of managed memory, that allows users to
control where their data is stored. While much of the internal AMReX functionality currently uses CUDA
for maximum performance on current machines, AMReX supports the use of CUDA, OpenMP or OpenACC
in AMReX-based applications. Specific architecture-dependent aspects of the software for GPUs are highly
localized, enabling AMReX to easily support other GPU architectures.

To meet the diverse requirements of particle applications both AoS and SoA representations of particle
data are included. Multiple types of particles can co-exist in a single application; different types can carry
different numbers of real and integer attributes. Operations on particles are controlled by a particle iterator
that also uses a similar tiling or kernel launching approach. Particle tiling differs from grid tiling, however, in
that the particle tiling determines the memory layout of the particles whereas tiling of mesh data does not
change the layout

Fork-Join Parallelism

In many multi-physics applications, within each time step there are different physical processes that can
be advanced independently. AMReX includes support for higher-level asynchronous task description and
execution based on a fork-join approach. To enable fork-join task parallelism, a simple programming interface
is provided for developers to express their coarse-grained tasks and the data those tasks require. The runtime
mechanisms for parallel task forking, handling data migration, and task output redirection is also provided.

Linear solvers

A key feature of a number of applications typically solved using AMR is that they require solution of
one or more linear systems at each time step. This has three important implications. First, performant
linear solvers are necessary for overall performance. AMReX includes single-level and multilevel native linear
solvers (for nodal or cell-centered data), as well as interfaces to external solvers such as those in hypre and
PETSc. Second, regardless of the specific solution procedure, the efficient solution of elliptic equations at
scale requires attention to efficient global communication. The third implication is that the effectiveness of
general task scheduling approaches may be constrained by the synchronization points/barriers imposed by
linear solvers within a time step.

The team has refactored the AMReX native linear solvers for improved parallel performance and extended
them to work on hybrid CPU/GPU systems. As part of this development the team has implemented
agglomeration (merging boxes in the AMR hierarchy to enable additional coarsening as part of the multigrid
algorithm) and consolidation (reducing the number of ranks to reduce communication costs at coarser
multigrid levels) strategies from HPGMG as part of the general-purpose solvers.

Communication

AMReX provides MPI communication routines that operate directly on GPU memory buffers, so that
unnecessary device-to-host and host-to-device copies are not triggered on machines, such as OLCF’s Summit,
that support GPUDirect. For particles, this requires operations such as sorting, searching, and stream
compaction that work efficiently on the device. The current approach to this problem uses Thrust, a parallel
algorithms library maintained by NVIDIA and distributed as part of the CUDA Toolkit. As the AMReX-based
applications move more of their functionality onto GPUs, the team will work in conjunction with them to
assess which components of the algorithm are most effectively offloaded to the GPU and which components
stay on the CPU without negatively impacting overall performance. This raises the possibility of executing
on the CPU and GPU in parallel and or executing different algorithm components on different GPUs. This
will potentially require some redefinition of the underlying algorithms as well as software infrastructure to
support the implementation. The team’s fork-join approach provides a suitable framework that could be
generalized to handle these types of algorithms.

Performance characterization

Predicting the performance of complex multi-physics AMR applications a priori is challenging at best. The
team has developed a sophisticated set of profiling tools for performance characterization of AMReX-based
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applications. The toolkit includes measurement of both computation and communication. The software
can be used to obtain anything from a broad overview of performance to detailed measurements localized
to a specific portion of the algorithm. In addition to a brief summary report, the tools create a database
during execution that can be queried using a graphical interface to extract detailed information. This overall
performance measurement system is augmented with performance modeling methodology that enables the
user to construct a model of execution including both compute and communication to understand performance
behavior and how it depends on machine characteristics. This type of performance model enables the user to
evaluate the potential impact of algorithm changes on performance prior to full implementation.

I/O; In situ analysis / visualization

AMReX provides native high-performance I/O, as well as a prototype for reading and writing in HDF5
format, for checkpoint/restart or further post-processing. The AMReX native format is supported by VisIt,
ParaView and yt. AMReX is also working with ALPINE and SENSEI teams to integrate an interface for
applications to move data to appropriate analysis and visualization packages in order to perform analysis and
visualization in transit or in situ.

8.3.3 AMReX: Co-design Engagements and Integration Points

ECP Applications

Six ECP application projects in the areas of accelerator design (WarpX), astrophysics (ExaStar), com-
bustion (Pele), cosmology (ExaSky), multiphase flow (MFIX-Exa) and additive manufacturing (ExaAM)
include codes based on AMReX. All codes make use of the basic mesh data structures and iterators along
with additional capabilities as discussed below.

• WarpX is a multilevel electromagnetic PIC code for simulation of plasma accelerators; electrons are
modeled as AMReX particles while the electric and magnetic fields are defined on the hierarchical mesh.

• The ExaStar project is developing the CLASH ecosystem, which includes the FLASH and Castro
simulation codes for compressible astrophysical flows and the Sedona code for radiation transport; all
three of these use AMReX. Particles can be used as tracer particles in Castro and FLASH5, and in a
Monte Carlo algorithm in Sedona; linear solvers are used to solve for self-gravity. CVODE can be used
to evolve nuclear reaction networks.

• The Nyx N-body plus hydrodynamics code in the ExaSky project is based on AMReX. The particles
represent dark matter, linear solvers are used to solve for self-gravity, and CVODE is called to integrate
the heating/cooling source terms.

• The MFIX-Exa multiphase modeling code is based on AMReX; the particles represent solid particles
within a gas, the EB methodology is used to represent the bounding geometry, the linear solvers are
used for pressure solves in a projection formulation and for the implicit treatment of viscous terms, and
CVODE will be used to evolve the chemical reactions within the reactor.

• The compressible combustion code, PeleC, and the low Mach number combustion modeling code,
PeleLM, are both based on AMReX. Both will use the EB methodology to represent the problem
geometry, and possibly CVODE to evolve the chemical mechanism. PeleLM uses the linear solvers to
solve for the dynamic pressure field in a projection formulation and for the semi-implicit treatment of
viscous terms. Particles can be used both as tracer particles and to represent sprays.

• One of the codes in the ExaAM project, TruchasPBF, is based on AMReX. TruchasPBF targets
part-scale process and melt pool physics.

In addition, the AMReX co-design center has regular communication with the CoPA co-design center
regarding best practices for particle data layout and operations. There has been no direct use of shared code,
but discussions are on-going.

ECP Software Technologies
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Table 56: AMReX KPP-3 goals and metrics

Passing value Stretch value Tentative present value

3 7 6

Table 57: AMReX code base

Package name LOC Target exascale challenge problems Computational motifs

AMReX 325,000 N/A AMR, Structured Grids, Particles,
Sparse Linear Algebra, ODEs

The AMReX co-design center has interacted with many of the ECP ST projects. The most significant of
those interactions have been with the SUNDIALS, HDF5, and ALPINE projects. The AMReX co-design
center had a shared fate milestone with the SUNDIALS project (2.3.3.05) for the SUNDIALS team to develop
and release a vectorized version of CVODE, and for the AMReX team to provide an interface for its use in
AMReX. This milestone has been successfully completed and the vectorized version is in use in the Nyx code.
Plans are underway for development of a new version of CVODE that will work effectively on GPUs. In
addition, the AMReX co-design center has regular interactions with:

• the HDF5 project (2.3.4.08). A prototype routine to write AMReX plotfiles in HDF5 format (as an
alternative to the native I/O format) is being re-written for application ease of use; both ExaSky and
MFiX-Exa plan to take advantage of this functionality.

• the ALPINE project (2.3.4.12) to determine the best ways for ALPINE and SENSEI to support the
AMReX-based application projects. Preliminary interfaces to both exist in the AMReX git repo and
the ExaSky and MFiX-Exa projects are currently exploring this functionality.

• Finally, the AMReX team worked with the xSDK team (2.3.3.01) to ensure xSDK compatibility and
interoperability; AMReX was part of the 2018 xSDK release and will be part of the 2019 release as well.

ECP Vendor Interaction

The AMReX vendor liaison continues to interact with a number of vendors, reading PathForward milestones
and participating in PathForward reviews. The liaison regularly provides feedback geared towards improving
the sustained performance that future systems will deliver on AMReX-based and similar applications.
Summaries of the architectural trends and implications have been discussed with ECCN/RSNDA-cleared
personnel within AMReX in order to ensure that AMReX software development is in line with trends in
architecture and system software.

8.3.4 AMReX: Progress Towards Advanced Architectures

GPU Strategy

The AMReX GPU strategy is to make it as easy as possible for AMReX-based applications to write code
that is both performant and portable. To this end, it currently supports application code that uses CUDA,
OpenACC or OpenMP. Internally, AMReX relies on CUDA for NVIDIA accelerators, and is in the process
of developing core-level support for AMD accelerators based on HIP. A similar migration strategy will be
implemented when appropriate for supporting Intel accelerators. AMReX is currently expecting to support
Intel through DPC++, but is waiting for Intel to release test hardware and standards before making a final
decision.

Originally the AMReX core framework included Fortran routines; almost all of these have been replaced
by C++ versions, which makes adapting to future architectural changes more straightforward by not having
to wait for Fortran compiler support and interoperability. The remaining Fortran routines will be completely
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replaced by mid-FY20. It is important to note that the Fortran interfaces will remain and AMReX-based
applications will continue to be able to use Fortran without penalty.

AMReX provides the ability for users to construct loops over data using mesh and particle iterators.
AMReX iterators implicitly cycle through GPU streams on each iteration, keeping work in a given loop
ordered but taking advantage of unused GPU resources when they are available. AMReX iterators have an
implicit device synchronize built into their destructors, as in most cases, the results of a loop will be used
almost immediately. This can be turned off with a flag when desired, but provides a clean, readable and
understandable workflow for most applications, especially when initially porting to GPUs.

