
E� cient communication among the compute elements within high performance computing systems
is essential for simulation performance. � e Message Passing Interface (MPI) is a community standard
developed by the MPI Forum for programming these systems and handling the communication needed.
MPI is the de facto programming model for large-scale scienti� c computing and is available on all the
large systems; most of DOE’s parallel scienti� c applications running on pre-exascale systems use MPI. � e
goal of the Exascale-MPI project is to both evolve the MPI standard to fully support the complexity of the
exascale systems and deliver MPICH, a reliable, performant implementation of the MPI standard, for these
systems.

deployed, including (1) support for multiple
accelerator modes and native hardware models
that will facilitate data transfers between GPU
accelerators and the communication network in
cases where native hardware support is lacking
and (2) o� ine and online performance tuning
based on static and dynamic system con� gurations,
respectively.

� is team will also produce a signi� cantly larger
test suite to stress test various use cases of MPI and
develop a test generation toolkit that automatically
pro� les MPI usage by applications (using the MPI
pro� ling interface) and generates a simple test
program that represents the MPI communication
pattern of the application, covering basic MPI
features, sanitized iterative loops, memory bu� er
management, and incomplete executions. � ese
activities will help improve both the reliability and
performance of the MPICH implementation and
other MPI implementations as they evolve.

� e team will continue to engage with the MPI
Forum to ensure that future MPI standards meet
the needs of both the ECP and broader DOE
applications. To achieve good performance on
exascale machines, the team plans to develop new
MPI features for application-speci� c requirements,
such as alternative fault tolerance models and
reduction neighborhood collectives, either through
the inclusion in the standard or as extensions to the
standard.

While MPI will continue to be a viable
programming model on exascale systems, both the
MPI standard and the MPI implementations need
to address the challenges posed by the increased
scale, performance characteristics, evolving
architectural features, and complexity expected
from the exascale systems as well as provide
support for the capabilities and requirements of the
applications that will run on these systems.

� erefore, this project addresses � ve key challenges
to deliver a performant MPICH implementation:
(1) scalability and performance on complex
architectures that include, for example, high core
counts, processor heterogeneity, and heterogeneous
memory; (2) interoperability with intranode
programming models having a high thread count
such as OpenMP, OpenACC, and emerging
asynchronous task models; (3) so� ware overheads
that are exacerbated by lightweight cores and
low-latency networks; (4) extensions to the MPI
standard based on experience with applications
and high-level libraries and frameworks targeted
at exascale; and (5) topics that become more
signi� cant for exascale architectures—memory and
power usage, and resilience.

� e MPICH development e� ort continues to
address several key challenges such as performance
and scalability, heterogeneity, hybrid programming,
topology awareness, and fault tolerance. Several
additional features are being developed in order
to support the exascale machines that will be

Exascale MPI / MPICH

PI: Pavan Balaji, Argonne National
Laboratory

Collaborators: Argonne National
Laboratory

Progress to date

• � e Exascale-MPI team developed a high-
performance, production-quality MPI
implementation called MPICH. � e team
continues to improve the performance and
capabilities of the MPICH so� ware in order
to meet the demands of ECP and other
broader DOE applications.

• Some technical risks that have been retired
include scalability and performance over
complex architectures and interoperability
with intranode programming models
having high thread count such as OpenMP.

34 35

