
Kokkos/RAJA

Exascale systems are characterized by computer chips with a large number of cores, a smaller amount of 
memory, and a range of various architectures, which can result in decreased productivity for library and 
application developers who need to write specialized software for each system. The Kokkos/RAJA project 
provides high-level abstractions for expressing the necessary parallel constructs that are then mapped onto 
a runtime to achieve portable performance across current and future architectures, freeing developers who 
adopt these technologies of the burden of writing specialized code for each system.

Library and application developers are confronted 
with the challenges of inventing new parallel 
algorithms for many-core chips while learning 
the different programming mechanisms for 
each architecture and creating and maintaining 
specialized performant code for each. Adapting 
libraries and application software as the 
architectures evolve and become more complex 
to attain improved performance is a large time 
investment. The purpose of the Kokkos/RAJA 
project is to provide portable abstractions that can 
be adopted by developers to reduce or eliminate 
this overhead and improve developer productivity. 

Kokkos provides a C++ parallel programming 
model for performance portability that is 
implemented as a C++ abstraction layer 
including both parallel execution and data 
management primitives. RAJA provides various 
C++ abstractions for parallel loop execution and 
supports constructs to reorder, aggregate, tile, 

and partition loop iterations and complex loop-
kernel transformations. RAJA’s companion projects 
Umpire and CHAI provide portable memory 
management and smart data motion capabilities. 
Application and library developers can implement 
their code using Kokkos/RAJA, which will map 
their parallel algorithms onto the underlying 
execution mechanism using existing parallel 
programming models, such as OpenMP. 

The Kokkos/RAJA team is focused on developing 
and optimizing backends to support the Aurora and 
Frontier systems. These backends will ensure that 
libraries and applications built with the Kokkos/ 
RAJA abstractions will run and achieve high 
performance on these exascale systems without 
requiring the library and application developers 
to change their code, even if these architectures 
require their own custom programming 
mechanism.

PI: Christian Trott, Sandia National 
Laboratories

Collaborators: Sandia National 
Laboratories, Lawrence Livermore 
National Laboratory, Los Alamos 
National Laboratory, Oak Ridge 
National Laboratory

Progress to date

• The Kokkos team developed a parallel 
programming model with flexible enough 
semantics that it can be mapped on 
a diverse set of exascale architectures 
including current multi-core CPUs and 
massively parallel GPUs.

• The Kokkos library implementation 
consists of a portable Application 
Programming Interface (API) and 
architecture-specific backends, including 
OpenMP, Intel Xeon Phi, and CUDA on 
NVIDIA GPUs.

• The RAJA team produced a collection of 
C++ software abstractions that enable 
architecture portability for exascale 
applications using standard C++11 
features and provided support for multiple 
backends including OpenMP, CUDA, Intel 
TBB, and AMD GPUs.

• The Kokkos/RAJA team developed training 
material and held training events to enable 
adoption of their abstractions.