Additionally, features of the overall GPU strategy include:

• Raw data (floating point, integer arrays and particles) is placed in managed memory. Application codes
can opt out of the default and manage chosen objects separately by hand or with AMReX Memory
Arenas.

• AMReX supports a C++ lambda-based launch system that offers inlining and portable GPU code.

• AMReX provides GPU-friendly implementations of common mesh, particle and particle-mesh operations,
including operations such as saxpy, reductions, PIC methods and particle neighbor list constructions.

• AMReX provides functions for common parallel communication operations for mesh and particle data,
including ghost cell exchange and particle redistribution. These operations run on the GPUs without
triggering host/device copies and have been optimized for performance on Summit.

AMReX has no external software dependencies other than the standard software stack requirements such
as working C++ compilers and MPI. However, AMReX does currently supply user-facing interfaces for the
CVODE libraries supported by the SUNDIALS project, the external PETSc and hypre algebraic multigrid
solvers and HDF5.

Progress to Date

The performance of AMReX on GPUs is best measured by the performance of AMReX-based applications.
We report here some recent performance results for three of the AMReX-based codes and refer the reader to
the subsections on those codes (see ExaStar § 5.1, MFiX-Exa § 4.4, and WarpX § 4.6 for further details on
the results below).

WarpX, an AMReX-based electromagnetic PIC code for modeling particle accelerators, reports a 7×
speed-up on its extrapolated KPP FOM on Summit relative to the Cori KNL nodes (this run used half
of Summit). Additionally, on a uniform plasma benchmark, WarpX reports a ∼ 20× speedup on Summit
comparing 6 GPUs per node to 42 POWER9 cores (using 6 MPI and 7 OpenMP threads per node). These
runs also exhibited nearly perfect weak scaling up to 2,048 nodes as shown in Fig. 56. In WarpX, the entire
PIC loop runs on the GPUs and the data is only communicated back to the CPU for the purpose of I/O.

Castro, an AMReX-based code for compressible astrophysics that is part of the ExaStar project, reports
a 10x speedup for the explicit hydrodynamics on Summit (6 GPUs/node) relative to multicore using MPI
+ OpenMP (6 MPI ranks × 7 OpenMP threads/rank). In addition it reports a 40× speedup of the time
integration of the reaction network.

MFiX-Exa, an AMReX-based code for modeling gas/solid multiphase flow with the goal of simulating a
full chemical looping reactor, reports a two-orders-of-magnitude speedup for the particle work on a Summit
node with 6 GPUs relative to a Cori node with 36 cores.

In addition, a recent scaling study of the native geometric multigrid solvers in AMReX shows a roughly
4–5× speedup on a Summit node relative to a Cori Haswell node.

Next Steps

For Frontier-targeted code development, the AMReX team uses a local workstation with a Vega 10 AMD
graphics card for active HIP-clang code development. Basic AMReX programs are successfully compiling and
running with HIP-clang. HIP libraries, including hipRand and HIP’s version of thrust are going to be tested
next. This development is currently in a separate branch, but will be merged into AMReX proper once fully
tested. Code differences, bugs and feature requests have been identified and are being sent to AMD and
ORNL to further improve AMReX and HIP for Frontier.
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Figure 56: Results of a weak scaling study on a uniform plasma benchmark with
WarpX, comparing GPU and CPU performance on Summit. Both cases used 8
particles per cell, Esirkepov current deposition, and 3rd-order interpolation. The
GPU-accelerated runs used 6 GPUs per node, with 1 MPI task per GPU. The
CPU-only runs used all 42 available POWER9 cores on a Summit node, using 6
MPI tasks and 7 OpenMP threads per node. Both runs exhibit excellent weak
scaling. On 2,048 Summit nodes, the GPU-accelerated run was approximately 22
times faster that the CPU-only run.

AMReX has compiled and run with HIP-nvcc on Summit as an intermediate step towards HIP on AMD
machines. AMReX will continue to use HIP-nvcc for a subset of bug and portability testing while HIP-clang
is being developed.

The AMReX development team as well as numerous application teams attended the Frontier kickoff
workshop in September. ExaStar, ExaSky and Pele were chosen as CAAR code teams to receive testing and
expert assistance porting to AMD GPUs. That expertise will be utilized to port AMReX to HIP, as the
underlying critical framework. CAAR and NESAP code teams are also provided access to an early test-bed
system, which will be used for performance analysis with HIP.

AMReX established an AMD contact for HIP and ROCm questions at the workshop and has begun
discussing bugs and feature requests needed for AMReX and its applications.

For Aurora preparation, the AMReX team anticipate DPC++ to be the preferred API to run on Intel
systems and are awaiting formal releases of test platforms and standards before starting code development.
The AMReX development team has attended available tutorials and seminars on DPC++, SYCL and other
relevant Intel topics to keep up-to-date on the expected requirements for Aurora.

The Pele application suite was chosen to participate in Argonne’s Early Science Program. The provided
expertise and hands-on Intel support will be used to help port AMReX itself to Aurora, much like the NESAP
and CAAR programs have helped at NERSC and OLCF, respectively.

8.4 CEED

Efficient exploitation of exascale architectures requires a rethink of the numerical algorithms used in large-scale
applications of strategic interest to the DOE. These architectures favor algorithms that expose ultra-fine-grain
parallelism and maximize the ratio of floating-point operations to energy-intensive data movement. Many
large-scale applications employ unstructured finite element discretization methods, where practical efficiency
is measured by the accuracy achieved per unit computational time. One of the few viable approaches to
achieve high-performance in this case is to use matrix-free high-order finite element methods, since these
methods can both increase the accuracy and/or lower the computational time due to reduced data motion.
To achieve this efficiency, high-order methods use mesh elements that are mapped from canonical reference
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elements (hexes, wedges, pyramids, tetrahedra) and exploit, where possible, the tensor-product structure
of the canonical mesh elements and finite element spaces. Through matrix-free partial assembly, the use of
canonical reference elements enables substantial cache efficiency and minimizes extraneous data movement in
comparison to traditional low-order approaches.

The CEED co-design center is a focused team effort to develop the next-generation discretization
software and algorithms that will enable a wide range of finite element applications to run efficiently on
future hardware. High-order methods are the logical choice for this, from a mathematical (higher-quality
simulations) perspective, as well as from HPC (better performance) and risk mitigation perspectives (range
of orders provides flexibility in the uncertain exascale hardware and software environments). Their efficiency
extends to problems with unstructured non-conforming mesh refinement and general curved meshes and
includes low-order finite element discretizations as a special case. The team’s work covers all of these topics,
including the full low- to high-order spectrum of discretizations, allowing software to be easily integrated
with low-order applications while enabling such applications to naturally transition from low- to high-order
methods.

The team is pursuing a cross-cutting approach that includes working with hardware vendors, software
developers, and computational scientists to meet the needs of ECP applications. CEED is developing
next-generation finite element discretization libraries to enable unstructured PDE-based applications that will
take full advantage of exascale resources without the need to reinvent complicated finite element machinery on
upcoming hardware. The project team is also delivering CEED miniapps that combine applications-relevant
physics with key high-order kernels that capitalize on matrix-free forms for efficient performance. These
miniapps are being used to inform and influence hardware development. Finally, CEED is working to further
the development of more general software technologies, including extensions of dense linear algebra libraries to
support fast tensor contractions, performance-portable programming models, and scalable matrix-free linear
solvers. These improvements, specifically motivated by finite element applications on exascale hardware, will
also benefit the broader scientific computing community.

Up-to-date information about the project is available on the website, http://ceed.exascaleproject.org,
including recent publications and news items. The software catalog, including the libCEED low-level API
library, the CEED benchmarks, the Laghos and Nekbone miniapps, the libParanumal set of GPU kernels,
and the high-order Field and Mesh Specification, FMS, as well as mirrors of the major CEED packages are
freely available on GitHub at https://github.com/CEED.

8.4.1 CEED: Algorithms and Software Objectives

The finite element method is a powerful discretization technique that has been applied to virtually every
computational problem involving the solution of differential or integra-differential equations. It has been
exhaustively studied, both theoretically and in practice, in the past several decades. Finite elements use
mappings to the reference element to evaluate integrals that arise in weak variational formulations of PDE
problems. High-order finite elements use higher-order polynomials in reference space for approximating
physics fields and potentially the geometry of mesh elements.

While they live on unstructured grids and result in globally sparse matrices, locally on each element
high-order finite elements have a dense Cartesian structure, thus offering a bridge between the unstruc-
tured/structured and sparse/dense worlds and can benefit from tools from all of these fields. Spectral
elements are a special case of the general high-order finite elements, when the degrees of freedom and the
quadrature points on the reference element coincide, resulting in a diagonal mass matrix. One can consider
spectral elements and general high-order finite elements as two ends of the same spectrum—both use the
same finite element machinery, but spectral elements emphasize efficiency, while general high-order finite
elements emphasize robustness. There is a unique opportunity to combine complementary spectral/finite
element R&D efforts within the CEED team to deliver a next-generation high-order discretization portfolio
to the ECP applications.

The key to efficient high-order methods for the finite element method is to use factored matrix-free forms
having per-grid-point memory demands on par with or lower than standard (fully-assembled) low-order
methods and considerable savings in the number of grid-points. Matrix-free high-order finite elements
offer several important advantages for anticipated exascale architectures featuring thread-based nodes with
multiple memory hierarchies. First, the order of the methods can be used as a performance-tuning parameter;
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second, they can handle small on-node memory with just a few elements per core and compute on-the-fly
intermediate quantities; and third, their kernels are threadable with localized data, making them well-suited
to heterogeneous on-node parallelism, GPUs, and power-efficient computing.

