
PI: Jim Stewart, Sandia National 
Laboratories

Collaborators: Sandia National 
Laboratories

SNL NNSA Software Technology

The NNSA supports the development of open-
source software technologies that are both 
important to the success of national security 
applications and externally impactful to the 
rest of the Exascale Computing Project and the 
broader community. These software technolo-
gies are managed as part of a larger Advanced 
Simulation and Computing (ASC) program 
portfolio, which provides resources to develop 
these technologies for national security applica-
tions. The software technologies at Sandia Na-
tional Laboratories (SNL) span programming 
models and runtimes (Kokkos), mathematical 
libraries (Kokkos Kernels), data analysis and 
visualization (VTK-m), and system software 
(OS&ONR). 

The Kokkos programming model and C++ 
library enable performance portable on-com-
pute-node parallelism for exascale C++ appli-
cations. The Kokkos library implementation 
consists of a portable application programmer 
interface and architecture specific back-ends. 
These back-ends are developed and optimized 
as new capabilities are added to Kokkos, back-
end programming mechanisms evolve, and 
architectures change.

Kokkos Kernels implements on-node shared 
memory computational kernels for linear al-
gebra and graph operations, using the Kokkos 
shared-memory parallel programming model. 
The algorithms and the implementations of the 
performance-critical kernels in Kokkos Kernels 

are chosen carefully to match the features of the 
architectures, allowing exascale applications to 
use high-performance kernels and transfer the 
burden to Kokkos Kernels developers to main-
tain them in future architectures. 

VTK-m is a toolkit of scientific visualization al-
gorithms for emerging processor architectures 
that supports fine-grained concurrency within 
data analysis and visualization algorithms. This 
fine-grained concurrency is required to achieve 
performance on exascale architectures. The 
team is building up the VTK-m codebase with 
the necessary visualization algorithm imple-
mentations that run across the varied hardware 
platforms to be leveraged at the exascale.

The OS and On-Node Runtime (OS&ONR) 
project focuses on the design, implementa-
tion, and evaluation of operating system and 
runtime system interfaces, mechanisms, and 
policies supporting the efficient execution of 
application codes on next-generation plat-
forms. Priorities in this area include the devel-
opment of lightweight tasking techniques that 
integrate network communication, interfaces 
between the runtime and operating system 
for management of critical resources, portable 
interfaces for managing power and energy, and 
resource isolation strategies at the operating 
system level that maintain scalability and per-
formance while providing a full-featured set of 
system services. 

Progress to date

• The Kokkos team implemented new 
features based on customer needs, 
improving the applicability of Kokkos to a 
wide range of applications. These features 
include abstractions to seamlessly switch 
between data replication and atomic 
operation for scatter-add algorithms, 
tiled layouts, and multidimensional loop 
abstractions. 

• The Kokkos Kernels team delivered 
performance portable kernels to ASC 
mission critical applications, including a 
symmetric Gauss-Seidel preconditioner 
and coloring algorithms.

• The VTK-m team prototyped functional 
tensor approximation/compression 
methods using subsets/slices of data. 
These methods include interpolation onto 
a structured mesh followed by JPEG-
like compression, Tucker compression, 
canonical low-rank functional 
approximation, and functional tensor-train. 

• The OS&ONR team enabled the first 
demonstration of a virtual cluster on a Cray 
system, provided support for coordination 
of on-node resources between multiple 
OS/R environments to evaluate and 
improve performance isolation capabilities, 
and performed a scaling study comparing a 
containerized version of the Nalu exascale 
application code with a native version, 
which demonstrated that the container can 
actually reduce runtime while consuming 
more memory.


