
Progress to date
• On the so� ware event front, the team

began with the design and implementation
of a new API to expose any kind of
so� ware-de� ned events. It extends PAPI’s
role so that it becomes the de facto
standard for exposing performance-critical
events from di� erent so� ware layers.

• Because the concept of so� ware-de� ned
events is new to PAPI, the team worked
closely with developers of di� erent libraries
and runtimes that serve as natural targets
for early adoption of the new SDE API. To
date, the team has integrated SDEs into
the sparse linear algebra library MAGMA-
Sparse, the tensor algebra library TAMM
(NWChemEx), the task-scheduling
runtime PaRSEC, and the compiler-based
performance analysis tool BYFL.

• � e plot on the top in the � gure illustrates
how the convergence of Krylov solvers
can be visualized with the help of PAPI
SDEs. Each of these solvers behave very
di� erently for di� erent problems and
matrices, which, once more, stresses the
importance of exposing these details in a
standardized way. � is allows the domain
scientist to quickly identify the fastest and
most robust method of choice for their very
unique problems. Most importantly, this
information can now be obtained without
expert knowledge about algorithm-speci� c
characteristics, and without having to
instrument MAGMA library code, simply
by calling PAPI_read() in the top-level
application.

• � e plot on the bottom of the � gure serves
as a second showcase, illustrating the
evolution of various task queues during the
execution of a Cholesky factorization in
PaRSEC. With SDEs in PARSEC, a user can
get a view of what is happening inside the
runtime by simply calling PAPI_start() and
PAPI_stop() in their application, without
the need to instrument the PaRSEC
runtime code.

• On the hardware counter front, the team
has developed a new PAPI component
called “PCP” for IBM POWER9 hardware
counters. It adds support for (1) core
performance events, which are speci� c to
each core, and (2) shared events, which
monitor the performance of node-wide
resources that are shared between cores.
Access to shared events requires elevated
privileges. However, IBM’s o� cial route
for providing access to shared events is
through the Performance Co-Pilot (PCP)
for non-root users. � e new PAPI-PCP
component enables all users to access
POWER 9 shared events through PAPI.

EXA-PAPI++

Understanding the performance characteristics of exascale applications is necessary in order to identify
and address the barriers to achieving performance goals. � is becomes more di� cult as the architectures
become more complex. � e Performance Application Programming Interface (PAPI) provides both library
and application developers with generic and portable access to low-level performance counters found
across the exascale machine, enabling users to see the relationships between so� ware performance and
hardware events. � ese relationships provide a critical step toward improving performance.

� e Exascale Performance Application
Programming Interface (Exa-PAPI++) project is
developing a new C++ Performance API (PAPI++)
so� ware package from the ground up that o� ers
a standard interface and methodology for using
low-level performance counters in CPUs, GPUs,
on/o� -chip memory, interconnects, and the I/O
system, including energy/power management.
PAPI++ is building upon classic-PAPI functionality
and strengthening its path to exascale with a more
e� cient and � exible so� ware design, one that
takes advantage of C++’s object-oriented nature
but preserves the low-overhead monitoring of
performance counters and adds a vast testing suite.

In addition to providing hardware counter-
based information, a standardizing layer for
monitoring so� ware-de� ned events (SDE) is
being incorporated that exposes the internal
behavior of runtime systems and libraries, such
as communication and math libraries, to the
applications. As a result, the notion of performance
events is broadened from strictly hardware-related
events to include so� ware-based information.

Enabling monitoring of both hardware and so� ware
events provides more � exibility to developers when
capturing performance information.

In summary, the Exa-PAPI++ team is preparing
PAPI support to stand up to the challenges posed
by exascale systems by (1) widening its applicability
and providing robust support for exascale hardware
resources; (2) supporting � ner-grain measurement
and control of power, thus o� ering so� ware
developers a basic building block for dynamic
application optimization under power constraints;
(3) extending PAPI to support so� ware-de� ned
events; and (4) applying semantic analysis to
hardware counters so that the application developer
can better make sense of the ever-growing list
of raw hardware performance events that can
be measured during execution. � e team will be
channeling the monitoring capabilities of hardware
counters, power usage, so� ware-de� ned events
into a robust PAPI++ so� ware package. PAPI++
is meant to be PAPI’s replacement—with a more
� exible and sustainable so� ware design.

PI: Jack Dongarra, University of
Tennessee – Knoxville

Co-PIs: Heike Jagode and Anthony
Danalis, University of Tennessee –
Knoxville

Collaborators: University of Tennessee
– Knoxville

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

 0 100 200 300 400 500 600 700 800 900 1000

Runtime of Solvers:

147.3716 sec

330.7103 sec

196.2177 sec

241.7744 sec

168.2107 sec

342.2926 sec

150.4123 sec

342.1692 sec

R
e

s
id

u
a

l

Iteration

PAPI SDE Recorder: Residual per Iteration (nd24k: 72000-by-72000 with 28715634 nonzeros)

PBICG
PBICGSTAB

PCG
PCGS

PGMRES
PIDR

PQMR
PTFQMR

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30
0

333

666

999

1332

1665

2000

Co
un
te
rV

alu
e
fo
rR

ET
IR
ED

an
d
RE

AD
Y

Co
un
te
rV

alu
e
fo
rP

EN
DI
NG

an
d
(R
EA

DY
-R

ET
IR
ED

)

Time (s)

Tasks in different PaRSEC queues/states (DPOTRF 12,000x12,000, Haswell, 20 cores, single node)

RETIRED
READY

PENDING
(READY - RETIRED)

Figure (top) PAPI SDE-Recorder logging
convergence of different ILU-preconditioned
MAGMA-sparse Krylov solvers for a 2D/3D
Problem; (bottom) PAPI SDE-Recorder logging the
status	of	different	task	queues	in	PaRSEC.

52 53