The majority of the flops >90 % in matrix-free high-order finite element implementations are in the
form of tensor contractions that effect differentiation or interpolation on the reference element. For an
element of order p, these contractions require only n = Ep3 memory references for the data and only O(p2)
references for the operators, while the number of flops scales as O(np) = O(Ep4). (Here, n is the total
number of gridpoints, E is the number of elements, and p is the approximation order.) Further operations,
involving physics or geometry evaluations at the quadrature points require only O(n) work and O(n) memory
references. Interprocessor communication on P processors involves only minimal surface data, with complexity
O(n/P )2/3. The stencil is of unit-depth, independent of p.

CEED is focused on developing optimal implementations of finite element operator evaluators and solvers
across a variety of applications. One of the ways that these developments will be manifest is through a
lightweight library, libCEED, and related mini-apps and examples. libCEED is designed to allow users
to express central kernels at a low level (e.g., local matrix-vector product), without changing the current
discretization. libCEED is an API between frontend apps and backend kernels which supports efficient
operator description (not a global matrix). This description is based on a purely algebraic finite element
operator decomposition and thus applicable to many applications. The frontend application can use any
compatible backend, and any (performant) high-order code should be able to plug in at that front end (now
or in the future). The backends can be added independent of frontends and are divorced from finite element
information, allowing computer scientists to optimize the evaluation without domain knowledge. These
backends can be selected for best performance, optimized for order, device (CPU, GPU, etc.) and can use
just-in-time compilation to deliver performance. Each new backend is automatically usable in all compatible
frontend applications, giving a broad impact of the optimization efforts.

8.4.2 CEED: Performance Objectives

Petascale finite element codes currently execute with up to a million CPU cores using single-program-multiple-
data programming models on distributed-memory architectures. For sufficiently large problems, PDE solvers
generally have adequate parallelism to make this approach efficient, even at scale. The principal challenges
are to have enough work per core to offset communication overhead and to have linear system solvers that
are scalable both in terms of communication costs and bounded iteration counts independent of problem size
and processor count.

The CEED team has significant experience in developing efficient multilevel codes having bounded iteration
counts at these scales, where even the coarse-grid problem, which has O(1) Degrees of Freedom (DOF) per core,
consists of millions of DOF. For high-order methods, there are two prevailing strategies for preconditioning:
exploiting spectral equivalences between low- and high-order operators to reduce the problem of solving a
dense (but factorizable) high-order system to that of solving a sparse low-order system, or exploiting the
tensor-product structure of the high-order elements to develop approximate separable operators that can be
applied locally within a domain-decomposition context. For the Poisson problem, the former approach is
robust and effective if the sparse problem can be solved quickly with AMG while the latter is potentially
faster unless the elements have high aspect ratios. Either approach requires a communication-intensive
coarse-grid solve that maps distributed data to a coarse distributed solution. Conquering this coarse-grid
communication problem will be a major challenge at exascale, particularly in light of current device-to-host
latencies. Presently, one of two approaches is used for the solution of coarse-grid systems of size nc. For
nc < 105–106, one can project the solution onto a sparse set of vectors X = {x1,x2, . . . ,xnc} with optimal

log2 P communication complexity, but suboptimal O(n
5/3
c /P ) work. For larger values of nc, AMG has proven

more effective, despite its O(log2 P ) communication complexity.
The other principal challenge at exascale will be to realize high performance per node, where greater

on-chip parallelism makes it imperative to focus on finer-grain parallelism and to exploit significant data
reuse. For accelerator-based nodes in particular there is a need to (usefully) elevate the flops-to-bytes ratio
and high-order methods are very effective in this respect. Fast tensor-product based high-order finite element
implementations require only O(n) = O(Ep3) memory references and only O(Ep4) operations. The factor
of p increase in operation count arises from tensor contractions—applications of derivative or interpolation
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Figure 57: Significant variance in the bake-off results.

operators on the reference element—which are readily expressed in the form of BLAS3 dgemms.
For CPUs, optimizing the dgemms for small matrices of order p = 6–16 (typically) is the standard

starting point for performance tuning. However, to further push development and to identify the fastest
implementations for the commonly occurring high-order kernels, the team has developed a series of benchmarks
known as the bake-off kernels (BKs) and bake-off problems (BPs). CEED’s BK/BPs are designed to test and
compare the performance of high-order implementations. The current specifications (BP1-BP6 and BK1-BK6)
describe simple mass and stiffness matrix solves (without preconditioning) with specific choices for high-order
degrees for freedom and quadrature points. These benchmarks have been used to compare Nek, MFEM,
libParanumal, and deal.ii (external to CEED) and have already resulted in improvements across these codes
by learning from each other. The idea is that the open-source competition benefits all high-order applications
and ensures that no code misses significant optimization opportunities on present and future architectures.

In addition to pushing kernel development, the BPs serve an important role in identifying the strong-scale
limits of various implementations and architectures, which is important when assessing overall performance
of a given code-problem coupling on a particular platform.

For GPUs, the CEED development is taking advantage in particular of the OCCA and MAGMA efforts
in the project. OCCA provides a portable means of expressing accelerator-directed code to be translated in
CUDA, OpenCL, or OpenMP code that will perform as well as hand-tuned CUDA. MAGMA is directed
towards fast tensor contractions and batched dgemms that are appropriate for the size of matrices encountered
in high-order finite element codes. Currently, all the miniapps have GPU versions and the team is in the
process of bringing these technologies to first wave applications.

High-order alone is not sufficient to ensure high performance on either CPUs or GPUs. In the case of
CPUs, this point is illustrated by the significant variance in the bake-off results between Nek5000, MFEM,
and deal.ii. In the case of GPUs, the CEED team has demonstrated that it is possible to match roofline
performance models on the NVIDIA P100 and V100s, but only after extensive kernel tuning. For high enough
order and problem sizes, these kernels have been shown to achieve up to 2 TFLOP on a V100 GPU on Summit
as shown in Fig. 57. The tuning steps include mapping intermediate arrays in the tensor contraction steps to
shared memory, padding shared memory for order-8 or order-16 tensors to avoid bank conflicts, unrolling
the inner contraction loops, reducing thread synchronizations by allocating additional shared memory, and
replacing shared memory references with register read/write instructions, where possible. Clearly, even
for something as straightforward as tensor contractions, realization of fast implementations on GPUs and
other accelerators requires a deeper understanding of the architecture than most application scientists would
desire. An objective of CEED is to make these fast implementations accessible through a convenient interface,
libCEED, which will support tuned backends for each of the forthcoming exascale architectures.

One of the goals of the project is to explore and identify the best algorithms (in terms of time to solution)
for the full range of discretization spaces: from low-order (p = 1) to high-order (e.g., p = 16). For that
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purpose, the benchmark problems described below, which represent the key numerical kernels of several PDE
solvers, are used. The computational experiments performed in CEED explore the best implementations for
a given architecture, the components that make them perform well, and software expressions that will allow
these implementations to be leveraged on future platforms without change to the application-level software.

One example of the performance evaluation and improvement activities is given below, where CEED’s
BP1 benchmark is run on the Cetus BG/Q machine at ANL (BG/Q is picked for repeatability). All of
these runs use 8192 cores in C32 mode and loop over orders p = 1, . . . , 16 with q = p+ 2 quadrature points.
High-order methods clearly show better maximum performance, but more importantly they are also better in
the strong-scaling limit (left on the x-axis) where a user may be running on many nodes at an efficiency no
lower than 50 %. The problem size per node at which that efficiency is achieved is called n1/2 and is a critical
value in performance evaluations.

8.4.3 CEED: Co-design Engagements and Integration Points

CEED is delivering discretization libraries for applications, benchmarks, and standards for the high-order
community and Miniapps for hardware vendors and ST projects interactions. These deliverables involve close
collaboration between four R&D thrusts: Applications, Hardware, Software, and Finite Elements. While each
thrust is focused on a specific ECP goal, their work is highly integrated across team members, institutions
and deliverables.

Application targets

The CEED co-design team is interested first and foremost in applications. The team has a track record of
delivering performant software on leading-edge platforms. The team collectively supports hundreds of users
in national laboratories, industry, and academia, and is committed to pushing simulation capabilities to new
levels across an ever-widening range of applications. In the ECP the team uses a focused one-on-one interaction
with applications facilitated by CEED application liaisons, as well as through one-to-many interactions,
based on the development of easy-to-use discretization libraries for high-order finite element methods. The
first-wave application targets are the ExaSMR (§ 4.3 application from ORNL and the MARBL application
from LLNL (§ 7.2) are already integrated with Nek5000 and MFEM respectively. Additional application
targets are the E3SM (§ 5.5), ExaWind (§ 4.1), ExaAM (§ 3.5), SNLApp, GEOS, WDMApp (§ 4.5), and the
Combustion projects (§ 4.2). In addition to maintaining a close connection with these high-priority ECP
applications, the team is reaching out to lower-priority ECP and non-ECP applications; these interactions
are used to derive requirements for CEED’s miniapps and software technologies.

Application engagement comes in two primary forms. Initially, CEED will build on top of existing
application codes/libraries. The ExaSMR application from ORNL and the MARBL application from LLNL
are already integrated with the CEED base codes Nek5000 and MFEM, respectively. Other ECP applications
that may engage these codes include ExaWind and ExaAM. Exascale advancements for these applications
will include all developments directed at Nek5000 and MFEM, including extensions to GPUs and Aurora.
Secondly, CEED will reach out to new applications through libCEED. The goal is to provide PDE-based
applications with a lightweight and portable interface to highly performant kernels on all of the exascale
platforms. Particular candidates include E3SM (climate), SNLApp, GEOS, and WDMApp. In some cases,
the general libCEED model will need to be tailored to the application kernels. For example, E3SM uses a
mixed FE/finite-difference formulation. Its local tensor-product structure, however, is ideally suited to the fast
tensor-product factorizations that are at the heart of CEED, such that extensions are very natural. The CEED
development group will be reaching out to these applications to assess the potential of libCEED-enabled
performance gains.

Benchmarks: Bake-Off Problems (BPs) and Bake-Off Kernels (BKs)

CEED’s BPs are extensions of the BKs mentioned earlier that are instantiations of the high-order
kernels/benchmarks within iterative solvers that are designed to test and compare the performance of high-
order codes under realistic data loading and communication patterns. The current specifications (BP1-BP6
and BK1-BK6) describe simple mass and stiffness matrix solves (without preconditioning) with specific choices
for high-order degrees for freedom and quadrature points. These benchmarks have been used to compare
Nek, MFEM and deal.ii (external to CEED) and have already resulted in improvements from learning from
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Table 58: CEED KPP-3 goals and metrics

Passing value Stretch value Tentative present value

3 6 2

each other, that can benefit all high-order applications.

Community Standards: High-Order Operator Format and Field and Mesh Specification

One of the challenges with high-order methods is that a global sparse matrix is no longer a good
representation of a high-order linear operator, both with respect to the FLOPs needed for its evaluation, as
well as the memory transfer needed for a matvec. Thus, high-order methods require a new ”format” that still
represents a linear (or more generally non-linear) operator, but not through a sparse matrix. One of the goals
of libCEED is to propose such a format, as well as supporting implementations and data structures, that
enable efficient operator evaluation on a variety of computational device types (CPUs, GPUs, etc.). This new
operator description is based on the algebraically factored form given by the finite element decomposition
above, which is easy to incorporate in a wide variety of applications, without significant refactoring of their
own discretization infrastructure.

Another challenge for the practical use of high-order methods is the lack of common description of
high-order simulation data (both meshes and fields) which hampers data exchange between applications as
well as high-order visualization. CEED’s FMS (Field and Mesh Specification) is a newly proposed high-order
interface, that allows a wide variety of applications and visualization tools to represent unstructured high-order
meshes with general high-order finite element fields defined on them. FMS is intended as a lightweight format
and API that can represent general finite elements within a common, easy to use framework. This includes
high-order solutions and meshes as well as non-standard finite elements, such as Nedelec and Raviart-Thomas
elements.

Miniapps: Nekbone, Laghos, Remhos, libParanumal

Nekbone is a lightweight subset of Nek5000 that solves a standard Poisson equation; weak-scaled to 6
million MPI ranks; currently supports OpenACC/CUDA-based GPU variants. Laghos is a CEED-developed
miniapp that for the first time provides a proxy for high-order discretizations of the Euler equations of
compressible gas dynamics, as solved by the BLAST code at LLNL (the ALE component of ECP’s MARBL
application). Laghos features moving (high-order) curved meshes, (high-order) explicit time integration,
AMR version, and OCCA and RAJA versions targeting GPUs. Both Nekbone and Laghos are procurement
benchmarks for CORAL2 and ECP 1.0 proxy apps. Remhos is a new CEED mini-app that complements
Laghos. It reflects the Lagrangian remap phase that is used in the BLAST code. libParanumal (formerly
Holmes) is a CEED-developed experimental testbed for multi-level parallel implementations of high-order
finite element computations; under development.

Collaboration with Hardware Vendors and Software Technology Projects

The CEED team is working closely with several of the ECP vendors, most notably: Intel, CRAY, AMD,
IBM and ARM on hardware optimizations, miniapp evaluation, the Aurora architecture, GPU performance
and more. The team built a two-way (pull-and-push) collaboration with the vendors, where the team develops
hardware-aware technologies (pull) to understand performance bottlenecks and take advantage of inevitable
hardware trends, and vendor interactions to seek (push) impact and improve hardware designs within the
ECP scope. CEED is also collaborating with a number of projects in ECP’s software technologies focus
area, including MPICH, STRUMPACK, PETSc, Spack, SUNDIALS, ALPINE/VTK-m, KokkosKernels and
Zfp. In addition, CEED packages are also part of the FASTMath institute in SciDAC, the xSDK and the
OpenHPC distribution.

8.4.4 CEED: Progress Towards Advanced Architectures

GPU Strategy
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Table 59: CEED code base

Package name LOC Target exascale
challenge problems

Computational motifs

Nek5000 100k Fortran/C ExaSMR, ExaWind,
E3SM

High-order methods, matrix-free
computation, scalable solvers

MFEM 164k C++ MARBL, ExaAM,
GEOS, SNLApp

High-order finite elements,
unstructured AMR, computation,
matrix-free computation, scalable
solvers

libCEED 22k C CEED, SNLApp, E3SM,
GEOS

Low-level API library for efficient
high-order operator evaluation

libParanumal 112k C++/OKL CEED Prototype GPU accelerated algorithms
for high-order finite element methods

MAGMA 740k C/C++ CEED Numerical linear algebra batched
linear algebra, tensor contractions,
dense and sparse matrix computations

OCCA 44k C++ CEED Portable many-core programming
platform

PUMI 82k C++ CEED Parallel, unstructured, mesh
infrastructure

The CEED team has been developing GPU-performant algorithms in all of its software components
including: the low-level OCCA, MAGMA and libCEED libraries; the Nekbone, Laghos and libParanumal
miniapps; and the high-level MFEM and Nek codes.

At the low-level, OCCA is providing performance portable way of describing high-order finite element
kernels that can target all of the Summit, Aurora and Frontier architectures. An important feature of
OCCA is its support for JIT compilation, which allows for example kernel fusion with user-provided input,
which is critical for achieving top level GPU performance. OCCA is being used in several CEED products,
including libCEED, libParanumal, MFEM and Nek. Another low-level GPU library is MAGMA, which
focuses on batched dense contraction applied to high-order finite element kernels and is currently integrated in
libCEED. In this approach the dense contractions are expressed through Batched BLAS APIs, e.g., batched
matrix-matrix multiplications (gemms). The Batched BLAS APIs extend the BLAS standard and are
co-designed with vendors, targeting libCEED performance portability across architectures through the use of
BLAS standards. The best performance in libCEED is currently obtained for the ‘cuda-gen‘ backend, which
is implemented using NVRTC.

At the high-level, the Nek team is developing NekRS, a C++ version of Nek5000 utilizing OCCA and the
libParanumal elliptic solver. With version 4.0, MFEM introduced general support for hardware accelerators
such as GPUs, and for low-level libraries/programming models such as CUDA, OCCA, libCEED, RAJA, and
OpenMP.

Progress to Date

MFEM-4.0 introduced GPU support in the library based on new backends and kernels working seamlessly
with a new lightweight memory spaces manager as illustrated in Fig. 58. Several of the MFEM example
codes (ex1, ex1p, ex6, and ex6p) and the Laghos miniapp can now take advantage of this GPU acceleration.
One main feature of the MFEM performance portability approach is the ability to select the backends at
runtime: they can be mixed to take full advantage of heterogeneous architectures. Algorithms well suited for
multi-core CPUs can still be used, while kernels more suited for GPUs can be launched on these architectures.
Most of the kernels are based on a single source, while still offering good performance and being able to use
efficiently hardware. This follows MFEM’s design philosophy and is made possible by integrating the support
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MFEM-4.0 adds initial GPU support in many linear algebra and finite element operations
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Figure 58: Diagram of MFEM’s modular design for accelerator support, combin-
ing flexible memory management with runtime-selectable backends for executing
key finite element and linear algebra kernels.

Figure 59: Initial results with MFEM-4.0: Example 1, 200 CG-PA iterations, 2D,
1.3M DOF, GV100, sm 70, CUDA 10.1, Intel(R) Xeon(R) Gold 6130@2.1 GHz.

directly at the library’s finite element components level. Many linear algebra and finite element operations
can now benefit fully from the new GPU acceleration.

Figure 59 presents initial MFEM performance results measured on a Linux desktop with a Quadro GV100
GPU, sm 70, CUDA 10.1, and Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz. Note that this configuration is
very similar to a compute nodes of LLNL’s Sierra machine. Single-core, multi-core CPU, and single-GPU
performance for different discretization orders is shown, keeping the total number of DOF constant at 1.3
millions in 2D. Results from all backends supported in MFEM 4.0, as well as recent results based on the
libCEED library (integrated with MFEM) are included. The plot clearly shows that GPU acceleration offers
a significant gain in performance relative to multi-core CPU. Comparing the single-core CPU backends, we
see that libCEED (ceed-avx and ceed-libxsmm) brings better performance for orders above two. For GPUs,
libCEED (eed-cuda) presents an improvement over all other GPU backends.

NekRS is a new C++ variant of Nek5000 based on OCCA and libParanumal coming out of Warburton’s
group at Virginia Tech. libParanumal is a test platform for exploring advanced algorithms for PDEs. NekRS
development started in January, 2019.

Figures 60 shows performance results for the current version of NekRS performed on Summit for a 17× 17
rod-bundle flow simulation. The mesh uses 277,000 elements of order N = 7 (n = 95M gridpoints total). The
Reynolds number is 5,000 based on hydraulic diameter. Periodic boundary conditions are used in the axial
flow direction and the initial conditions comprise an array of meandering vortices.
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Figure 60: NekRS and Nek5000 performance of GPUs versus CPUs on Summit
for turbulent flow simulations with Re = 5,000 for a 17 × 17 rod-bundle geometry
using total number of grid points n = 95,011,000. Based on timings from Step
11 to 60, time-per-step with ideal scalings shown as dashed lines (left), pressure
iterations per step (center), and DOF-per-J with respect to time-per-step (right)
are shown.

Figure 60, left, shows strong scaling results on a few nodes of Summit using NekRS with six V100 GPUs
per node or NekRS/Nek5000 with 42 CPUs per node. For the CPU version, NekRS uses Hypre as a coarse
grid solver. In this case, NekRS is about 4× slower than Nek5000 because the pressure solver is not yet as
optimized as the highly-tuned solver in Nek5000. For the GPU, the NekRS results improve substantially
when the coarse grid solver is based on the AMG solver ParAlmond.

Figure 60, center, shows the pressure iteration counts for each of the four cases. Nek5000 uses Schwarz-
smoothed p-multigrid; NekRS uses Chebyshev smoothing. When ParAlmond is used for the coarse-grid solve
the NekRS iteration counts improve by a factor of two and are on par with those of Nek5000. The Chebyshev
smoother requires more work per iteration than the Schwarz-based smoother.

With ongoing effort on the pressure solve we anticipate a 2× reduction in NekRS solution times, which
will put it on par with the strong-scaled solution times of Nek5000 with more than 2× energy savings that
are already observed for NekRS on Summit’s V100s (Fig. 60, right).

Next Steps

The CEED team is actively engaged with Intel in preparation for the Intel-based Aurora architecture.
Activities in this area include: performance projection for Nekbone on the new Aurora architecture, estimated
to achieve over 50× FOM speedup over Sequoia’s baseline; attending the Aurora workshop at ANL (9/17-9/19,
2019) by 5 CEED members; initial porting of NekRS on an Aurora development system, running with OpenCL
(via OCCA) on a single Intel Gen9 GPU; and further kernels optimization of OCCA, libCEED, libParanumal,
and Nek5000 planned and/or in development.

CEED researchers are also actively engaged with porting to and evaluation of AMD GPUs in preparation
for the AMD-based Frontier machine. Activities in this area include: support for HIP in OCCA and
MFEM-4.0; initial MFEM performance runs on the LLNL Corona cluster, which has Radeon Instinct MI25
GPUs (weak double precision); initial results with libParanumal on Radeon VII (good double precision) which
on certain benchmarks have achieved 75 % of the NVIDIA V100 peak performance at 10 % of the cost; and
collaboration with AMD on fixing slow linking times with the HIP compiler which was reported to hamper
development at the CEED annual meeting, and was addressed by AMD engineers in a couple of weeks.

Table 60 demonstrates NekRS baseline of performance measured on a single GPU on V100 and Intel
Gen9. Simulations are performed for turbulent flows with a Reynolds number of 8,000 using triangle-shaped
pipe geometry with 9,234 elements of order N = 7 (n = 3M gridpoints total). Wall boundary in spanwise and
periodic boundary in stream directions are considered with turbulent initial condition. Timings are measured
from 100 timestep runs.

Exascale Computing Project (ECP) 155 PM-AD-1080



Table 60: NekRS baseline of performance measured on a single GPU, Intel Gen9
(Aurora development system) vs. NVIDIA V100 using API backends of CUDA
and OpenCL. Simulations are performed for turbulent flows with Re = 8,000 for
a triangle-shaped pipe geometry using total number of grid points n = 3,167,262.

systems API backend accumulated time time per step ratio
100 steps (s) (s) (Gen0/V100)

Intel Gen9 (Iris@JLSE/ANL) OpenCL 1.784 98e3 17.84 1.00
NVIDIA V100 (Nurburg@ANL) OpenCL 3.885 53e1 0.388 45.93
NVIDIA V100 (Nurburg@ANL) CUDA 3.755 09e1 0.375 47.53
NVIDIA V100 (Summit@OLCF) CUDA 3.836 53e1 0.386 46.53

8.5 ExaGraph

Combinatorial algorithms in general and graph algorithms in particular play a critical enabling role in
numerous scientific applications. The irregular memory access nature of these algorithms makes them one of
the hardest algorithmic kernels to implement on parallel systems. The team therefore proposes to develop
methods and techniques for efficient implementation of key combinatorial (graph) algorithms chosen from a
set of exascale applications.

There are three dimensions to the work: (i) exascale applications that drive the selection of combinatorial
kernels and integration of software tools developed, such as computational biology, computational chemistry,
and climate science; (ii) combinatorial (graph) kernels that play a crucial enabling role in the chosen application
areas, such as graph traversals, graph matching, graph coloring, and graph clustering; and (iii) software
framework for efficient implementation on hierarchical distributed-memory architectures representative of
potential exascale platforms, such as Zoltan2, KokkosKernels, CombBLAS and GMT.

8.5.1 ExaGraph: Algorithms and Software Objectives

Through engagements with AD projects, work in the first year was focused on algorithmic development
and scaling of several key graph algorithms. The algorithms were selected from the needs of the follow-
ing ECP applications: ExaBiome (§ 6.3), NWChemEx (§ 3.2), ExaWind (§ 4.1), ExaSGD (§ 6.1) and
SuperLU/STRUMPACK. Key contributions from the first year’s work were in the development of perfect
matching with heuristics for maximizing the sum of the weights of the matched edges (highlighted in an
ECP news article dated 08-27-2018). Contributions were also made to the efforts of ExaBiome through
scalable implementations of Markov clustering. However, in order to increase further engagement with ECP
Application Projects, the team reached out to all the projects with a brief questionnaire and received good
feedback. Based on the results of this survey, the team aims to include at least two new applications to
closely integrate with and meet their needs by developing specific algorithmic kernels that can be seamlessly
integrated with the applications, and to find wider usage for the tools that have already been developed in
the project.

The team has started to explore porting and optimization of key graph algorithms (weighted approximate
matching and graph clustering) targeting important accelerator architectures. While design efforts related
to the hardware design are fairly committed at this point of time, there is ample scope to improve the
support of runtime and middleware systems in order to enable efficient execution of combinatorial and graph
algorithm on the exascale systems. ExaGraph intends to develop at least two prototype implementations for
benchmarking efforts through the Proxy Applications Project and publish technical articles on the different
aspects of performance such as impact on energy consumption, communication models and memory footprints.

As far as software engagements are concerned, the team has started initial discussions with the Su-
perLU/STRUMPACK (Factorization-based preconditioners) ECP-ST project regarding parallel sparse matrix
ordering techniques necessary for several applications. As an independent thrust, the team is also working with
the same project to improve the symbolic factorization step using GraphBLAS primitives and accelerators.
The team plans to:
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Table 61: ExaGraph KPP-3 goals and metrics

Passing value Stretch value Tentative present value

2 4 2

• develop and deliver a nested-dissection based sparse matrix ordering capability that is not just open-
source but has a permissive BSD-style license;

• develop a new parallel symbolic sparse matrix factorization algorithm using GraphBLAS primitives
that can also run on GPU accelerated clusters; and

• develop an implementation of half-approximate matching using UPC++ to provide insight for the
UPC++ team on addressing the needs of irregular applications.

8.5.2 ExaGraph: Performance Objectives

• Single-node performance: Develop efficient implementations for optimal performance on a single-node
of future exascale architectures and target shared-memory parallelism using OpenMP and single GPU
performance using CUDA and other technologies.

• Distributed performance: Design and develop distributed-memory implementations using MPI and
OpenMP for the graph algorithms selected in this project.

• Multi-GPU implementation: Develop multi-GPU implementations for graph clustering.

8.5.3 ExaGraph: Co-design Engagements and Integration Points

• SuperLU/STRUMPACK: In addition to existing accomplishments on developing a heavy-weight perfect
matching (HWPM) algorithm in collaboration, ExaGraph is working with the factorization-based sparse
solvers team on two new fronts—a nested-dissection based sparse matrix ordering capability and a
parallel symbolic sparse matrix factorization algorithm using GraphBLAS primitives that can run on
GPUs.

• ExaBiome: Through a close working relationship with ExaBiome (§ 6.3), the ExaGraph team has
already developed new sparse matrix-matrix multiplication (SpGEMM) codes as well as a new dis-
tributed connected component algorithm (LACC) that together accelerate HipMCL (ExaBiome’s protein
clustering application). Work is underway to deliver a distributed algorithm for generating protein
similarity graphs, which will be the input for HipMCL. Future plans also include a joint milestone on
end-to-end GPU acceleration of this protein clustering pipeline.

• ExaWind: The team is working with the ExaWind (§ 4.1) team at Sandia to design a parallel scheme
for finite element assembly for unstructured (mixed) meshes. The current approach uses atomics and
locks, but an alternative is graph coloring. ExaGraph is advising the application team on how to use
Zoltan2 and KokkosKernels coloring, and to identify new application needs.

• ATDM/SNL math libraries: The MueLu algebraic multigrid (AMG) solver is used in several ECP
applications, such as ExaWind and ATDM (Sparc, Empire). The team is working with the MueLu
team to parallelize the AMG setup phase. Graph coloring can be used to find independent sets for
coarsening; parallel shared-memory coloring has been developed in KokkosKernels for this purpose.

• Software Technologies: ExaGraph is working on developing a PGAS based implementation of half-
approximate matching using UPC++.

• Benchmarking/Vendors: ExaGraph is working with the AMD’s Path Forward team to port and optimize
the proxy application on graph clustering targeting accelerator (GPU) platforms.
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Table 62: ExaGraph code base

Package name LOC Target exascale challenge problems Computational motifs

CombBLAS ∼50,000 Protein similarity construction, protein
clustering, factorization-based sparse solvers

All graph algorithms
that can be
implemented as matrix
algebra

Vite ∼7,000 Model reduction in power grid simulations;
computational biology

Graph clustering

Matchbox ∼34,000 Task assignment, algebraic multigrids, sparse
direct solvers

Graph matching

Zoltan2 Mesh and matrix partitioning Graph partitioning

KokkosKernels FEM assembly, AMG setup Graph coloring

8.5.4 ExaGraph: Progress Towards Advanced Architectures

GPU Strategy

The following strategies are being adopted to exploit heterogeneous (GPU) resources to accelerate graph
algorithms:

• CUDA based development for NVIDIA GPUs: We will develop code using MPI + OpenMP + CUDA
for systems equipped with NVIDIA GPUs;

• OpenMP Offloading: We will develop code using MPI + OpenMP offloading for systems equipped with
Intel and AMD GPUs.

• Kokkos: Kokkos Kernls and Trilinos implementations of graph algorithms use productivity tools such
as Kokkos to enable portability across different systems equipped with GPUs from different vendors.

• Relying on problem-specific high-level libraries that run on GPU, including GraphBLAST and CUD-
ASW++

• SYCL: As a stretch goal, we will consider developing simpler algorithms in SYCL targeting multiple
systems equipped with Intel, AMD and NVIDIA GPUs.

The ST and external software dependencies are:

• Critical dependecies: MPI, OpenMP, OpenMP offloading, CUDA.

• SYCL, Kokkos, GraphBLAST, Gunrock, Ligra.

Progress to Date

The following graph algorithms are currently under development:

• Graph partitioning based on spectral partitioning. We are developing the first multi-GPU graph
partitioner. Our algorithm is a variation of spectral partitioning and we use the Trilinos and Kokkos
libraries to write performance portable code across CPU, GPU, and future exascale architectures. We
have some results on Summit shown in Tables 63 and 64. Our use case is the application has a certain
number of MPI ranks, and each rank corresponds to either a CPU core or a GPU. We show our spectral
method is faster on GPU than CPU. It is about 12× faster (on GPU) than ParMetis (which only runs
on CPU).

• Graph clustering: Our algorithms based on modularity optimization are currently under active develop-
ment. We are currently fixing minor bugs on the Volta GPUs.
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Table 63: Spectral partitioning runtime with MPI-only and MPI + CUDA on
24 processes per GPU.

graph MPI-only (s) MPI + CUDA (s) speedup

web-NotreDame 0.53 0.64 0.83
language 1.29 0.92 1.40
coPapersCiteseer 1.20 0.72 1.67
rajat30 1.44 2.39 0.60
Stanford Berkeley 1.03 0.97 1.06
ASIC 680ks 1.25 0.67 1.87
ASIC 680k 0.68 1.55 0.44
eu-2005 1.78 0.97 1.84
hollywood-2009 8.97 1.77 5.07
FullChip 9.92 12.38 0.80
com-Orkut 40.83 4.17 9.79
wikipedia-20070206 48.41 5.18 9.35
cit-Patents 23.61 3.79 6.23
com-LiveJournal 20.60 3.02 6.82
circuit5M 15.89 10.27 1.55
wb-edu 17.60 1.56 11.28
uk-2005 133.62 12.62 10.59
it-2004 149.36 12.47 11.98
twitter7 1 087.02 61.16 17.77
com-Friendster 1 408.27 84.93 16.58

geomean—all graphs 3.27

geomean—all graphs with >1M vertices 6.83

• Influence maximization: Our algorithms for influence maximization (submodular optimization) currently
scale on Summit. Our initial results demonstrate strong scaling with up to 64 nodes using all the
Power9 CPU cores and all the six GPUs on the node. A summary of tabulated results and strong
scaling results are shown in Table 65 and Fig. 61.

• PISA: Parallel protein sequence aligner code currently spends 80–90 % of its execution in pairwise
sequence alignment. In collaboration with Exagraph, we have been developing various GPU optimized
versions of pairwise alignment (Striped Smith Waterman, X-drop, etc.). We will integrate them to
PISA during the next two years. This is already a major milestone for Exagraph.

• Sparse Solvers: We are currently working on a GraphBLAS compatible symbolic factorization step, in
collaboration with the factorization-based solvers project (SuperLU/STRUMPACK).

Next Steps

The current next step plans in ExaGraph are:

• To enable the GraphBLAS-based implementations to use GPU implementations. Currently the closest
tool that suits this purpose is GraphBLAST (https://github.com/gunrock/graphblast).

• Work with AMD on porting the CUDA-based code to use AMD GPUs.

• Use OpenMP offloading to enable execution on GPUs for the graph clustering problem, in collaboration
with the SOLLVE project.
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Table 64: Runtime (s) comparison of spectral partitioning (SpecPart) against
ParMetis (24 processors/GPUs).

graph ParMetis SpecPart speedup

web-NotreDame 0.46 0.64 0.72
language 0.65 0.92 0.71
coPapersCiteseer 0.60 0.72 0.83
rajat30 274.31 2.39 114.77
Stanford Berkeley 7.01 0.97 7.23
ASIC 680ks 0.44 0.67 0.66
ASIC 680k 84.91 1.55 54.78
eu-2005 36.21 0.97 37.33
hollywood-2009 37.84 1.77 21.38
FullChip 6 951.30 12.38 561.49
com-Orkut 116.54 4.17 27.95
wikipedia-20070206 170.00 5.18 32.82
cit-Patents 8.65 3.79 2.28
com-LiveJournal 28.91 3.02 9.57
circuit5M 5 967.20 10.27 581.03
wb-edu 10.54 1.56 6.76
uk-2005 >7 200 12.62 -
it-2004 >7 200 12.47 -
twitter7 >7 200 61.16 -
com-Friendster >7 200 84.93 -

geomean 12.68

Figure 61: Summit IC model, parameters: ε = 0.13, k = 100.
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Table 65: Comparative evaluation of CuRipples relative to previous implemen-
tations of IMM—both serial (IMMseq) and parallel (IMMopt/mt/edison). Abbrevi-
ations used: number of cores (C), GPUs (G), and nodes (N).

System Time (s) Speedup Scale

com-Orkut (ε = 0.5, k = 100)

IMMseq 28 024.56 1.00 1C
IMMopt 9 027.50 3.10 1C
IMMmt 1 319.21 21.24 20C (1N)
CuRipplesdgx-1v 35.47 790.09 80C+8G (1N)
CuRipplesnewell 43.72 641.00 128C+4G (1N)

com-Orkut (ε = 0.13, k = 200)

IMMedison 294.51 95.16 3 072C (64N)
IMMedison 47.77 586.61 49 152C (1 024N)
CuRipplessummit 36.30 772.03 2 688C+384G (64N)

soc-LiveJournal1 (ε = 0.5, k = 100)

IMMseq 16 434.81 1.00 1C
IMMopt 3 954.59 4.16 1C
IMMmt 1 026.21 16.02 20C (1N)
CuRipplesdgx-1v 70.23 234.01 80C+8G (1N)
CuRipplesnewell 65.26 251.84 128C+4G (1N)

soc-LiveJournal1 (ε = 0.13, k = 200)

IMMedison 190.94 86.07 3 072C (64N)
IMMedison 55.12 298.16 49 152C (1 024N)
CuRipplessummit 106.43 154.42 2 688C+384G (64N)
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8.6 ExaLearn

The ExaLearn co-design center was funded as of FY18/Q4, and is designed to leverage the revolution in what
is variously termed machine learning, statistical learning, computational learning, and Artificial Intelligence
(henceforth referred to as ML). New ML technologies can have profound implications for computational and
experimental science and engineering and thus for the exascale computing systems that DOE is developing to
support those disciplines. Not only do these learning technologies open up exciting opportunities for scientific
discovery on exascale systems, they also appear poised to have important implications for the design and use
of the same exascale computers themselves: HPC for ML and ML for HPC.

ExaLearn will provide exascale machine learning software for use by the ECP Applications projects, other
ECP co-design centers and DOE experimental facilities and leadership class computing facilities. Working
closely with ECP applications, ExaLearn will undertake a focused co-design process that targets learning
methods common across these applications. This includes deep neural networks of various types (RNNs,
CNNs, GANs, etc.), kernel and tensor methods, decision trees, ensemble methods, graphical models and
reinforcement learning methods. ExaLearn will engage directly with developers of the ECP hardware, system
software, programming models, learning algorithms, and applications to understand and guide tradeoffs in
the development of exascale systems, applications, and software frameworks, given constraints relating to
application development costs, application fidelity, performance portability, scalability, and power efficiency.

ExaLearn will identify the fundamental ML challenges associated with ECP and concentrate efforts on the
development of scalable ML technologies for the analysis of data generated by exascale applications and DOE
user facilities as well as to guide the optimal selection and steering of (1) complex computer simulations (e.g.,
current exascale application projects), and (2) experiments (e.g., at DOE facilities including light sources
and accelerators). Key to success in this endeavor is a deliberate focus on verification and validation and
uncertainty quantification with a solid determination of generalization errors. A unifying principle is that
of using exascale ML to improve the efficiency and effectiveness both of DOE computing resources and
experimental facilities.

The technical goals for ExaLearn are fourfold: (1) reduce the development risk of ML software for the ECP
application teams by investigating crucial performance tradeoffs related to implementation and application
of learning methods in science and engineering, (2) produce high-performance implementations of learning
methods, (3) enable easy and efficient integration of those methods with applications, and (4) contribute to
the co-design of effective exascale applications, software, and hardware. Building on extensive collaborations
with application teams over the past years, the team will attach dedicated application “catalysts” to specific
ECP application teams to ensure continuous, high-bandwidth information and technology exchange between
ExaLearn and applications as well as with experimental user facilities. In addition, a continuous outreach
program will engage the wider data science and ECP software library communities. Finally, the ExaLearn
co-design center will serve as a focal point for exascale learning technology interactions with vendors.

The team envisions ExaLearn as the intersection of applications, learning methods, and exascale platforms,
advancing understanding of the constraints, mappings, and configuration choices that determine their
interactions. The success of ExaLearn will be evaluated with respect to four metrics: (1) use of ExaLearn
tools and technologies by the ECP applications and DOE experimental facilities; (2) efficiency of learning
methods on exascale computers; (3) improvements in scientific deliverables of applications; and (4) support
of ExaLearn tools and technologies by hardware vendors.

8.6.1 ExaLearn: Algorithms and Software Objectives

The ExaLearn project is delivering state of the art machine learning and deep learning techniques available
from the open-source community, as well as optimizing ones specific to the needs of the application pillars.
To date, the team has leveraged industry standard frameworks, such as Tensorflow, PyTorch, LBANN, and
AI gym, and extended LBANN to support distributed 3D convolutions for the ExaSky (§ 5.2) application.

ExaLearn is leveraging an engagement with the CANDLE project to adapt the CANDLE workflow to a
broader range of projects. Specifically, ExaLearn is using both the supervisor framework for hyper-parameter
optimization and the general CANDLE model description framework for model portability. ExaLearn will
deliver a series of software releases that combine multiple open-source packages that span the ML/DL
spectrum to address the needs of the application pillars. These software releases will capture a coherent set
of tools used to deliver scientific output for each milestone, including ExaLearn-specific optimizations that

Exascale Computing Project (ECP) 162 PM-AD-1080



Table 66: ExaLearn KPP-3 goals and metrics

Passing value Stretch value Tentative present value

2 3 1

address particular scalability impediments. Examples of upcoming ExaLearn releases will include: LBANN—a
scalable deep learning toolkit for the ExaSky project; PyTorch—rapid prototyping of neural network models
for Control, Design, and Inverse; Ai-Gym—reinforcement learning for control.

8.6.2 ExaLearn: Performance Objectives

The performance objectives of the ExaLearn project are to apply state of the machine learning and deep
learning techniques and tools to applications of interest across the DOE. The performance objectives will
be tailored to each application within the four application pillars: surrogates, control, inverse, and design.
Within each of these applications areas the goal will be to enable new applications to take advantage of
leadership class computing and eventually exascale computing to advance the state of art within the discipline.
Broadly the goals for each engagement will be to accelerate the development of new ML/DL models, targeting
the productivity of the domain scientist. As such, the most consistent metric across applications will be the
number of models that can be trained per day, enabling broader and more rapid use of model exploration.
For example, in the surrogate application pillar, the team has accelerated the training of the cosmoflow
application using the LBANN framework to drive down the per-network training time, while increasing the
data input size on which it is trained.

8.6.3 ExaLearn: Co-design Engagements and Integration Points

Initial engagements with AD are primarily with three projects: ExaSky (§ 5.2), ExaAM (§ 3.5), and CANDLE
(§ 6.2). Surrogate model development for cosmology is the focus with ExaSky, and the development of
reinforcement models with ExaAM. With ST, the two primary engagements are with the SOLLVE project
(to advance OpenMP integration) and the Legion project (to explore a potential threading model for large
scale deep learning software).

ExaLearn also has crosscutting teams responsible for interactions with PathForward hardware vendors
and ST projects. The PathForward cross-cutting effort facilitates communications and collaborations between
ECP and PathForward projects in the ML domain. This will be accomplished in three primary ways:

• Direct vendor engagement. Discussing the ExaLearn needs with the vendors, attending the vendor
“deep-dive meetings,” and understanding the new vendor technologies. Two caveats: this requires
significant travel and need to be under the vendor NDAs (the latter may be easier for some labs than
others).

• ECP application and experimental facility engagement. Work with other ExaLearn application and
cross-cutting areas to develop proxy apps to accurately reflect the system utilization (computation,
communication, etc.) of the key ML kernels and how they are applied to applications. The ability of
proxy applications to improve the design of scalable software solutions for deep learning methods is
high priority.

• ECP ML proxy applications. Work with ECP proxy application team to define ExaLearn proxy
applications and problem sets as part of the ECP proxy application suite. This includes working across
ExaLearn to ensure the PathForward vendors have ML/DL proxy applications and data sets relevant
to ECP’s ML/DL needs.

In a similar manner, the ST effort relies on the other ExaLearn crosscutting teams to reach out to the
larger ECP ST Community. Since the ExaLearn Software Infrastructure and Performance/Scaling crosscut
teams also benefit from understanding and engaging with the PathForward vendors, this crosscut supports
integration and communication among these teams.

Exascale Computing Project (ECP) 163 PM-AD-1080



8.6.4 ExaLearn: Progress Towards Advanced Architectures

GPU Strategy

ExaLearn’s strategy is to provide exascale ML software for use by ECP Applications Projects, other ECP
Co-design Centers, DOE Experimental Facilities and DOE Leadership Class Computing Facilities. Scalable
deep learning software toolkits are being built upon the LBANN software stack, which includes: LBANN a
deep learning toolkit, the Hydrogen GPU-accelerated distributed linear algebra library, and Aluminum a
GPU-centric accelerated communication library. This framework heavily leverages custom CUDA kernels,
cuDNN, and cuBLAS for node-local computation. Using this software stack, all of the distributed deep
learning runs directly on the GPUs with GPU-centric communication operations, leaving the host CPUs for
data marshalling, staging, and preprocessing.

To enable scalable training of regressive and generative models, we developed new methods of extending
generalizable parallel distributed convolutions to work on 3D data cubes. This work was performed in the
Livermore Big Artificial Neural Network (LBANN) toolkit and built on prior work that implemented spatially
distributed two-dimensional convolutions. Additional work has gone into creating the parallel data ingestion
pipeline to support data movement and distribution of these large samples, which are approximately 1 GB
in size per sample. To accelerate the per-step data exchange during stochastic gradient descent (SGD), we
extended LBANN’s in-memory distributed data store to handle the cosmology data cube format. CosmoFlow
is a deep learning tool that allows determination of the initial condition (IC) parameters of a universe based on
the simulated 3D distribution of mass in the universe. This work is a continuation of the earlier effort extended
to ingest input composed of four redshifts distribution and regress four IC parameters. The CosmoFlow
code was ported to Keras, as well as shared with Cerebras and LBANN groups for their benchmarking. The
multi-GPU version of CosmoFlow executed on Summit allowed us to search the hyperparameter space.

ExaLearn’s softwared dependencies are:

• LBANN: distributed deep learning toolkit akin to Pytorch and TensorFlow

• Hydrogen: GPU-accelerated distributed linear algebra with explicit host and device memory allocation

• Aluminum: GPU-centric asynchronous communication library that enables MPI operations to be
scheduled along with GPU kernels on streams CUDA, cuDNN, cuBLAS, NCCL.

Progress to Date

Our surrogate model is based on the Generative Adversarial Networks (ExaGAN, formerly CosmoGAN)
framework, and we are experimenting with Variational Autoencoders (VAE). Both models will eventually
need hyperparameter tuning at exascale to extend to larger maps and build conditional generative models.
For complex conditional models on large maps (currently 5,122 and intent to go to 10,243), we expect to
use intra-node model parallelism (up to a few GPUs) and inter-node data parallelism (tens to hundreds
of nodes) for faster experimentation during algorithm development and final model training. When such
models’ hyperparameters are being tuned, they will need thousands of nodes. After training, when applied to
generation, this GAN/VAE approach would be coupled with large-scale cosmology applications running on
exascale machines (e.g., ExaSky, § 5.2, apps HACC and Nyx).

As part of the ExaLearn 1.0 release, we have published the 3D spatially distributed convolution opti-
mizations within the LBANN framework. This builds on the existing DistConv extension and includes early
phase optimizations for parallelizing I/O for large samples. Table 67 summarizes three models, each of which
corresponds to the training dataset of 1,283, 2,563, and 5,123 volumes. For each of the models, we have
applied several extensions to the original baseline model. First, we add a batch normalization layer after
every convolutional layer. Ravanbakhsh et al. [23] reported that batch normalization was critical in training
a similar model. However, in the original CosmoFlow model, it was dropped due to the computational
cost of batch normalization, especially in a distributed training setting. We present training results in both
configurations and observe that while batch normalization increases memory requirements, it improves final
prediction accuracy. Second, in order to simplify comparison of the three models, we insert additional pooling
layers in the 2,563 and 5,123 models (the pool6 layer in both models and the pool7 layer in the 5,123 model).
Finally, we experimentally identified several minor parametric changes that improve prediction accuracy or
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Table 67: CosmoFlow network architecture, where Wi is the input width of the
spatial dimensions. A stride 1 convolution and stride 2 pooling is used unless
explicitly mentioned. All layers use a padding width of 1.

Layer Output width

Name Weights Wi = 128 Wi = 256 Wi = 512

conv1 16× 33 1283 2563 5123

pool1 16× 33 643 1283 2563

conv2 32× 33 643 1283 2563

pool2 32× 33 323 643 1283

conv3 64× 33 323 643 1283

pool3 64× 33 163 323 643

conv4
128× 33

83 163 323
(stride of 2)

pool4 128× 33 43 83 163

conv5 256× 33 43 83 163

pool5 256× 33 23 43 83

conv6 256× 33 23 43 83

pool6 256× 33 N/A 23 43

conv7 256× 33 23 23 43

pool7 256× 33 N/A N/A 23

fc1 2 048× 2 048 2 048 2 048 2 048
fc2 2 048× 256 256 256 256
fc3 256× 4 4 4 4

# conv. ops. [GFLOP/sample] 55.55 443.8 3 550
Forward [GFLOP/sample] 18.52 147.9 1 183
Memory [GB/sample] 0.824 6.59 52.7
# parameters (×106) 9.44 9.44 9.44

simplify the implementation of distributed convolution, including removal of biases and use of padding in
convolutional layers.

Simulation ML approaches have been attempted at full-machine scale on Summit and Cori with the
ExaLearn CosmoFlow software running stably at 2,400 nodes on Summit resulting in 111× speedup with
128 nodes as shown in Fig. 62. Exploiting 2-way spatial + 2-way sample parallelism and reducing memory
pressure scalable 3D distributed convolution is a game changer. Every code in ECP using AMReX could take
advantage of this including Combustion-Pele (§ 4.2 and ExaStar (§ 5.1).

Next Steps

The goal of the Performance crosscut area is to identify opportunities to scale up traditional ML and DL
training methods on leadership-class DOE HPC systems. For this first milestone, we noted the Surrogate
application pillar had identified an ML training task and associate data set that was amenable to scaling up
the training environment. To address the scalability challenges, we leveraged the open-source DL training
framework being developed by LLNL under multiple projects, including CANDLE. The LBANN framework is a
distributed memory DL toolkit intended for researching training and inference at large scales. LBANN already
has demonstrated the capabilities to train on Sierra and Summit. Prior work in this framework developed
support for accelerating training of convolutional neural networks (CNNs) via a hybrid spatial/sample
distribution known as the DistConv extension of LBANN.

Our ML work use case leverages OpenAI Gym, PyTorch, TensorFlow, PetSC, LAMMPS, CUDA, profilers,
and used ParaView a little as workflow building blocks. For scalable deep learning, we are building on
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Figure 5. Weak scaling of the CosmoFlow network. We perform several epochs of training and use the minimum iteration
time of the last epoch.
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Figure 6. Weak scaling of the CosmoFlow network with
di�erent partition strategies withWi = 512. We use a batch
size of 1 for each GPU group.

Figure ?? shows the GPU kernel timeline of a training
iteration for each con�guration. Distconv invokes packing
or unpacking and P2P communication kernels on the main
stream as well as on its dedicated stream asynchronously,
as mentioned in Section ??. From the beginning of back-
propagation, NCCL starts to communicate computed param-
eter gradients among processes asynchronously to the main
(computation) stream. Note that there are explicit barriers to
preserve the correctness of the computation, which are not
shown in the �gure. For instance, the reason why the main
stream is idle at the end of the last two timelines for around
20 ms is that it has to wait for NCCL to complete gradient
aggregation to update the weights.

As shown in Figure ?? and Figure ??, there are two clear
reasons why 8-way on 64 nodes achieves less computation
speed than 4-way:

• Since the batch size per GPU is halved, the compu-
tation e�ciency per sample is degraded. The former
takes about 200 ms in the main stream while the latter
takes about 350 ms.

• Due to this computational ine�ciency, part of the all-
reduce cannot be hidden in the main stream, espe-
cially at communication for the fully-connected lay-
ers whose communication intensity per operations is
much higher than convolutional layers, and at the end
of back-propagation where all communication have to
be completed before updating the weights.

This communication ine�ciency is, however, not the main
bottleneck of scaling from 64 nodes to 128 nodes, as seen in
the middle and the bottom of Figure ??. It is also observed
that the overhead introduced by Distconv (colored in blue)
is nearly negligible compared to the computational kernels
(red) in any con�gurations in Figure ??.

5.3 Strong scaling
Figure ?? shows the strong scaling performance of our im-
plementation with the Wi = 512 dataset. We use global
mini-batch sizes of 1 or 8. We use the same methodology
in Section ?? to measure the performance. “1D partitioning”
represents that the entire network is divided on the number
of processes in the “depth” dimension, and if possible, the
samples are also parallelized among processes following the
data-parallel fashion. “2D partitioning” means that we use
the same amount of parallelisms for both “depth” and “height”
dimensions.

In Figure ??, even when the mini-batch size is one, it
achieves 2.28x of speed up on 4 nodes (16 GPUs) compared to
one node. In this experiment, the scalability limit is 8 GPUs,
and the main bottleneck is input data loading, as shown in
Figure ??. As we do not adopt splitting each data sample
in advance, this is unavoidable overhead in the current im-
plementation. Similarly, it achieves 2.25x of speedup on 32
nodes (128 GPUs) when the mini-batch size is 8.

8

Figure 62: Weak-scaling performance when training CosmoFlow using 2-way
spatial and 2-way sample parallelism.

LBANN and CANDLE, both partially developed under ECP projects. For LBANN, we have a toolkit that
provides easy management of large-scale parallelism while adopting a frontend that looks like an industry tool
(PyTorch). Furthermore, we are adopting support for standard model exchange formats such as ONNX. Raw
capabilities built into LBANN are easily generalized to other applications. We have developed a flexible data
ingestion frontend that can natively execute Python code snippets from standard industry training pipelines.
Demonstrated unique capability to train models that provide quantitatively better science at unprecedented
scale on Sierra. Ongoing benchmarking for the I/O is taking place on Summit, and software is getting ported
to Perlmutter EA systems. Within the surrogate application pillar, the task of training deep neural networks,
such as CosmoFlow and CosmoGAN, is extremely GPU friendly. The LBANN scalable deep learning tool
has trained CosmoFlow on 512 GPUs (128 nodes). LBANN also has trained another CycleGAN network
using 16,384 GPUs on all of Sierra.

ExaLearn is training a large 3D convolutional neural network (CNN) for cosmological analysis of dark
matter distribution from simulations. As the training data scales, the anticipated bottleneck becomes the
I/O necessary to deal with the large numbers of substantial training data. Our strategy is to characterize
and provide solutions for the I/O bottleneck. The first step involved benchmarking the I/O of LBANN, the
system used by the Surrogates team for the CNNs. The initial benchmarks were performed on Cori. Next,
these code and training data were moved to Summit at the OLCF, where benchmarking was performed. The
I/O bottleneck on Summit was significantly less than on Cori. For next steps in LBANN one performance
optimization that we are working on is the use of the float16 (FP16) data type within LBANN and use of the
TensorCores. Training to-date in LBANN has been done at float32 (FP32) due to earlier software design
decisions within the LBANN toolkit. The Hydrogen GPU accelerated distributed linear layer is already
engineered for FP16 and the layer-wise support for FP16 in LBANN should be complete by the end of
November 2019. Once this support is in place, we will tune the custom kernels in LBANN for using the
TensorCores. Beyond these next steps, we are refactoring the GPU support within LBANN, Hydrogen, and
Aluminum to be GPU platform agnostic, initially bringing in support for AMD GPUs using HIP. At LLNL we
have a new AMD-based testbed called Corona and we have an initial port of the LBANN software stack onto
the AMD toolchain. We are still working on tuning the performance using the HIP/ROCm software stack.
Additionally, we will look at fusing key layer patterns to enable fused GPU kernels. Scalable deep learning
provides 10× improvement in prediction accuracy with large samples for the development of a cosmological
surrogate model. Simulation ML approaches have been carried out at full-machine scale on Summit with the
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ExaLearn CosmoFlow software running stably at 2,400 nodes.
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A. APPLICATION CODE SUMMARY

Table 68 gives a brief summary of the codes used by AD Application projects, the primary languages and
their strategy for utilizing the GPUs.

Table 68: AD application codes.

Application project Code Main language GPU programming model

ExaStar FLASH Fortran OpenMP
ExaStar CASTRO Fortran, C++ OpenMP, OpenACC
EQSIM SW4 C++ RAJA
ExaSky HACC C++ CUDA, OpenCL
ExaSky CRK-HACC C++ CUDA, OpenCL
ExaSky Nyx C++ AMReX
Subsurface Chombo-Crunch C++ PROTO, UPC++
Subsurface GEOSX C++ RAJA
E3SM-MMF E3SM Fortran OpenACC, moving to OpenMP
Combustion-PELE PeleC Fortran CUDA, OpenACC
Combustion-PELE PeleLM Fortran CUDA, OpenACC
WarpX WarpX + PICSAR C++ AMReX abstractions
ExaSMR Nek5000 Fortran OpenACC
ExaSMR NekRS Fortran libParanumal (OCCA)
ExaSMR OpenMC C++ OpenMP, OpenCL or SYCL
ExaSMR Shift C++ CUDA
WDMApp GENE Fortran OpenMP
WDMApp GEM Fortran OpenACC
WDMApp XGC Fortran OpenMP, OpenACC
MFIX-Exa MFIX-Exa C++ AMReX abstractions
ExaWind Nalu-Wind C++ Kokkos
ExaWind OpenFAST Fortran 90 N/A
ExaBiome MetaHipMer C++ UPC++
ExaBiome GOTTCHA C++ OpenMP, HIP, SYCL
ExaBiome HipMCL C++ OpenMP, HIP, SYCL
ExaFEL M-TIP C++ CUDA, HIP, OpenCL
ExaFEL PSANA C++ Legion
CANDLE CANDLE Python TensorFlow, PyTorch
ExaSGD GridPACK C++
ExaSGD PIPS C++ RAJA or Kokkos
ExaSGD StructJuMP Julia
QMCPACK QMCPACK C++ OpenMP
ExaAM MEUMAPPS-SS Fortran OpenMP, OpenACC
ExaAM ExaConstit C++ MFEM
ExaAM TruchasPBF Fortran AMReX
ExaAM Diablo Fortran OpenMP
ExaAM ExaCA C++ Kokkos
NWChemEx NWChemEx C++ CUDA, Kokkos
LatticeQCD Chroma C++ Kokkos
LatticeQCD CPS C++ GRID library
LatticeQCD MILC C GRID library
GAMESS GAMESS Fortran libcchem, libaccint
GAMESS libcchem C++ libaccint
EXAALT ParSplice C++ N/A
EXAALT LAMMPS C++ Kokkos
EXAALT SNAP C++ Kokkos
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